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PREFACE

[TO THE FIRST EDITION]

TH ERE is a certain well-defined range in Electromagnetic Theory, which
every student of physics may be expected to have covered, with more
or less of thoroughness, before proceeding to the study of special branches
or developments of the subject. The present book is intended to give the
mathematical theory of this range of electromagnetism, together with the
mathematical analysis required in its treatment.

The range is very approximately that of Maxwell’s original Treatise, but
the present book is in many respects more elementary than that of Maxwell.
Maxwell’s Treatise was written for the fully-equipped mathematician: the
present book is written more especially for the student, and for the physicist
of limited mathematical attainments.

The questions of mathematical analysis which are treated in the text
have been inserted in the places where they are first needed for the
development of the physical theory, in the belief that, in many cases,
the mathematical and physical theories illuminate one another by being
studied simultaneously. For example, brief sketches of the theories of
spherical, zonal and ellipsoidal harmonics are given in the chapter on
Special Problems in Electrostatics, interwoven with the study of harmonie
potentials and electrical applications: Stokes’ Theorem is similarly given
in connection with the magnetic vector-potential, and so on. One result
of this arrangement is to destroy, at least in appearance, the balance of
the amounts of space allotted to the different parts of the subject. For
instance, more than half the book appears to be devoted to Electrostatics,
but this space will, perhaps, not seem excessive when it is noticed how
many of the pages in the Electrostatic part of the book are devoted to
non-electrical subjects in applied mathematics (potential-theory, theory .of
stress, etc.), or in pure mathematics (Green’s Theorem, harmonic analym.s,
complex variable, Fourier’s series, conjugate functions, curvilinear coordi-
nates, etc.).



vi Preface

A number of examples, taken mainly from the usual Cambridge
examination papers, are inserted. These may provide problems for the
mathematical student, but it is hoped that they may also form a sort of
compendium of results for the physicist, shewing what types of problem
admit of exact mathematical solution.

It is again a pleasure to record my thanks to the officials of the
University Press for their unfailing vigilance and help during the printing
of the book.

: J. H. JEANS.

PRINCETON,
December, 1907.

[TO THE SECOND EDITION]

The second Edition will be found to differ only very slightly from the
first in all except the last few chapters. The chapter on Electromagnetic
Theory of Light has, however, been largely rewritten and considerably
amplified, and two new chapters appear in the present edition, on the
Motion of Electrons and on the General Equations of the Electromagnetic
Field. These last chapters attempt to give an introduction to the more
recent developments of the subject. They do not aim at anything like
completeness of treatment, even in the small parts of the subjects with
which they deal, but it is hoped they will form a useful introduction to more
complete and specialised works and monographs.

J. H. JEANS.

CAMBRIDGE,
August, 1911.
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INTRODUCTION

THE THREE DIVISIONS OF ELECTROMAGNETISM

1. THE fact that a piece of amber, on being rubbed, attracted to itself
other small bodies, was known to the Greeks, the discovery of this fact being
attributed to Thales of Miletus (640-548 B.c.). A second fact, namely, that
a certain mineral ore (lodestone) possessed the property of attracting iron,
is mentioned by Lucretius. These two facts have formed the basis from
which the modern science of Electromagnetism has grown. It has been
found that the two phenomena are not isolated, but are insignificant units in
a vast and intricate series of phenomena. To study, and as far as possible
interpret, these phenomena is the province of Electromagnetism. And the
mathematical development of the subject must aim at bringing as large
a number of the phenomena as possible within the power of exact mathe-
matical treatment.

2. The first great branch of the science of Electromagnetism is known
as Electrostatics. The second branch is commonly spoken of as Magnetism,
but is more accurately described as Magnetostatics. ~We may say that
Electrostatics has been developed from the single property of amber already
mentioned, and that Magnetostatics has been developed from the single
property of the lodestone. These two branches of Electromagnetism deal
solely with states of rest, not with motion or changes of state, and are
therefore concerned only with phenomena which can be described as statical.
The developments of the two statical branches of Electromagnetism, namely
Electrostatics and Magnetostatics, are entirely independent of one another.
The science of Electrostatics could have been developed if the properties of
the lodestone had never been discovered, and similarly the science of
Magnetostatics could have been developed without any knowledge of the
properties of amber.

The third branch of Electromagnetism, namely, Electrodynamics, deals
with' the motion of electricity and magnetism, and it is in the development
of this branch that we first find that the two groups of phenomena of
electricity and magnetism are related to one another. The relation is

J. 1
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2 Introduction

a reciprocal relation: it is found that magnets in motion produce the same
effects as electricity at rest, while electricity in motion produces the same
effects as magnets at rest. The third division of Electromagnetism, then,
connects the two former divisions of Electrostatics and Magnetostatics, and
is in a sense symmetrically placed with regard to them. Perhaps we may
compare the whole structure of Electromagnetism to an arch made of three
stones. The two side stones can be placed in position independently, neither
in any way resting on the other, but the third cannot be placed in position
until the two side stones are securely fixed. The third stone rests equally
on the two other stones and forms a connection between them.

3. In the present book, these three divisions will be developed in the
order in which they have been mentioned. The mathematical theory will be
identical, as regards the underlying physical ideas, with that given by
Maxwell in his Treatise on Electricity and Magnetism, and in his various
published papers. The principal peculiarity which distinguished Maxwell’s
mathematical treatment from that of all writers who had preceded him, was
his insistence on Faraday’s conception of the energy as residing in the
medium.. On this view, the forces acting on electrified or magnetised bodies
do not form the whole system of forces in action, but serve only to reveal
to us the presence of a vastly more intricate system of forces, which act
at every point of the ether by which the material bodies are surrounded.
It is only through the presence of matter that such a system of forces can
become perceptible to human observation, so that we have to try to
construct the whole system of forces from no data except those given by the
resultant effect of the forces on matter, where matter is present. As might
be expected, these data are not sufficient to give us full and definite knowledge
of the system of ethereal forces; a great number of systems of ethereal
forces could be constructed, each of which would produce the same effects on
matter as are observed. Of these systems, however, a single one seems so
very much more probable than any of the others, that it was unhesitatingly
adopted both by Maxwell and by Faraday, and has been followed by all
subsequent workers at the subject.

4. As soon as the step is once made of attributing the mechanical
forces acting on matter to a system of forces acting throughout the whole
ether, a further physical development is made not only possible but also
necessary. A stress in the ether may be supposed to represent either an
electric or a magnetic force, but cannot be both. Faraday supposed a stress
in the ether to be identical with electrostatic force, and the accuracy of this
view has been confirmed by all subsequent investigations. There is now
no possibility, in this scheme of the universe, of regarding magnetostatic
forces as evidence of simple stresses in the ether.
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It has, however, been said that magnetostatic forces are found to be
produced by the motion of electric charges. Now if electric charges at rest
produce simple stresses in the ether, the motion of electric charges must be
accompanied by changes in the stresses in the ether. It is now possible to
identify magnetostatic force with change in the system of stresses in the
ether. This interpretation of magnetic force forms an essential part of
Maxwell’s theory. If we compare the ether to an elastic material medium,
we may say that the electric forces must be interpreted as the statical
pressures and strains in the medium, which accompany the compression,
dilatation or displacement of the medium, while magnetic forces must be
interpreted as the pressures and strains in the medium caused by the motion
and momentum of the medium. Thus electrostatic energy must be regarded
as the potential energy of the medium, while magnetic energy is regarded as
kinetic energy. Maxwell has shewn that the whole series of electric and
magnetic phenomena may without inconsistency be interpreted as phenomena
produced by the motion of a medium, this motion being in conformity with
the laws of dynamics. More recently, Larmor has shewn how an imaginary
medium can actually be constructed, which shall produce all these phenomena
by its motion.

The question now arises: If magnetostatic forces are interpreted as
motion of the medium, what properties are we to assign to the magnetic
bodies from which these magnetostatic forces originate? An answer sug-
gested by Ampere and Weber needs but little modification to represent the
answer to which modern investigations have led. Recent experimental
researches shew that all matter must be supposed to consist, either partially
or entirely, of electric charges. This being so, the kinetic theory of matter
tells us that these charges will possess a certain amount of motion. Every-
thing leads us to suppose that all magnetic phenomena can be explained by
the motion of these charges. If the motion of the charges is governed by a
regularity of a certain kind, the body as a whole will shew magnetic pro-
perties. If this regularity does not obtain, the magnetic forces produced by
the motions of the individual charges will on the whole neutralise one
another, and the body will appear to be non-magnetic. Thus on this view
the electricity and magnetism which at first sight appeared to exist inde-
pendently in the universe, are resolved into electricity alone—electricity
and magnetism become electricity at rest and electricity in motion.

This discovery of the ultimate identity of electricity and magnetism is
by no means the last word of the science of Electromagnetism. As far back
as the time of Maxwell and Faraday, it was recognised that the forces at
work in chemical phenomena must be regarded largely if not entirely, as
electrical forces. Later, Maxwell shewed light to be an electromagnetic

1—2
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4 Introduction

phenomenon, so that the whole science of Optics became a branch of
Electromagnetism.

A still more modern view attributes all material phenomena to the action
of forces which are in their nature identical with those of electricity and mag-
netism. Indeed, modern physics tends to regard the universe as a continuous
ocean of ether, in which material bodies are represented merely as peculiarities
in the ether-formation. The study of the forces in this ether must therefore
embrace the dynamics of the whole universe. The study of these forces is
best approached through the study of the forces of electrostatics and magneto-
statics, but does not end until all material phenomena have been discussed
from the point of view of ether forces. In one sense, then, it may be
said that the science of Electromagnetism deals with the whole material
universe.



CHAPTER 1
PHYSICAL PRINCIPLES

THE FUNDAMENTAL CONCEPTIONS OF ELECTROSTATICS

1. State of Electrification of a Body.

5. WE proceed to a discussion of the fundamental conceptions which
form the basis of Electrostatics. The first of these is that of a state of
electrification of a body. When a piece of amber has been rubbed so that it
attracts small bodies to itself, we say that it is in a state of electrification—
or, more shortly, that it is electrified.

Other bodies besides amber possess the power of attracting small bodies
after being rubbed, and are therefore susceptible of electrification. Indeed
it is found that all bodies possess this property, although it is less easily
recognised in the case of most bodies, than in the case of amber. For
instance a brass rod with a glass handle, if rubbed on a piece of silk or cloth,
will shew the power to a marked degree. The electrification here resides in
the brass; as will be explained immediately, the interposition of glass or
some similar substance between the brass and the hand is necessary in order
that the brass may retain its power for a sufficient time to enable us to
observe it. If we hold the instrument by the brass rod and rub the glass
handle we find that the same power is acquired by the glass.

II. Conductors and Insulators.

6. Let us now suppose that we hold the electrified brass rod in one hand
by its glass handle, and that we touch it with the other hand. We find that
after touching it its power of attracting small bodies will have completely
disappeared. If we immerse it in a stream of water or pass it through a
flame we find the same result. If on the other hand we touch it with
a piece of silk or a rod of glass, or stand it in a current of air, we find
that its power of attracting small bodies remains unimpaired, at any rate
for a time. It appears therefore that the human body, a flame or water
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have the power of destroying the electrification of the brass rod when placed
in contact with it, while silk and glass and air do not possess this property.
It is for this reason that in handling the electrified brass rod, the substance

in direct contact with the brass has been supposed to be glass and not the
hand.

In this way we arrive at the idea of dividing all substances into two
classes according as they do or do not remove the electrification when touch-
ing the electrified body. The class which remove the electrification are
called conductors, for as we shall see later, they conduct the electrification
away from the electrified body rather than destroy it altogether; the class
which allow the electrified body to retain its electrification are called non-
conductors or insulators. The classification of bodies into conductors and
insulators appears to have been first discovered by Stephen Gray (1696-
1736).

At the same time it must be explained that the difference between
insulators and conductors is one of degree only. If our electrified brass rod
were left standing for a week in contact only with the air surrounding it and
the glass of its handle, we should find it hard to detect traces of electrifica-
tion after this time—the electrification would have been conducted away by
the air and the glass. So also if we had been able to immerse the rod in a
flame for a billionth of a second only, we might have found that it retained
considerable traces of electrification. It is therefore more logical to speak of
good conductors and bad conductors than to speak of conductors and insula-
tors. Nevertheless the difference between a good and a bad conductor is so
enormous, that for our present purpose we need hardly take into account the
feeble conducting power of a bad conductor, and may without serious incon-
sistency, speak of a bad conductor as an insulator. There is, of course, nothing
to prevent us imagining an ideal substance which has no conducting power
at all. It will often simplify the argument to imagine such a substance,
although we cannot realise it in nature.

It may be mentioned here that of all substances the metals are by very
much the best conductors. Next come solutions of salts and acids, and lastly
as very bad conductors (and therefore as good insulators) come oils, waxes,
silk, glass and such substances as sealing wax, shellac, indiarubber. Gases
under ordinary conditions are good insulators. Indeed it is worth noticing
that if this had not been so, we should probably never have become acquainted
with electric phenomena at all, for all electricity would be carried away by
conduction through the air as soon as it was generated. Flames, however,
conduct well, and, for reasons which will be explained later, all gases become
good conductors when in the presence of radium or of so-called radio-active
substances. Distilled water is an almost perfect insulator, but any other
sample of water will contain impurities which generally cause it to conduct
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tolerably well, and hence a wet body is generally a bad insulator. So also an
electrified body suspended in air loses its electrification much more rapidly in
damp weather than in dry, owing to conduction by water-particles in the air.

When the body is in contact with insulators omly, it is said to be
“insulated.” The insulation is said to be good when the electrified body
retains its electrification for a long interval of time, and is said to be poor
when the electrification disappears rapidly. Good insulation will enable a
body to retain most of its electrification for some days, while with poor insula-
tion the electrification will last only for a few minutes or seconds.

IIL.  Quantity of Electricity.

7. We pass next to the conception of a definite quantity of electricity,
this quantity measuring the degree of electrification of the body with which
it is associated. It is found that the quantity of electricity associated with
any body remains constant except in so far as it is conducted away by con-
ductors. To illustrate, and to some extent to prove this law, we may use
an instrument known as the gold-leaf electroscope. This consists of a glass
vessel, through the top of which a metal rod is passed, supporting at its lower
end two gold-leaves which under normal conditions hang flat side by side,
touching one another throughout their length. When an electrified body
touches or is brought near to the brass rod, the two gold-leaves are seen to
separate, for reasons which will become clear later (§ 21), so that the instru-
ment can be used to examine whether or not a body is electrified.

Let us fix a metal vessel on the top of the brass rod, the vessel being
closed but having a lid through which bodies can be in-
serted. The lid must be supplied with an insulating
handle for its manipulation. Suppose that we have
electrified some piece of matter—to make the picture
definite, suppose that we have electrified a small brass
rod by rubbing it on silk—and let us suspend this body
inside the vessel by an insulating thread in such a
manner that it does not touch the sides of the vessel.
Let us close the lid of the vessel, so that the vessel
entirely surrounds the electrified body, and note the
amount of separation of the gold-leaves of the electro-
scope. Let us try the experiment any number of times,
placing the electrified body in different positions inside
the closed vessel, taking care only that it does not come
into contact with the sides of the vessel or with any
other conductors. We shall find that in every case the separation of the
gold-leaves is exactly the same.

Fia. 1.
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In this way then, we get the idea of a definite quantity of electrification
associated with the brass rod, this quantity being independent of the position
of the rod inside the closed vessel of the electroscope. We find, further, that
the divergence of the gold-leaves is not only independent of the position of
the rod inside the vessel, but is independent of any changes of state which
the rod may have experienced between successive insertions in the vessel,
provided only that it has not been touched by conducting bodies. We
might for instance heat the rod, or, if it was sufficiently thin, we might
bend it into a different shape, and on replacing it inside the vessel we
should find that it produced exactly the same deviation of the gold-leaves
as before. We may, then, regard the electrical properties of the rod as being
due to a quantity of electricity associated with the rod, this quantity remaining
permanently the same, except in so far as the original charge is lessened by
contact with conductors, or increased by a fresh supply.

8. We can regard the electroscope as giving an indication of the magni-
tude of a quantity of electricity, two charges being equal when they produce
the same divergence of the leaves of the electroscope.

In the same way we can regard a spring-balance as giving an indication
of the magnitude of a weight, two weights being equal when they produce
the same extension of the spring.

The question of the actual quantitative measurement of a quantity of
electricity as a multiple of a specified unit has not yet been touched. We
can, however, easily devise means for the exact quantitative measurement
of electricity in terms of a unit. We can charge a brass rod to any degree
we please, and agree that the charge on this rod is to be taken to be the
standard unit charge. By rubbing a number of rods until each produces
exactly the same divergence of the electroscope as the standard charge, we
can prepare a number of unit charges, and we can now say that a charge is
equal to » units, if it produces the same deviation of the electroscope as
would be produced by n units all inserted in the vessel of the electroscope
at once. This method of measuring an electric charge is of course not one
that any rational being would apply in practice, but the object of the
present explanation is to elucidate the fundamental principles, and not to
give an account of practical methods.

9. Positive and Negative Electricity. Let us suppose that we insert in
the vessel of the electroscope the piece of silk on which one of the brass
rods has been supposed to have been rubbed in order to produce its unit
charge. We shall find that the silk produces a divergence of the leaves of
the electroscope, and further that this divergence is exactly equal to that
which is produced by inserting the brass rod alone into the vessel of the
electroscope. If, however, we insert the brass rod and the silk together into
the electroscope, no deviation of the leaves can be detected.
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Again, let us suppose that we charge a brass rod 4 with a charge which
the divergence of the leaves shews to be n units. Let us rub a second brass
rod B with a piece of silk C until it has a charge, as indicated by the electro-
scope, of m units, m being smaller than n. If we insert the two brass rods
together, the electroscope will, as already explained, give a divergence corre-
sponding to »+ m units. If, however, we insert the rod 4 and the silk C
together, the deviation will be found to correspond to n — m units.

In this way it is found that a charge of electricity must be supposed to
have sign as well as magnitude. As a matter of convention, we agree to
speak of the m units of charge on the silk as m positive units, or more briefly
as a charge + m, while we speak of the charge on the brass as m negative
units, or a charge —

10. Generation of Electricity. It is found to be a general law that, on
rubbing two bodies which are initially uncharged, equal quantities of positive
and negative electricity are produced on the two bodies, so that the total
charge generated, measured algebraically, is nel.

We have seen that the electroscope does not determine the sign of the
charge placed inside the closed vessel, but only its magnitude. We can,
however, determine both the sign and magnitude by two observations. Let
us first insert the charged body alone into the vessel. Then if the divergence
of the leaves corresponds to m units, we know that the charge is either +m
or —m, and if we now insert the body in company with another charged body,
of which the charge is known to be +n, then the charge we are attempting
to measure will be +m or —m according as the divergence of the leaves
indicates n+m or m~m units. With more elaborate instruments to be
described later (electrometers) it is possible to determine both the magnitude
and sign of a charge by one observation.

11. If we had rubbed a rod of glass, instead of one of brass, on the silk,
we should have found that the silk had a negative charge, and the glass of
course an equal positive charge. It therefore appears that the sign of the
charge produced on a body by friction depends not only on the nature of the
body itself, but also on the nature of the body with which it has been
rubbed.

The following is found to be a general law: If rubbing a substance 4 on
a second substance B charges A positively and B negatively, and if rubbing
the substance B on a third substance ¢ charges B positively and C negatively,
then rubbing the substance 4 on the substance C' will charge A positively
and C negatively.

It is therefore possible to arrange any number of substances in a list such
that a substance is charged with positive or negative electricity when rubbed
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with a second substance, according as the first substance stands above or
below the second substance on the list. The following is a list of this kind,
which includes some of the most important substances:

Cat's skin, Glass, Ivory, Silk, Rock crystal, The Hand, Wood, Sulphur,
Flannel, Cotton, Shellac, Caoutchouc, Resins, Guttapercha, Metals, Guncotton.

A substance is said to be electropositive or electronegative to a second
substance according as it stands above or below it on a list of this kind.
Thus of any pair of substances one is always electropositive to the other, the
other being electronegative to the first. Two substances, although chemically
the same, must be regarded as distinct for the purposes of a list such as the
above, if their physical conditions are different ; for instance, it is found that
a hot body must be placed lower on the list than a cold body of the same
chemical composition.

IV. Attraction and Repulsion. of Electric Charges.

12. A small ball of pith, or some similarly light substance, coated with
gold-leaf and suspended by an insulating thread, forms a convenient instru-
ment for investigating the forces, if any, which are brought into play by the
presence of electric charges. Let us electrify a pith ball of this kind positively
and suspend it from a fixed point. We shall find that when we bring a
second small body charged with positive electricity near to this first body
the two bodies tend to repel one another, whereas if we bring a negatively
charged body near to it, the two bodies tend to attract one another. From
this and similar experiments it is found that two small bodies charged with
electricity of the same sign repel one another, and that two small bodies
charged with electricity of different signs attract one another.

This law can be well illustrated by tying together a few light silk threads
by their ends, so that they form a tassel, and allowing the threads to hang
vertically. If we now stroke the threads with the hand, or brush them with
a brush of any kind, the threads all become positively electrified, and there-
fore repel one another. They consequently no longer hang vertically but
spread themselves out into a cone. A similar phenomenon can often be
noticed on brushing the hair in dry weather. The hairs become positively
electrified and so tend to stand out from the head.

13." On shaking up a mixture of powdered red lead and yellow sulphur,
the particles of red lead will become positively electrified, and those of the
sulphur will become negatively electrified, as the result of the friction which
has occurred between the two sets of particles in the shaking. If some of
this powder is now dusted on to a positively electrified body, the particles of
sulphur will be attracted and those of red lead repelled. The red lead will
therefore fall off, or be easily removed by a breath of air, while the sulphur
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particles will be retained. The positively electrified body will therefore
assume a yellow colour on being dusted with the powder, and similarly a
negatively electrified body would become red. It may sometimes be con-
venient to use this method of determining whether the electrification of a
body is positive or negative.

14. The attraction and repulsion of two charged bodies is in many
respects different from the force between one charged and one uncharged
body. The latter force, as we have explained, was known to the Greeks: it
must be attributed, as we shall see, to what is known as “electric induction,”
and is invariably attractive. The forces between two bodies both of which
are charged, forces which may be either attractive or repulsive, seem hardly
to have been noticed until the eighteenth century.

The observations of Robert Symmer (1759) on the attractions and
repulsions of charged bodies are at least amusing. He was in the habit
of wearing two pairs of stockings simultaneously, a worsted pair for comfort
and a silk pair for appearance. In pulling off his stockings he noticed that
they gave a crackling noise, and sometimes that they even emitted sparks
when taken off in the dark. On taking the two stockings off together from
the foot and then drawing the one from inside the other, he found that both
became inflated so as to reproduce the shape of the foot, and exhibited
attractions and repulsions at a distance of as much as a foot and a half.

“When this experiment is performed with two black stockings in one
hand, and two white in the other, it exhibits a very curious spectacle; the
repulsion of those of the same colour, and the attraction of those of different
colours, throws them into an agitation that is not unentertaining, and
makes them catch each at that of its opposite colour, and at a greater
distance than one would expect. When allowed to come together they all
unite in one mass. When separated, they resume their former appearance,
and admit of the repetition of the experiment as often as you please, till
their electricity, gradually wasting, stands in need of being recruited.”

The Law of Force between charged Particles.

- 15. The Torsion Balance. Coulomb (1785) devised an instrument known
as the Torsion Balance, which enabled him not only to verify the laws of
attraction and repulsion qualitatively, but also to form an estimate of the
actual magnitude of these forces. ;

The apparatus consists essentially of two light balls 4, 0, fixed at the two
ends of a.rod which is suspended at its middle point B by a very fine thread
of silver, quartz or other material. The upper end of the thread is fastened
to a movable head D, so that the thread and the rod can be made to
rotate by screwing the head. If the rod is acted on only by its weight, the
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condition for equilibrium is obviously that there shall be no torsion in
the thread. If, however, we fix a third small ball £ in the same plane as
the other two, and if the three balls are elec-
trified, the forces between the fixed ball and
the movable ones will exert a couple on the
moving rod,and the condition for equilibrium
is that this couple shall exactly balance that
due to the torsion. Coulomb found that the
couple exerted by the torsion of the thread
was exactly proportional to the angle through
which one end of the thread had been turned
relatively to the other, and in this way was
enabled to measure his electric forces. In
Coulomb’s experiments one only of the two
movable balls was electrified, the second serv-
ing merely as a counterpoise, and the fixed
ball was at the same distance from the torsion
thread as the two movable balls.

Suppose that the head of the thread is
. turned to such a position that the balls when uncharged rest in equilibrium,
just touching one another without pressure. Let the balls receive charges
e, ¢, and let the repulsion between them result in the bar turning through
an angle 6. The couple exerted on the bar by the torsion of the thread
is proportional to 8, and may therefore be taken to be xf. If a is the
radius of the circle described by the movable ball, we may regard the couple
acting on the rod from the electric forces as made up of a force F, equal
to the force of repulsion between the two balls, multiplied by « cos}6,
the arm of the mement. The condition for equilibrium is accordingly

aF cos 10 = k0.

Let us now suppose that the torsion head is turned through an angle ¢
in such a direction as to make the two charged balls approach each other;
after the turning has ceased, let us suppose that the balls are allowed to
come to rest. In the new position of equilibrium, let us suppose that the
two charged balls subtend an angle 6’ at the centre, instead of the former
angle 8. The couple exerted by the torsion thread is now « (6’ + ¢), so that
if F” is the new force of repulsion we must have /

aF’ cos 16 = « (€' + ¢).

By observing the value of ¢ required to give definite values to 8 we can
calculate values of F” corresponding to any series of values of ¢. From a
series of experiments of this kind it is found that so long as the charges on
the two balls remain the same, F’ is proportional to cosec?$#’, from which
it is easily seen to follow that the force of repulsion varies inversely as the
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square of the distance. And when the charges on the two balls are varied
it is found that the force varies as the product of the two charges, so long as
their distance apart remains the same. As the result of a series of experi-
ments conducted in this way Coulomb was able to enunciate the law :

The force between two small charged bodies is proportional to the product
of their charges, and is inversely proportional to the square of their distance
apart, the force being one of repulsion or attraction according as the two
charges are of the same or of opposite kinds.

16. In mathematical language we may say that there is a force of repul-
sion of amount

where e, ¢ are the charges, r their distance apart, and ¢ is a positive
constant,

If e, ¢ are of opposite signs the product ee’ is negative, and a negative
repulsion must be interpreted as an attraction.

Although this law was first published by Coulomb, it subsequently
appeared that it had been discovered at an earlier date by Cavendish,
whose experiments were much more refined than those of Coulomb. Caven-
dish was able to satisfy himself that the law was certainly intermediate
between the inverse 2+ 3; and 2 — g;th power of the distance (see below,
§§ 46—48). TUnfortunately his researches remained unknown until his
manuscripts were published in 1879 by Clerk Maxwell.

The experiments of Coulomb and Cavendish, it need hardly be said,
were very rough compared with those which are rendered possible by modern
refinements of theory and practice, so that these experiments are no longer
the justification for using the law expressed by formula (1) as the basis of
the Mathematical Theory of Electricity. More delicate experiments with the
apparatus used by Cavendish, which will be explained later, have, however,
been found to give a complete confirmation of Coulomb’s Law, so long as
the charged bodies may both be regarded as infinitely small compared with
their distance apart. Any deviation from the law of Coulomb must accord-
ingly be attributed to the finite sizes of the bodies which carry the charges.
As it is only in the case of infinitely small bodies that the symbol » of
formula (1) has had any meaning assigned to it, we may regard the law (1)
as absolutely true, at any rate so long as r is large enough to be a measurable
quantity.
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The Unit of Electricity.

17. The law of Coulomb supplies us with a convenient unit in which
to measure electric charges.

The unit of mass, the pound or gramme, is a purely arbitrary unit, and
all quantities of mass are measured simply by comparison with this unit.
The same is true of the unit of space. If it were possible to keep a charge
of electricity unimpaired through all time we might take an arbitrary charge
of electricity as standard, and measure all charges by comparison with this
one standard charge, in the way suggested in § 8. As it is not possible to do
this, we find it convenient to measure electricity with reference to the units
of mass, length and time of which we are already in possession, and Coulomb’s
Law enables us to do this. We define as the unit charge a charge such that
when two unit charges are placed one on each of two small particles at
a distance of a centimetre apart, the force of repulsion between the particles
is one dyne. With this definition it is clear that the quantity ¢ in the
formula (1) becomes equal to unity, so long as the c.g.s. system of units
is used.

In a similar way, if the mass of a body did not remain constant, we might
have to define the unit of mass with reference to those of time and length
by saying that a mass is 2 unit mass provided that two such masses, placed
at a unit distance apart, produce in each other by their mutual gravitational
attraction an acceleration of a centimetre per second per second. In this
case we should have the gravitational acceleration f given by an equation
of the form

and this equation would determine the unit of mass.

18. Physical dvmensions. If the unit of mass were determined by
equation (2), m would appear to have the dimensions of an acceleration
multiplied by the square of a distance, and therefore dimensions

£
As a matter of fact, however, we know that mass is something entirely apart

from length and time, except in so far as it is connected with them through
the law of gravitation. The complete gravitational acceleration is given by

m
f o ;2’ ’
where # is the so-called “ gravitation constant.”

By our proposed definition of unit mass we should have made the value
of 4 numerically equal to unity ; but its physical dimensions are not those of
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a mere number, so that we cannot neglect the factor y when equating
physical dimensions on the two sides of the equation.

So also in the formula

we can and do choose our unit of charge in such a way that the numerical
value of ¢ is unity, so that the numerical equation becomes

but we must remember that the factor ¢ still retains its physical dimensions.
Electricity is something entirely apart from mass, length and time, and it
follows that we ought to treat the dimensions of equation (8), by introducing
a new unit of electricity & and saying that ¢ is of the dimensions of a force
divided by £?/r* and therefore of dimensions

MLE-T-,

If, however, we compare dimensions in equation (4), neglecting to take
account of the physical dimensions of the suppressed factor ¢, it appears as
though a charge of electricity can be expressed in terms of the units of
mass, length and time, just as it might appear from equation (2) as though
a mass could be expressed in terms of the units of length and time. The
apparent dimensions of a charge of electricity are now

£ N R L e I 21 ke (5).

It will be readily understood that these dimensions are merely apparent
and not in any way real, when it is stated that other systems of units are
also in use, and that the apparent physical dimensions of a charge of
electricity are found to be different in the different systems of units. The
system which we have just described, in which the unit is defined as
the charge which makes ¢ numerically equal to unity in equation (3), is
known as the Electrostatic system of units.

There will be different electrostatic systems of units corresponding to
different units of length, mass and time. In the c.G.s. system these units
are taken to be the centimetre, gramme and second. In passing from one
system of units to another the unit of electricity will change as if it were
a physical quantity having dimensions M*L!T-1, so long as we hold to the
agreement that equation (4) is to be numerically true, ie. so long as the
units remain electrostatic. This gives a certain importance to the apparent
dimensions of the unit of electricity, as expressed in formula (5).
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V. Electrification by Induction.

19. Let us suspend a metal rod by insulating supports. Suppose that
the rod is originally uncharged, and that we bring a small body charged
with electricity near to one end of the rod, without allowing the two bodies
to touch. We shall find on sprinkling the rod with electrified powder of the
kind previously described (§ 13), that the rod is now electrified, the signs of
the charges at the two ends being different. ‘This electrification is known as
electrification by induction. We speak of the electricity on the rod as an
induced charge, and that on the originally electrified body as the inducing or
exciting charge. We find that the induced charge at the end of the rod
nearest to the inducing charge is of sign opposite to that of the inducing
charge, that at the further end of the rod being of the same sign as the
inducing charge. If the inducing charge is removed to a great distance
from the rod, we find that the induced charges disappear completely, the rod
resuming its original unelectrified state.

If the rod is arranged so that it can be divided into two parts, we can
separate the two parts before removing the inducing charge, and in this way
can retain the two parts of the induced charge for further examination.

If we insert the two induced charges into the vessel of the electroscope,
we find that the total electrification is nsl: in generating electricity by
induction, as in generating it by friction, we can only generate equal
quantities of positive and negative electricity; we cannot alter the algebraic
total charge. Thus the generation of electricity by induction is in no way
a violation of the law that the total charge on a body remains unaltered
except in so far as it is removed by conduction.

20. If the inducing charge is placed on a sufficiently light conductor, we
notice a violent attraction between it and the rod which carries the induced
charge. This, however, as we shall now shew, is only in accordance with
Coulomb’s Law. Let us, for the sake of argument, suppose that the
inducing charge is a positive charge e. Let us divide up that part of the

ABC C'B'A
(£ 3 1D

Fie. 3.

rod which is negatively charged into small parts AB, BC, ..., beginning from
the end A which is nearest to the inducing charge 7, in such a way that each
pert contains the same small charge — e, of negative electricity. Let us
similarly divide up the part of the rod which is positively charged into
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sections A’B’, B’C’, ..., beginning from the further end, and such that each of
these parts contains a charge +e¢ of positive electricity. Since the total
induced charge is zero, the number of positively charged sections A’B’,
B’C’, ... must be exactly equal to the number of negatively charged sections
AB, BC, .... The whole series of sections can therefore be divided into a
series of pairs
ABand A’B’; BCand B'C’; ete.

such that the two sections of any pair contain equal and opposite charges.
The charge on A’B’ being of the same sign as the inducing charge e, repels
the body I which carries this charge, while the charge on 4B, being of the
same sign as the charge on I, attracts I. Since AB is nearer to I than A’B’,
it follows from Coulomb’s Law that the attractive force ee/r* between 4B
and 7 is numerically greater than the repulsive force ee/r? between 4’B’ and
1, so that the resultant action of the pair of sections AB, 4’B’ upon [ is an
attraction. Obviously a similar result is true for every other pair of sections,
so that we arrive at the result that the whole force between the two bodies
1s attractive.

This result fully accounts for the fundamental property of a charged body
to attract small bodies to which no charge has been given. The proximity of
the charged body induces charges of different signs on those parts of the body
which are nearer to, and further away from, the inducing charge, and although
the total induced charge is zero, yet the attractions will always outweigh the
repulsions, so that the resultant force is always one of attraction.

21. The same conceptions explain the divergence of the gold-leaves of
the electroscope which occurs when a charged body is brought near to the
plate of the electroscope or introduced into a closed vessel standing on this
plate. All the conducting parts of the electroscope—gold-leaves, rod, plate
and vessel if any—may be regarded as a single conductor, and of this the
gold-leaves form the part furthest removed from the charged body. The
leaves accordingly become charged by induction with electricity of the same
sign as that of the charged body, and as the charges on the two gold-leaves
are of similar sign, they repel one another.

22. On separating the two parts of a conductor while an induced charge
is on it, and then removing both from the influence of the induced charge,
we gain two charges of electricity without any diminution of the inducing
charge. We can store or utilise these charges in any way and on replacing
the two parts of the conductor in position, we shall again obtain an induced
charge. This again may be utilised or stored, and so on indefinitely. There
is therefore no limit to the magnitude of the charges which can be obtained
from a small initial charge by repeating the process of induction.

This principle underlies the action of the Electrophorus. A cake of resin
is electrified by friction, and for convenience is placed with its electrified

J. 2
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surface uppermost on a horizontal table. A metal disc is held by an insulating
handle parallel to the cake of resin and at a slight distance above it. The
operator then touches the upper surface of the disc with his finger. When
the process has reached this stage, the metal disc, the body of the operator
and the earth itself form one conductor. The negative electricity on the resin
induces a positive charge on the nearer parts of this conductor—primarily
on the metal disc—and a negative charge on the more remote parts of the
conductor—the further region of the earth. When the operator removes
his finger, the disc is left insulated and in possession of a positive charge.
As already explained, this charge may be used and the process repeated
indefinitely.

In all its essentials, the principle utilised in the generation of electricity
by the “influence machines” of Voss, Holtz, Wimshurst and others is identical
with that of the electrophorus. The machines are arranged so that by the
turning of a handle, the various stages of the process are repeated cyclically
time after time.

23. Electric Equilibrium. Returning to the apparatus illustrated in
fig. 8, p. 16, it is found that if we remove the inducing charge without
allowing the conducting rod to come into contact with other conductors,
the charge on the red disappears gradually as the inducing charge recedes,
positive and negative electricity combining in equal quantities and neutral-
ising one another. This shews that the inducing charge must be supposed
to act upon the electricity of the induced charge, rather than upon the
matter of the conductor. Upon the same principle, the various parts of the
induced charge must be supposed to act directly upon one another. Moreover,
in a conductor charged with electricity at rest, there is no reaction between
matter and electricity tending to prevent the passage of electricity through
the conductor. For if there were, it would be possible for parts of the induced
charge to be retained, after the inducing charge had been removed, the parts
of the induced charge being retained in position by their reaction with the
matter of the conductor. Nothing of this kind is observed to occur. We
conclude then that the elements of electrical charge on a conductor are each
in equilibrium under the influence solely of the forces exerted by the remaining
elements of charge.

24. An exception occurs when the electricity is actually at the surface
of the conductor. Here there is an obvious reaction between matter and
electricity—the reaction which prevents the electricity from leaving the
surface of the conductor. Clearly this reaction will be normal to the surface,
so that the forces acting upon the electricity in directions which lie in the
tangent plane to the surface must be entirely forces from other charges of
electricity, and these must be in equilibrium. To balance the action of the
matter on the electricity there must be an equal and opposite reaction of
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electricity on matter. This, then, will act normally outwards at the surface of
the conductor. Experimentally it is best put in evidence by the electrification
of soap-bubbles. A soap-bubble when electrified is observed to expand, the
normal reaction between electricity and matter at its surface driving the
surface outwards until equilibrium is reestablished (see below, § 94).

25. Also when two conductors of different material are placed in con-
tact, electric phenomena are found to occur which have been explained by
Helmbholtz as the result of the operation of reactions between electricity and
matter at the surfaces of the conductors. Thus, although electricity can pass
quite freely over the different parts of the same conductor, it is not strictly
true to say that electricity can pass freely from one conductor to another of
different material with which it is in contact. Compared, however, with the
forces with which we shall in general be dealing in electrostatics, it will be
legitimate to disregard entirely any forces of the kind just described. We
shall therefore neglect the difference between the materials of different con-
ductors, so that any number of conductors placed in contact may be regarded
as a single conductor.

THEORIES TO EXPLAIN ELECTRICAL PHENOMENA.

26. One-flusd Theory. Franklin, as far back as 1751, tried to include
all the electrical phenomena with which he was acquainted in one simple
explanation. He suggested that all these phenomena could be explained by
supposing the existence of an indestructible “electric fluid,” which could be
associated with matter in different degrees. Corresponding to the normal
state of matter, in which no electrical properties are exhibited, there is
a definite normal amount of “electric fluid.” When a body was charged
with positive electricity, Franklin explained that there was an excess of
“electric fluid ” above the normal amount, and similarly a charge of negative
electricity represented a deficiency of electric fluid. The generation of equal
quantities of positive and negative electricity was now explained: for instance,
in rubbing two bodies together we simply transfer “ electric fluid ” from one
to the other. To explain the attractions and repulsions of electrified bodies,
Franklin supposed that the particles of ordinary matter repelled one another,
while attracting the “electric fluid.” In the normal state of matter the
quantities of “electric fluid ” and ordinary matter were just balanced, so that
there was neither attraction nor repulsion between bodies in the normal state.
According to a later modification of the theory the attractions just out-balanced
the repulsions in the normal state, the residual force accounting for gravitation.

27. Two-fluid Theory. A further attempt to explain electric phenomena
was made by the two-fluid theory. In this there were three things concerned,
ordinary matter and two electric fluids—positive and negative. The degree
of electrification was supposed to be the measure of the excess of positive

2—2
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electricity over negative, or of negative over positive, according to the sign
of the electrification. The two kinds of electricity attracted and repelled.
electricities of the same kind repelling, and of opposite kinds attracting, and
in this way the observed attractions and repulsions of electrified bodies were
explained without having recourse to systems of forces between electricity
and ordinary matter. It is, however, obvious that the two-fluid theory was
too elaborate for the facts. On this theory ordinary matter devoid of both
kinds of electricity would be physically different from matter possessing
equal quantities of the two kinds of electricity, although both bodies would
equally shew an absence of electrification. There is no evidence that it is
possible to establish any physical difference of this kind between totally
unelectrified bodies, so that the two-fluid theory must be dismissed as
explaining more than there is to be explained.

28. Modern view of Electricity. The two theories which have just been
mentioned rested on no experimental evidence except such as is required
to establish the phenomena with which they are directly concerned. The
modern view of electricity, on the other hand, is based on an enormous mass
of experimental evidence, to which contributions are made, not only by the -
phenomena of electrostatics, but also by the phenomena of almost every
branch of physiecs and chemistry. The modern explanation of electricity is
found to bear a very close resemblance to the older explanation of the one-
fluid theory—so much so that it will be convenient to explain the modern
view of electricity simply by making the appropriate modifications of the
one-fluid theory.

We suppose the “electric-fluid” of the one-fluid theory replaced by a
crowd of small particles— electrons,” it will be convenient to call them—all
exactly similar, and each having exactly the same charge of negative electricity
permanently attached to it. The electrons are almost unthinkably small; the
mass of each is about 8 x 10~ grammes, so that about as many would be
required to make a gramme as would be required of cubic centimetres to make
a sphere of the size of our earth. The charge of an electron is enormously
large compared with its mass—the charge of each being about 45 x 10—
in electrostatic units, so that a gramme of electrons would carry a charge
equal to about 56 x 10" electrostatic units. To form some conception of the
intense degree of electrification represented by these data, it may be noticed
that two grammes of electrons, if placed at a distance of a metre apart, would
repel one another with a force equal to the weight of about 3:2 x 10 tons.
Thus the electric force outweighs the gravitational force in the ratio of about
5 x 10* to 1. »

A piece of ordinary matter in its unelectrified state contains a certain
number of electrons of this kind, and this number is just such that two
pieces of matter each in this state exert no electrical forces on one another—
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this condition in fact defines the unelectrified state. A piece of matter
appears to be charged with negative or positive electricity according as the
number of negatively-charged electrons it possesses is in excess or defect of
the number it would possess in its unelectrified state.

Three important consequences follow from these facts.

In the first place it is clear that we cannot go on dividing a charge of
electricity indefinitely—a natural limit is imposed as soon as we come to the
charge of one electron, just as in chemistry we suppose a natural limit to be
imposed on the divisibility of matter as soon as we come to the mass of an
atom. The modern view of electricity may then be justly described as an
“atomic” view. And of all the experimental evidence which supports this
view none is more striking than the circumstance that these “atoms”
continually reappear in experiments of the most varied kinds, and that the
atomic charge of electricity appears always to be precisely the same.

In the second place, the process of charging an ordinary piece of matter
with positive electricity consists simply in removing some of its electrons
Thus matter without electrons must possess the properties of positive charges
of electricity, but it is not at present known how these properties are to be
accounted for. The origin of negative electric forces (z.e., forces which repel
a negatively-charged particle) must be looked for in electrons, but the origin
of positive electric forces remains unknown.

In the third place, in charging a body with electricity we either add to or
subtract from its mass according as we charge it with negative electricity
(t.e., add to it a number of electrons), or charge it with positive electricity
(i.e., remove from it a number of electrons). Since the mass of an electron is
so minute in comparison with the charge it carries, it will readily be seen
that the change in its mass is very much too small to be perceptible by any
methods of measurement which are at our disposal. Maxwell mentions, as
an example of a body possessing an electric charge large compared with its
mass, the case of a gramme of gold, which may be beaten into a gold-leaf one
square metre in area, and can, in this state, hold a charge of 60,000 electro-
static units of negative electricity. The mass of the number of negatively
electrified electrons necessary to carry this charge will be found, as the result
of a brief calculation from the data already given, to be about 10~ grammes.
The change of weight by electrification is therefore one which it is far beyond
the power of the most sensitive balance to detect.

On this view of electricity, the electrons must repel one another, and
must be attracted by matter which is devoid of electrons, or in which there is
a deficiency of electrons. The electrons move about freely through conductors,
but not through insulators. The reactions which, as we have seen, must be
supposed to occur at the surface of charged conductors between “ matter ” and
“electricity,” can now be interpreted simply as systems of forces between the
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electrons and the remainder of the matter. Up to a certain extent these
forces will restrain the electrons from leaving the conductor, but if the electric
forces acting on the electrons exceed a certain limit, they will overcome the
forces acting between the electrons and the remainder of the conductor, and
an electric discharge takes place from the surface of the conductor.

Thus an essential feature of the modern view of electricity is that it
regards the flow of electricity as a material flow of charged electrons. Good
conductors and good insulators are now seen to mean simply ‘substances in
which the electrons move with extreme ease and extreme difficulty re-
spectively. The law that equal quantities of positive and negative electricity
are generated simultancously means that electrons may flow about, but
cannot be created or annihilated.

The modern view enables us also to give a simple physical interpretation
to the phenomenon of induction. A positive charge placed near a conductor
will attract the electrons in the conductor, and these will flow through the
conductor towards the charge until electrical equilibrium is established.
There will be then an excess of negative electrons in the regions near the
positive charge, and this excess will appear as an induced negative charge.
The deficiency of electrons in the more remote parts of the conductor will
appear as an induced positive charge. If the inducing charge is negative,
the flow of electrons will be in the opposite direction, so that the signs of the
induced charges will be reversed. In an insulator, no flow of electrons can
take place, so that the phenomenon of electrification by induction does not
occur.

On this view of electricity, negative electricity is essentially different in
its nature from positive electricity: the difference is something more funda-
mental than a mere difference of sign. Experimental proof of this difference
18 not wanting, e.g., a sharply pointed conductor can hold a greater charge of
positive than of negative electricity before reaching the limit at which ‘a
discharge begins to take place from its surface. But until we come to those
parts of electric theory in which the flow of electricity has to be definitely
regarded as a flow of electrons, this essential difference between positive and
negative electricity will not appear, and the difference between the two will
be adequately represented by a difference of sign.

SUMMARY.

29. It will be useful to conclude the chapter by a summary of the
results which are arrived at by experiment, independently of all hypotheses
as to the nature of electricity.

These have been stated by Maxwell in the form of laws, as follows:

Law 1. The total electrification of a body, or system of bodies,

remains always the same, except in so far as it receives electrification
from or gives electrification to other bodies.
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Law II. When one body electrifies another by conduction, the
total electrification of the two bodies remains the same; that is, the
one loses as much positive or gains as much negative electrification as
the other gains of positive or loses of negative electrification.

Law ITI. When electrification is produced by friction, or by any
other known method, equal quantities of positive and negative electrifi-
cation are produced.

Definition. The electrostatic unit of electricity is that quantity of
positive electricity which, when placed at unit distance from an equal
quantity, repels it with unit of force.

Law I'V. The repulsion between two small bodies charged respect-
ively with e and ¢ units of electricity is numerically equal to the
product of the charges divided by the square of the distance.

These are the forms in which the laws are given by Maxwell. Law I, it
will be seen, includes IT and III. As regards the Definition and Law IV,
it is necessary to specify the medium in which the small bodies are placed,
since, as we shall see later, the force is different when the bodies are in air,
or in a vacuum, or surrounded by other non-conducting media. It is usual
to assume, for purposes of the Definition and Law IV, that the bodies are in
air. For strict scientific exactness, we ought further to specify the density,
the temperature, and the exact chemical composition of the air. Also we
have seen that when the electricity is not insulated on small bodies, but is
free to move on conductors, the forces of Law IV must be regarded as acting
on the charges of electricity themselves. When the electricity is not free to
move, there is an action and reaction between the electricity and matter, so
that the forces which really act on the electricity appear to act on the bodies
themselves which carry the charges.
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CHAPTER II

THE ELECTROSTATIC FIELD OF FORCE

CONCEPTIONS USED IN THE SURVEY OF A FIELD oF FORCE

I. The Intensity at a point.

30. THE space in the neighbourhood of charges of electricity, considered
with reference to the electric phenomena occurring in this space, is spoken of
as the electric field.

A new charge of electricity, placed at any point O in an electric field,
will experience attractions or repulsions from all the charges in the field.
The introduction of a new charge will in general disturb the arrangement
of the charges on all the conductors in the field by a process of induction.
If, however, the new charge is supposed to be infinitesimal, the effects of
induction will be negligible, so that the forces acting on the new charge may
be supposed to arise from the charges of the original field.

Let us suppose that we introduce an infinitesimal charge e on an infinitely
small conductor. Any charge e, in the field at a distance 7, from the point O
will repel the charge with a force ee/r>. The charge e will experience a
similar repulsion from every charge in the field, so that each repulsion will be
proportional to e.

The resultant of these forces, obtained by the usual rules for the com-
position of forces, will be a force proportional to e—say a force Re in some
direction OP. We define the electric intensity at O to be a force of which
the magnitude is R, and the direction is OP. Thus

The electric intensity at any point is given, in magnitude and direction, by
the force per umit charge which would act on a charged particle placed at this
point, the charge on the particle being supposed so small that the distribution
of electricity on the conductors in the field vs not affected by its presence.

The electric intensity at O, defined in this way, depends only on the
permanent field of force, and has nothing to do with the charge, or the size,
or even the existence of the small conductor which has been used to explain
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the meaning of the electric intensity. There will be a definite intensity at
every point of the electric field, quite independently of the presence of small
charged bodies.

A small charged body might, however, conveniently be used for exploring
the electric field and determining experimentally the direction of the electric
intensity at any point in the field. For if we suppose the body carrying a
charge e to be held by an insulating thread, both the body and thread being
so light that their weights may be neglected, then clearly all the forces
acting on the charged body may be reduced to two:—

(i) A force Re in the direction of the electric intensity at the point
occupied by e,
(i1) the tension of the thread acting along the thread.

For equilibrium these two forces must be equal and opposite. Hence the
direction of the intensity at the point occupied by the small charged body is
obtained at once by producing the direction of the thread through the charged
body. And if we tie the other end of the thread to a delicate spring balance,
we can measure the tension of the spring, and since this is numerically equal
to Re, we should be able to determine R if ¢ were known. We might in
this way determine the magnitude and direction of the electric intensity at
any point in the field.

In a similar way, a float at the end of a fishing-line might be used to determine the
strength and direction of the current at any point on a small lake. And, just as with the
electric intensity, we should only get the true direction of the current by supposing the
float to be of infinitesimal size. We could not imagine the direction of the current
obtained by anchoring a battleship in the lake, because the presence of the ship would
disturb the whole system of currents.

II. Lines of Force.

31. Let us start at any point O in the electric field, and move a short
distance OP in the direction of the electric intensity at 0. Starting from P
let us move a short distance PQ in the direction of the intensity at P,

Q R

(o}
Fia. 4.

and so on. In this way we obtain a broken path OPQR..., formed of
a number of small rectilinear elements. Let us now .pass to the limiting
case in which each of the elements OP, PQ, QR, ... is infinitely small.
The broken path becomes a continuous curve, and it has the property that
at every point on it the electric intensity is in the direction of the tangent
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to the curve at that point. Such a curve is called a Line of Force. We
may therefore define a line of force as follows:—

A line of force is a curve in the electric field, such that the tungent at every
point is in the direction of the electric intensity at that point.

If we suppose the motion of a charged particle to be so much retarded by frictional
resistance that it cannot acquire any appreciable momentum, then & charged particle set
free in the electric field would trace out a line of force. In the same way, we should have
lines of current on the surface of a lake, such that the tangent to a line of current at any
point coincided with the direction of the current, and a small float set free on the lake
would describe a current-line. '

32. The resultant of a number of known forces has a definite direction,
so that there is a single direction for the electric intensity at every point of
the field. It follows that two lines of force can never intersect; for if they
did there would be two directions for the electric intensity at the point of
intersection (namely, the two tangents to the lines of force at this point) so
that the resultant of a number of known forces would be acting in two
directions at once. An exception occurs, as we shall see, when the resultant
intensity vanishes at any point. ‘

The intensity B may be regarded as compounded of three components
X, Y, Z, parallel to three rectangular axes Oz, Oy, Oz.

The magnitude of the electric intensity is then given by
R:= X2+ Y24 27
and the direction cosines of its direction are

Al e ol
BR R
These, therefore, are also the direction cosines of the tangent at «, y, 2
to the line of force through the point. The differential equation of the
system of lines of force is accordingly
LT
@ e

III. The Potential.

33. In moving the small test-charge ¢ about in the field, we may either
have to do work against electric forces, or we may find that these forces
will do work for us. A small charged particle which has been placed at a
point O in the electric field may be.regarded as a store of energy, this
energy being equal to the work (positive or negative) which has been done
in taking the charge to O in opposition to the repulsions and attractions of
the field. The energy can be reclaimed by allowing the particle to retrace
its path. Assume the charge on the moving particle to' be so small that
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the distribution of electricity on the conductors in the field is not affected
by it. Then the work done in bringing the charge ¢ to a point O is pro-
portional to e, and may be taken to be Ve. The amount of work done will
of course depend on the position from which the charged particle started.
It is convenient, in measuring Ve, to suppose that the particle started at a
point outside the field altogether, ¢.e. from a point se far removed from all
the charges of the field that their effect at this point is inappreciable—for
brevity, we may say the point at infinity. We now define V to be the
_potential at the point O. .Thus

The potential at any point in the field vs the work per umit charge which
has to be done on a charged particle to bring it to that point, the charge on the
particle being supposed so small that the distribution of electricity on the
conductors in the field is not affected by its presence.

In moving the small charge e from =, y, 2z to « + dz, y + dy, z + dz, we
shall have to perform an amount of work
— (Xdz + Ydy + Zdz) e,

so that in bringing the charge e into position at #, y, z from outside the field
_ altogether, we do an amount of work

~ e [(Xda + Yy + 722)

where the integral is taken along the path followed by e.

Denoting the work done on the charge e in bringing it to any point
z, y, z in the electric field by Ve, we clearly have

g f Ol P ey R (6),

o

giving a mathematical expression for the potential at the point =, y, 2.

The same result can be put in a different form. If ds is any element of
the path, and if the intensity R at the extremity of this element makes an
angle 6 with ds, then the component of the force acting on ¢ when moving
along ds, resolved in the direction of motion of ¢, is Recosd. The work
done in moving e along the element ds is accordingly

— Re cos Ods,

so that the whole work in bringing e from infinity to z, ¥, z is

T, Y, 2
- ef R cos 0ds,

)

and since this is equal, by definition, to Ve, we must have

V= -f”’ R R ) 4 .
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We see at once that the two expressions (6) and (7) just obtained for V'
are identical, on noticing that 6 is the angle between two lines of which the
direction cosines are respectively

- ool deb nd@ dy dz
R e R R
_Xde Ydy Zdz
We therefore have °°S€'E£+RE§+R T
so that R cos Ods = Xdz + Ydy + Zdz,

and the identity of the two expressions becomes obvious.

If the Theorem of the Conservation of Energy is true in the Electro-
static Field, the work done in bringing a small charge e from infinity to any
point P must be the same whatever path to P we choose. For if the
amounts of work were different on two different paths, let these amounts
be Vpe and Vp'e, and let the former be the greater. Then by taking the
charge from P to infinity by the former path and bringing it back by the
latter, we should gain an amount of work (Vp — V3')e, which would be
contrary to the Conservation of Energy. Thus ¥» and ¥’ must be equal,
and the potential at P is the same, no matter by what path we reach P.
The potential at P will accordingly depend only on the coordinates , y, 2
of P.

As soon as we introduce the special law of the inverse square, we shall
find that the potential must be a single-valued function of z, y, 2, as a
consequence of this law (§ 39), and hence shall be able to prove that the
Theorem of Conservation of Energy is true in an Electrostatic field. For
the moment, however, we assume this.

34. Let us denote by W the work done in moving a charge e from P
to @ In bringing the charge from infinity to P, we do an amount of work

pr i R

Fia. 5.

which by definition is equal to Vpe where Vp» denotes the value of V at the
point P. Hence in taking it from infinity to @, we do a total amount of
work Vpe+ W. This, however, is also equal by definition to Ve, Hence
we have

Voe+ W="Vge,
or Wi (Vg 2R . 5 o gl s v s s (8).
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35. DEFINITION. A surface in the electric field such that at every point
on it the potential has the same value, is called an Equipotential Surface.

In discussing the phenomena of the electrostatic field, it is convenient to think of the
whole field as mapped out by systems of equipotential surfaces and lines of force, just as
in geography we think of the earth’s surface as divided up by parallels of latitude and of
longitude. A more exact parallel is obtained if we think of the earth’s surface as mapped
out by “contour-lines” of equal height above sea-level, and by lines of greatest slope.
These reproduce all the properties of equipotentials and lines of force, for in point of fact
they are actual equipotentials and lines of force for the gravitational field of force.

THEOREM. FEquipotential surfaces cut lines of force at right angles.

Let P be any point in the electric field, and let  be an adjacent point
on the same equipotential as. P. Then, by definition, V» =¥,, so that by
equation (8) W =0, W being the amount of work done in moving a charge ¢
from P to Q. If R is the intensity at @, and € the angle which its direction
makes with QP, the amount of this work must be — Re cos 6 x PQ, so that

Recos 8 =0.

Hence cos =0, so that the line of force cuts the equipotential at right
angles. As in a former theorem, an exception has to be made in favour of
the case in which R=0.

36. Instead of P,  being on the same equipotential, let them now be
on a line parallel to the axis of @, their coordinates being «, y, z and = + da,
Y, 2 respectively. In moving the charge e from P to @ the work done is
— Xedz, and by equation (8) it is also (Vo— Vp)e. Hence

— Xdae=V,— Vp.

Since @ and P are adjacent, we have, from the definition of a differential
coefficiernt,

oV _Vo-"p i
BT T
hence we have the relations
oV oV oV
X_—am: Y—'—‘@, =—'$ ................. .(9),

results which are of course obvious on differentiating equation (6) with
respect to z, ¥ and z respectively.

Similarly, if we imagine P, @ to be two points on the same line of force
we obtain

¥,
R
where g—g denotes differentiation along a line of force. Since R is necessarily

* positive, it follows that %—Z is negative, t.e. V decreases as s increases, or the

Pl
{
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intensity is in the direction of V decreasing. Thus the lines of force run
from higher to lower values of V, and, as we have already seen, cut all
equipotentials at right angles.

37. At a point which is occupied by conducting material, the electric
charges, as has already been said, must be in equilibrium under the action of
the forces from all the other charges in the field. The resultant force from
all these charges on any element of charge e is however Re, so that we must
have R=0. Hence X =Y =2Z=0, so that

o _ov_av_,
oxr 0y 0z
In other words, V' must be constant throughout a conductor for electro-

static equilibrium to be possible. And in particular the surface of a
conductor must be an equipotential surface, or part of ome. The equi-
potential of which the surface of a conductor is part has the peculiarity
of being three-dimensional instead of two-dimensional, for it occupies the
whole interior as well as the surface of the conductor.

In the same way, in considering the analogous arrangement of contour-lines and lines
of greatest slope on a map of the earth’s surface, we find that the edge of a lake or sea
must be a contour-line, but that in strictness this particular contour must be regarded as
two-dimensional rather than one-dimensional, since it coincides with the whole surface of
the lake or sea.

If V is not constant in any conductor, the intensity is in the direction of
V decreasing. Hence positive electricity tends to flow in the direction of V'
decreasing, and negative electricity in the direction of V increasing. If two
conductors in which the potential has different values are joined by a third
conductor, the intensity in the third conductor will be in direction from
the conductor at higher potential to that at lower potential. Electricity will
flow through this conductor, and will continue to flow until the redistribution
of potential caused by the transfer of this electricity is such that the potential
is the same at all points of the conductors, which may now be regarded as
forming one single conductor.

Thus although the potential has been defined only with reference to
single points, it is possible to speak of the potential of a whole conductor.
In fact, the mathematical expression of the condition that equilibrium shall
be possible for a given system of charges is simply that the potential shall
be constant throughout each conductor. And when electric contact is
established between two conductors, either by joining them by a wire or by
other means, the new condition for equilibrium which is made necessary by
the new physical condition introduced, is simply that the potentials of the
two conductors shall be equal.
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The earth is a conductor, and is therefore at the same potential through-
out. In all practical applications of electrostatics, it will be legitimate to
regard the potential of the earth as zero, a distant point on the earth’s
surface replacing the imaginary point at infinity, with reference to which
potentials have so far been measured. Thus any conductor can be reduced
to potential zero by joining it by a metallic wire to the earth.

MATHEMATICAL EXPRESSIONS OF THE LAW OF THE INVERSE SQUARE.

1. Values of Potential and Intensity.

38. We now discuss the values of the potential and components of
electric intensity when the space between the conductors is air, so that
the electric forces are determined by Coulomb’s Law.

If we have a single point charge e, at a point P, the value of R, the
resultant intensity at any point O, is

6

PO
and its direction is that of PO. Hence if 8 is the angle between OP and

Fia. 6.

n)Y

00/, the line joining O to an adjacent point O, the work done in moving a
charge e from O to O’

=eRcos 8. 00
=eR(OP-0'P)
= — ¢Rdr,

where OP =7, O'P =r +dr. Hence the work done against the repulsion
of the charge e, in bringing e from infinity to O’ by any path is
r=0'P r=0’Pe ce.
—ef Rdr =—-ef E = =1

r=co PR 7

where r, = O’ P,

If there are other charges e,, e, ... the work done against all the
repulsions in bringing a charge e to O’ will be the sum of terms such as the

above, say
e e e
e(—+-?+—3’+...>,
i Ty T3
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where 7, 75, ... are the distances from 0’ to e,, ¢, ..., so that by definition

39. It is now clear that the potential at any point depends only on the
coordinates of the point, so that the work done in bringing a small charge
from infinity to a point P is always the same, no matter what path we
choose, the result assumed in § 33.

It follows that we cannot alter the amount of energy in the field by
moving charges about in such a way that the final state of the field is the
same as the original state. In other words, the Conservation of Energy is

true of the Electrostatic Field.

40. Analytically, let us suppose that the charge ¢, is at o, v, 2,; e, at
3, Ya, 225 and so on. The repulsion on a small charge € at a, v, z resulting

from the presence of ¢ at «;, 1, 2 is
e
@—2pP+ @y —mn)+(z—a)

and the direction-cosines of the direction in which this force acts on the

charge ¢, are
z—x ’ Y- g
[((@ =@y + (@ =y + =2y} [(@—aF+@—p)+@—ay)

Hence the component parailel to the axis of # is
ae(x — )
[(@— 2.7+ (y = 5 + (2 — )]
By adding all such components, we” obtain as the component-of the
electric intensity at z, g, z,

e, (x — )
............... 11),
,z [(2 — @) + (y — 3 )* + (2 — 2,)* i

and there are similar equations for ¥ and Z.

We have as the value of V at z, ¥, 2, by equation (6),
P s _f”'“ (Xda + Ydy + Zdo)

©9:2 30, {(z — ) do + (y — 1) dy + (2 — 2,) d2)
= [(@ =2 + (y = ) + (2 = 2]
A A :
= 2 2 %)
e [@—2)+ @y —ny+(z-2)]
giving the same result as equation (10).
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41. If the electric distribution is not confined to points, we can imagine
it divided into small elements which may be treated as point charges. For
instance if the electricity is spread throughout a volume, let the charge on
any element of volume da'dy dz’ be pda’dy’dz’ so that p may be spoken of as
the “density ” of electricity at #’, %', 7. Then in formula (11) we can teplace
e, by pda’dy’ d7, and m,, y,, 2, by «', y, 7. Instead of summing the charges
e, ... we of course integrate pda’dy’dz’ through all those parts of the space
which contain electrical charges. In this way we obtain

¥ =fU’ pl(w—a)da' dy' d7 o
Niw=ay +G—yy+e—orF

and V= f f f pey dy o :
[(z—aY+@—yr+@E-2yP

These equations are one form of mathematical expression of the law of
the inverse square of the distance. An attempt to perform the integration,
in even a few simple cases, will speedily convince the student that the form
is not one which lends itself to rapid progress. A second form of mathe-
matical expression of the law of the inverse square is supplied by a Theorem
of Gauss which we shall now prove, and it is this expression of the law which
will form the basis of our development of electrostatical theory.

c.,

II. Gauss’ Theorem.

42. THEOREM. If any closed surface is taken in the electric field, and
of N denotes the component of the electric intensity at any point of this surface
tn the direction of the outward normal, then

[[¥as=arE,
where the integration extends over the whole of the surface, and E is the total
charge enclosed by the surface.

Let us suppose the charges in the field, both inside and outside the closed
surface, to be ¢, at R, ¢, at B, and so on. The intensity at any point is
the resultant of the intensities due to the charges separately, so that at any
point of the surface, we may write

AU RE LS Tl e 0 RS SO (12),

where N,, N,, ... are the normal components of intensity due to e, e, ..
separately.

Instead of attempting to calculate f deS directly, we shall calculate

- separately the values of f ledS, f fNﬁdS, .... The value of f /N dS will,

by equation (12), be the sum of these integrals.
J. 3
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Let us take any small element dS of the closed surface in the neighbour-
hood of a point ¢ on the surface and join each point of its boundary to the
point B. Let the small cone so formed cut off an element of area do from

Fr1a. 7.

a sphere drawn through @ with R as centre, and an element of area dw from
“a sphere of unit radius drawn 4bout R as centre. Let the normal to the
closed surface at @ in the direction away from B make an angle @ with BQ.

The intensity at ¢ due to the charge e, at B is ¢,/RQ* in the direction
BQ, so that the component of the intensity along the normal to the surface
in the direction away from R is

PQ2 cos 6.
The contribution to f f N,dS from the element of surface is accordingly

+ PQZ cos 8dS,
the + or — sign being taken according as the normal at @ in the direction
away from R is the outward or inward normal to the surface.

Now cos 8 dS is equal to do, the projection of dS on the sphere through @
having £ as centre, for the two normals to dS and do are inclined at an
angle 6. Also do=R@Q*dw. For do, do are the areas cut off by the same
cone on spheres of radii PQ and unity respectively. Hence

pr 008 608 = %’ = sl

If B is inside the closed surface, a line from R to any point on the unit
sphere surrounding E may either cut the closed surface only once as at
@ (fig. 8)—in which case the normal to the surface at @ in the direction
away from R is the outward normal to the surface—or it may cut three
times, as at @', @”, @”—in which case two of the normals away from £ (those
at , Q" in fig. 8) are outward normals to the surface, while the third normal
away from B (that at @” in the figure) is an inward normal—or it may
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cut five, seven, or any odd number of times. Thus a cone through a small
element of area dw on a unit sphere about B may cut the closed surface any
odd number of times. However many times it cuts, the first small area cut

off will contribute e,dw to f f N,dS, the second and third small areas if they

Fic. 8.

occur will contribute —e,dw and + e¢,dw respectively, the fourth and fifth if
they occur will contribute —e,dw and + e,do respectively, and so on. The
total contribution from the cone surrounding dw is, in every case, + e,dw.

Fie. 9.

Summing over all cones which can be drawn in this way through R we obtain
the whole value of f f N,dS, which is thus seen to be simply e, multiplied by

the total surface area of the unit sphere round R, and therefore 4e,.
; S==22
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On the other hand if R is outside the closed surface, as in fig. 9, the
cone through any element of area dw on the unit sphere may either not cut
the closed surface at all, or may cut twice, or four, six or any even number
of times. If the cone through de intersects the surface at all, the first pair
of elements of surface which are cut off by the cone contribute —e,dw and

+e,dw respectively to f N,dS. The second pair, if they occur, make a similar

contribution and so on. In every case the total contribution from any small
cone through B is nil. By summing over all such cones we shall include
the contributions from all parts of the closed surface, so that if R is outside

the surface f f N,dS is equal to zero.

We have now seen that f / N,dS 1s equal to 4me, when the charge e, is

inside the closed surface, and is equal to zero when the charge e, is outside
the closed surface. Hence

[[was=[[was+ [[was+ ..

= 4ar x (the sum of all the charges inside the surface)
=47 E,
which proves the theorem.
Obviously the theorem is true also when there is a continuous distribution
of electricity in addition to a number of point charges. TFor clearly we can

divide up the continuous distribution into a number of small elements and
treat each as a point charge.

Since XN, the normal component of intensity, is equal by § 36 to —%f,
where d, denotes differentiation along the outward normal, it appears that

on
we can also express Gauss’ Theorem in the form

-
f AV 05 < S
on

Gauss’ theorem forms the most convenient method at our disposal, of
expressing the law of the inverse square.

We can obtain a preliminary conception of the physical meaning under-
lying the theorem by noticing that if the surface contains no charge at all,
the theorem expresses that the average normal intensity is nil. If there is
a negative charge inside the surface, the theorem shews that the average
normal intensity is negative, so that a positively charged particle placed at
a point on the imaginary surface will be likely to experience an attraction to
the interior of the surface rather than a repulsion away from it, and wvice
versd if the surface contains a positive charge.
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Corollaries to Gauss’ Theorem.

43. THEOREM. If a closed surface be drawn, such that every point on it
is occupted by conducting material, the total charge inside 1t is nil.

We have seen that at any point occupied by conducting material, the
electric intensity must vanish. Hence at every point of the closed surface,

N =0, so that f NdS =0, and therefore, by Gauss’ Theorem, the total charge

inside the closed surface must vanish.

The two following special cases of this theorem are of the greatest
Hmportanee.

44. THEOREM. There is no charge at any point which is occupied by con-
ducting material, unless this point is on the surface of a conductor.

For if the point is not on the surface, it will be possible to surround the
point by a small sphere, such that every point of this sphere is inside the
conductor. By the preceding theorem the charge inside this sphere is nil,
hence there is no charge at the point in question.

This theorem is often stated by saying:—
The charge of a conductor resides on its surface.

45, THEOREM. If we have a hollow closed conductor, and place any
number of charged bodies inside 1t,the charge on its inner surfuce will be equal -
in magnitude but oppostte tn sign, to the total charge on the bodies inside.

For we can draw a closed surface entirely inside the material of the
conductor, and by the theorem of § 43, the whole charge inside this surface
must be nil. This whole charge is, however, the sum of (i) the charge on the
inner surface of the conductor, and (ii) the charges on the bodies inside the
conductor. Hence these two must be equal and opposite. '

This result explains the property of the electroscope which led us to the
conception of a definite quantity of electrlclty The vessel placed on the
plate of the electroscope formed a hollow closed conductor. The charge on
the inner surface of this conductor, we now see, must be equal and opposite
to the total charge inside, and since the total charge on this conductor is nal,
the charge on its outer surface must be equal and opposite to that on the
inner surface, and therefore exactly equal to the sum of the charges placed
inside, independently of the position of these charges.

The Cavendish Proof of the Law of the Inverse Square.

46. We have deduced from the law of the inverse square, that the
charge inside a closed conductor is zero. We shall now shew that the
converse theorem is also true. Hence, in the known fact, revealed by the
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observations of Cavendish and Maxwell, that the charge inside a closed
conductor is zero, we have experimental proof of the law of the inverse
square which admits of much greater accuracy than the experimental proof
of Coulomb.

The theorem that if there is no charge inside a spherical conductor the
law of force must be that of the inverse square is due to Laplace. We need
consider this converse theorem only in its application to a spherical conductor,
this being the actual form of conductor used by Cavendish. The apparatus
illustrated in fig. 10 is not that used by Cavendish, but is an improved
form designed by Maxwell, who repeated Cavendish’s experiment in a more
delicate form.

Two spherical shells are fixed by a ring of ebonite so as to be concentrie
with one another, and insulated from one another.
8 Electrical contact can be established between the two -
by letting down the small trap-door B through which
a wire passes, the wire being of such a length as just
to establish contact when the trap-door is closed. The
experiment is conducted by electrifying the outer
shell, opening the trap-door by an insulating thread
without discharging the conductor, afterwards dis-
charging the outer conductor and testing whether any
charge is to be found on the inner shell by placing it
in electrical contact with a delicate electroscope by .
means of a conducting wire inserted through the trap-
door. Tt is found that there are no traces of a charge
on the inner sphere.

B |
SN

Fie. 10. 47. Suppose we start to find the law of electric

force such that there shall be no charge on the inner

sphere. Let us assume a law of force such that the repulsion between two

charges e, ¢’ at distance r apart is ee’d (r). The potential, calculated as
explained in § 33, is

where the summation extends over all the charges in the field.

Let us calculate the potential at a point inside the sphere due to a charge
E spread entirely over the surface of the sphere. If the sphere is of radius a,
the area of its surface is 4ma?, so that the amount of charge per unit area is
E/4mra?, and the expression for the potential becomes

v= [z, ( }‘:’¢(1~) dr)a*sin 0d0dp.............. (14),

the summation of expression (13) being now replaced by an integration which
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extends over the whole sphere. In this expression r is the distance from the
point at which the potential is evaluated, to the element a?sin 8dfd¢ of
spherical surface.

If we agree to evaluate the potential at a point situated on the axis §=0
at a distance ¢ from the centre, we may write

1 =a?+ ¢? — 2accos 6.

Since ¢ is a constant, we obtain as the relation between dr and d6, by

differentiation of this last equation, A
= DTS LSOO, QA T s 2 S e e P 15).

If we integrate expression (14) with respect to ¢, the limits being of
course ¢ =0 and ¢=2m, we obtain :

V=1}Ef::: (fw () dr> sin 46,

or, on changing the variable from 6 to 7, by the help of relation (15)
r=a+c o Td’)"

2 : =

i _%Efr=a-r<fr ¢(')dr> ac '

If we introduce a new function f(r), defined by

fo= (fqb(r) dr)rr,

we obtain as the value of V,
E
V=%{f(“+c)—f(“—0)}-

If the inner and outer spheres are in electrical contact, their potentials
are the same ; and if, as experiment shews to be the case, there is no charge
on the inner sphere, then the whole potential must be that just found. = This
expression must, accordingly, have the same value whether ¢ represents the
radius of the outer sphere or that of the inner. Since this is true whatever
the radius of the inner sphere may be, the expression must be the same for
all values of . We must accordingly have

20V f(a+ o) =f (a0
where V is the same for all values of ¢. Differentiating this equation twice
with respect to ¢, we obtain

0=f"(a+c)—f"(a—c)
Since by definition, £(r) depends only on the law of force, and not on a or ¢,
it follows from the relation

fa+e)=f"(a-o),

that f” (r) must be a constant, say C.
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Hence Ff(r)y=A + Br + }Cr,

and by definition Ffr)= f ( f é(r) d,-) rdr,
r
so that on equating the two values of /' 4 (r),

B+ 07~=rf é (r) dr.
2 B
Therefore f ¢ (r)dr=C+ =

or ¢ (r)=

so that the law of force is that of the inverse square.

rz’

48. Maxwell has examined what charge would be produced on the inner
sphere if, instead of the law of force being accurately B/r? it were of the
form B/r*+4, where ¢ is some small quantity. In this way he found that if ¢
were even so great as yyigg, the charge on the inner sphere would have been
too great to escape observation. As we have seen, the limit which Cavendish
was able to assign to g was ;.

It may be urged that the form B/r**¢ is not a sufficiently general
law of force to assume. To this Maxwell has replied that it is the most
general law under which conductors which are of different sizes but geometri-
cally similar can be electrified similarly, while experiment shews that in point
of fact geometrically similar conductors are electrified similarly We may
say then with confidence that the error in the law of the inverse square, if
any, is extremely small. It should, however, be clearly understood that
experiment has only proved the law B/r? for values of r which are great
enough to admit of observation. The law of force between two electric

charges which are at very small distances from one another still remains
entirely unknown to us.

III. The Equations of Poisson and Laplace.

49. There is still a third way of expressing the law of the inverse
square, and this can be deduced most readily from
iz Gauss’ Theorem.

Let us examine the small rectangular parallel-
epiped, of volume dadydz, which is bounded by
the six plane faces

N e=ftdde, y=niidy, z=Ctide
We shall suppose that this element does not con-
o z  tain any point charges of electricity, or part of
Fra 14} any charged surface, but for the sake of generality
we shall suppose that the whole space is charged
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with a continuous distribution of electricity, the volume-density of electrifi-
cation in the neighbourhood of the small element under consideration being
p. The whole charge contained by the element of volume is accordingly
pdzdydz, so that Gauss’ Theorem assumes the form

f R s ity < 0 oA (16).

The surface integral is the sum of six contributions, one from each face of
the parallelepiped. The contribution from that face which lies in the plane
z=§—4dxis equal to dydz, the area of the face, multiplied by the mean
value of N over this face. To a sufficient approximation, this may be
supposed to be the value of N at the centre of the face, v.e. at the point
£ —4dx, 3, ¢ and this again may be written

&)
02 /¢ \de, ¢

so that the contribution to f f NdS from this face is

dydz (%V) :
T/ g~ yda,n, ¢

Similarly the contribution from the opposite face is
—dydz (%V> ¥

" ety ¢
the sign being different because the outward normal is now the positive axis
of #, whereas formerly it was the negative axis. The sum of the contributions

from the two faces perpendicular to the axis of « is therefore

7
il {(aaI ) = (%K) } ............ .
Cleydo,me N9 gtz m ¢ o
The expression mSIde curled brackets is the increment in the function =
when # undergoes a small increment dz. This we know is dwa% (%—lj), 80

that expression (17) can be put in the form

2
- 887127 dadydz.

The whole value of [ f NdS is accordingly
o*V 82V oV
+
(8:02 8y
and equation (16) now assumes the form
82V oV oV
% o T o

)d wdydz,

=—dmp IS e ..(18).
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This is known as Poisson’s Equation; clearly if we know the value of the
potential at every point, it enables us to find the charges by which this
potential is produced.

50. In free space, where there are no electric charges, the equation
assumes the form
oV ad oV ol Ry ¢
o O 02
and this is known as Laplace’s Equation. We shall denote the operator
10 0
ot oy * o2
by V2, so that Laplace’s equation may be written in the abbreviated form

Equations (18) and (20) express the same fact as Gauss’ Theorem, but
express it in the form of a differential equation. Equation (20) shews that
in a region in which no charges exist, the potential satisfies a differential
equation which is independent of the charges outside this region by which
the potential is produced. It will easily be verified by direct differentiation
that the value of V given in equation (10) is a solution of equation (20).

We can obtain an idea of the physical meaning of this differential
equation as follows.

Let us take any point O and construct a sphere of radius » about this
point. The mean value of V averaged over the surface of the sphere is

. 1
1 3
= -4,’;.[/‘]’ sin 6d0de¢,

where r, 8, ¢ are polar coordinates, having O as origin. If we change the
radius of this sphere from r to  + dr, the rate of change of V is

e - | [% OV s At

~ 5[5

=0, by Gauss’ Theorem,

shewing that V is independent of the radius » of the sphere. Taking »=0,
the value of V is seen to be equal to the potential at the origin O.

This gives the following interpretation of the differential equation :

V varies from point to point in such a way that the average value of V
taken over any sphere surrounding any point O is equal to the value of V at O.
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DepucTioNS FROM LAW OF INVERSE SQUARE.

51. THEOREM. The potential cannot have a mazimum or a minimum
value at any point tn space which is not occupied by an electric charge.

For if the potential is to be a maximum at any point O, the potential at
every point on a sphere of small radius » surrounding O must be less than
that at O. Hence the average value of the potential on a small-sphere
surrounding O must be less than the value at O, a result in opposition to
that of the last section.

A similar proof shews that the value of V cannot be a minimum.

52. A second proof of this theorem is obtained at once from Laplace’s
equation. Regarding V simply as a function of #, y, z, a necessary condition

for ¥ to have a maximum value at any point is that aaﬂzv, 6;1: nd %Lf shall
each be negative at the point in question, a condition which is inconsistent
with Laplace’s equation

oV eV oV

% oy oy* teE T
So also for V' to be a minimum, the three differential coefficients would
have to be all positive, and this again would be inconsistent with Laplace’s
equation.

=0.

53. If V is a maximum at any point O, which as we have just seen

must be occupied by an electric charge, then the value of aa—r must be

7
negative as we cross a sphere of small radius ». Thus f f ?alr dS is negative

where the integration is taken over a small sphere surrounding O, and by
Gauss’ Theorem. the value of the surface integral is —4are, where ¢ is the
total charge inside the sphere. Thus e must be positive, and similarly if V'
is a minimum, ¢ must be negative. Thus:

If V is a maximum at any point, the point must be occupied by a positive
charge, and if V is a minimum at any point, the point must be occupied by a
negative charge.

54. We have seen (§ 36) that in moving along a line of force we are
moving, at every point, from higher to lower potential, so that the potential
continually ‘decreases as we move along a line of force. Hence a line of
force can end only at a point at which the potential is a minimum, and
similarly by tracing a line of force backwards, we see that it can begin only
at a point of which the potential is a maximum. Combining this result
with that of the previous theorem, it follows that:

Lines of force can begin only on positive charges, and can end only on
negative charges.
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It is of course possible for a line of force to begin on a positive charge,
and go to infinity, the potential decreasing all the way, in which case the
line of force has, strictly speaking, no end at all. So also, a line of force may
come from infinity, and end on a negative charge.

Obviously a line of force cannot begin and end on the same conductor,
for if it did so, the potential at its two ends would be the same. Hence there
can be no lines of force in the interior of a hollow conductor which contains
no charges; consequently there can be no charges on its inner surface.

Tubes of Force.

55. Let us select any small area dS in the field, and let us draw the
lines of force through every point of the boundary of this small area. If
dS is taken sufficiently small, we can suppose the electric intensity to be the
same in magnitude and direction at every point of dS, so that the directions
of the lines of force at all the points on the boundary will be approximately
all parallel. By drawing the lines of force, then, we shall obtain a “ tubular”
surface—.e., a surfice such that in the neighbourhood of any point the
surface may be regarded as cylindrical. The surface obtained in this way
is called a “ tube of force.” A normal cross-section of a “ tube of force” is a
section which cuts all the lines of force through its boundary at right angles.
It therefore forms part of an equipotential surface.

56. THEOREM. If w,, ®, be the areas of two normal cross-sections of the
same tube of force, and R,, R, the intensities at these sections, then

R0, = R,w,.

Consider the closed surface formed by the two cross-sections of areas
w;, w,, and of the part of the tube of force
joining them. There is no charge inside this

surface, so that by Gauss’ theorem, f f NdS=0.

If the direction of the lines of foree is from

w . ©; t0 w,, then the outward normal intensity
Fie. 12. over w, is R,, so that the contribution from this

area to the surface integral is R,w,. So also

over w, the outward normal intensity is — R,, so that w, gives a contribution
— R, w,. Over the rest of the surface, the putward normal is perpendicular to
the electric intensity, so that N =0, and this part of the surface contributes

nothing to f NdS. The whole value of this integral, then, is
R,0, - R0,

and since this, as we have seen, must vanish, the theorem is proved.
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57. Couroms’s Law. If R s the outward untensity at a point just
outside a conductor, then R =4aa, where o is the surface density of electri-
fication on the conductor.

We have already seen that the whole electrification of a conductor must
reside on the surface. Therefore we no longer deal with a volume density
of electrification p, such that the charge in the element of volume dzdydz is
p dadydz, but with a surface-density of electrification o such that the charge
on an element dS of the surface of the conductor is o dS.

The surface of the conductor, as we have seen, is an equipotential, so that
by the theorem of p. 29, the intensity is in a direction normal to the
surface. Let us draw perpendiculars to the surface at every
point on the boundary of a small element of area dS, these per-
pendiculars each extending a small distance into the conductor
in one direction and a small distance away from the conductor
in the other direction. We can close the cylindrical surface so
formed, by two small plane areas, each equal and parallel to the
original element of area dS. Let us now apply Gauss’ Theorem
to this closed surface. The normal intensity is zero over every
part of this surface except over the cap of area dS which is
outside the conductor. Over this cap the outward normal in- Fio. 13.
tensity is R, so that the value of the surface integral of normal
intensity taken over the closed surface, consists of the single term RdS.
The total charge inside the surface is o dS, so that by Gauss’ Theorem,

ST AT (SN e S U S L e e i (21),
and Coulomb’s Law follows on dividing by dS.

'g
H
£
g
g

58. Let us draw the complete tube of force which is formed by the
lines of force starting from points on the boundary of the element dS of the
surface of the conductor. Let us suppose that the surface density on this
element is positive, so that the area dS forms the normal cross-section at

Fic. 14.

the positive end, or beginning, of the tube of force. Let us suppose that at
the negative end of the tube of force, the normal cross-section is dS’, that
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the surface density of electrification is ¢', ¢’ being of course negative, andv_
that the intensity in the direction of the lines of force is R. Then, as in
equation (21),
RdS’ = — 4md’'dS’,

since the outward intensity is now — R’

Since R, R’ are the intensities at two points in the same tube of force
at which the normal cross-sections are dS, dS’, it follows from the theorem
of § 56, that

_ RdS = R'dS’
and hence, on comparing the values just found for RdS and R'dS’, that
ocdS=—d'dS".

Since odS and o’dS’ are respectively the charges of electricity from which
the tube begins and on which it terminates, we see that:

The negative charge of electricity on which a tube of force terminates s
numerically equal to the positive charge from which it starts.

If we close the ends of the tube of force by two small caps inside the
conductors, as in fig. 14, we have a closed surface such that the normal
intensity vanishes at every point. Thus, by Gauss’ Theorem, the total
charge inside must vanish, giving the result at once.

59. The numerical value of either of the charges at the ends of a
tube of force may conveniently be spoken of as the strength of the tube. A
tube of unit strength is spoken of by many writers as a unit tube of force.

The strength of a tube of force is ¢dS in the notation already used, and
this, by Coulomb’s Law, is equal to 1%)—1' RdS where R is the intensity at the

end dS of the tube. By the theorem of § 56, RdS is equal to R,®, where
R,, o, are the intensity and cross-section at any point of the tube. Hence
R, 0, =47 times the strength of the tube. It follows that:

The intensity at any point is equal to 4ar times the aggregate strength per
unit area of the tubes which cross a plane drawn at right angles to the
direction of the intensity.

In terms of unit tubes of force, we may say that the intensity is 4ar
times the number of unit tubes per unit area which cross a plane drawn at
right angles to the intensity.

The conception of tubes of force is due to Faraday: indeed it formed
almost his only instrument for picturing to himself the phenomena of the
Electric Field. It will be found that a number of theorems connected with
the electric field become almost obvious when interpreted with the help of
the conception of tubes of force. For instance we proved on p. 37 that
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when a number of charged bodies are placed inside a hollow conductor, they
induce on its inner surface a charge equal and opposite to the sum of all
their charges. This may now be regarded as a special case of the obvious
theoremn that the total charge associated with the beginnings and termi-
nations of any number of tubes of force, none of which pass to infinity, must
be nal.

ExaMpLES oF FIELDS OF FORCE.

60. It will be of advantage to study a few particular fields of electric
force by means of drawing their lines of force and equipotential surfaces.

I Two Equal Point Charges.

61. Let A, B be two equal point charges, say at the points 2 =—a, +a.
The equations of the lines of force which are in the plane of =, y are
easily found to be

B lgh - y
s cnb (PBa—PAs ..................... (22),
¥ PBs+1?A3)

where P is the point @, y.
This equation admits of integration in the form
z+a z—a
P4 T PB
From this equation the lines of force can be drawn, and will be found to lie
as in fig. 15.

62. There are, however, only a few cases in which the differential
equations of the lines of force can:be integrated, and it is frequently simplest
to obtain the properties of the lines of force directly from the differential
equation. The following treatment illustrates the method of treating lines
of force without integrating the differential equation.

From equation (22) we see that obvious lines of force are

i y=0, g—y-_o giving the axis 4B;

(ii)) 2=0, PA=PB, %:w, giving the line which bisects AB at

right angles.
These lines intersect at O, the middle point of AB. At this point, then,

has two values, and since a_y_z it follows that we must have X =0,

Oy
o ox X’

¥Y=0. In other words, the point C is a point of equilibrium, as is otherwise
obvious.
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The same result can be seen in another way. If we start from A and
draw a small tube surrounding the line A B, it is clear that the cross-section
of the tube, no matter how small it was mltlally, will have become infinite
by the time it reaches the plane which bisects AB at right angles—in fact
the cross-section is identical with the infipite plane. Since the product of
the cross-section and the normal intensity is constant throughout a tube, it
follows that at the point C, the intensity must vanish.

Fic. 15.

At a great distance R from the points 4 and B, the fraction

PB — PA?
3 PB4 PA?
vanishes to the order of 1/R, so that
oy _ )4
oz X’

except for terms of the order of 1/R> Thus at mﬁmty the lines of force
become asymptotic to straight lines passing through the origin.

Let us suppose that a line of force starts from A making an angle 6 with
B4 produced, and is asymptotic at infinity to a line through C which makes
an angle ¢ with BA produced. By rotating this-line of force about the
axis AB we obtain a surface which may be regarded as the boundary of
a bundle of tubes of force. This surface cuts off an area

2ar (1 — cos 6) r*
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from a small sphere of radius » drawn about 4, and at every point of
this sphere the intensity is e/r* normal to the sphere. The surface again
cuts off an area
27 (1 —cos ¢p) R?

from a sphere of very great radius R drawn about C, and at every point
of this sphere the intensity is 2¢/R® Hence, applying Gauss’ Theorem
to the part of the field enclosed by the two spheres of radii » and R,
and the surface formed by the revolution of the line of force about AB,
we obtain

> e . - R )
247(1—cosﬁ)ﬂx7—‘2——27?(1—cos¢)R‘x1—%§=0,

from which follows the relation
sin § 6 = 4/2 sin § ¢.
In particular, the line of force which leaves 4 in a direction perpendicular
to AB is bent through an angle of 30° before it reaches its asymptote at
infinity.
The sections of the equipotentials made by the plalie of ay for this case '

are shewn in fig. 16 which is drawn on the same scale as fig. 15. The equa-
tions of these curves are of course

NG 2
IPAKNED,
curves of the sixth degree. The equipotential which passes through C is
of interest, as it intersects itself at the point C. This is a necessary conse-

= cons.,

Fic. 16.

quence of the fact that C is a point of equilibrium. Indeed the conditions
for a point of equilibrium, namely

oV oV oV

%—-0, —@—-0, —a;—O,
may be interpreted as the condition that the equipotential (V = constant)
through the point should have a double tangent plane or a tangent cone at
the point. »

J. 4



50 Klectrostatics—Field of Force [on. 11

II. Pownt charges +e, —e.

63. Let charges +e be at the points 2=+ a (4, B) respectively. The
differential equations of the lines of force are found to be

oy _ Y _ y
Al X TB 1 PAN’
w2+ ()

and the integral of this is
z+a x—a

Pa = PEL T ok

The lines of force are shewn in fig. 17.

2

Fie. 17.

III. Electric Doublet.

64. An important case occurs when we have two large charges +¢, —e,
equal and opposite in sign, at a small distance apart. Taking Cartesian
coordinates, let us suppose we have the charge +e at a, 0, 0 and the charge
—eat —a, 0, 0, so.that the distance of the charges is 2a.

The potential is
8 1 e

V@—ayp+y+2 «/(a;+a,)é :3;2+22’

and when a is very small, so that squares and higher powers of a may be
neglected, this becomes
2eax
(@ + 9+ 2)8
If @ is made to vanish, while ¢ becomes infinite, in such a way that
2eq retains the finite value u, the system is deseribed as an electric
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doublet of strength p having for its direction the positive axis of . Its
potential is
ua
@ +y+ )

F1a. 18.

or, if we tiurn to polar coordinates and write # = r cos 6, is

The lines of force are shewn in fig. 18. Obviously the lines at the
centre of this figure become identical with those shewn in fig. 17, if the
latter are shrunk indefinitely in size.

4—2
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IV. Point charges + de, —e.

65. Fig. 19 represents the distribution of the lines of force when the
electric field is produced by two point charges, +4e at 4 and —e¢ at B.

At infinity the resultant force will be 3¢/r®, where r is the distance from
a point near to 4 and B. The direction of this force is outwards. Thus no
lines of force can arrive at B from infinity, so that all the lines of force
which enter B must come from 4. The remaining lines of-force from 4 go
to infinity. The tubes of force from A to B form a bundle of aggregate

strength e, while those from A to infinity have aggregate strength 3e. The
two bundles of tubes of force are separated by the lines of force through C.
At C the direction of the resultant force is clearly indeterminate, so that C
is a point of equilibrium. As the condition that C is a point of equilibrium
we have :
Je.u. souly

: A8 O,
So that AB=BC. At C the two lines of force from A coalesce and then
separate out into two distinct lines of .force, one from C to B, and the other
from C to infinity in the direction opposite to CB.

The equipotentials in this field, the system of curves
B gl
P4 PB

are represented in fig. 20, which is drawn on the same scale as fig. 19.

4 = cons.,
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Since C is a point of equilibrium the'equipotential through the point C
must of course cut itself at C. At C the potential

since 04 =2CB. From the loop of this equipotential which surrounds B,
the potential must fall continuously to — o as we approach B, since, by the
theorem of § 51, there can be no maxima or minima of potential between
this loop and the point B. Also no equipotential can intersect itself since
there are obviously no points of equilibrium except C. One of the inter-

Fie. 20.

mediate equipotentials is of special interest, namely that over which the
potential is zero. This is the locus of the point P given by

4 Ly
Pa~PE=" ,
and is therefore a sphere. This is represented by the outer of the two

closed curves which surround B in the figure.

In the same way we see that the other loop of the equipotential through
C must be occupied by equipotentials for which the potential rises steadily
to the value + o at 4. So also outside the equipotential through C, the
potential falls steadily to the value zero at infinity. Thus the zero equi-
potential consists of two. spheres—the sphere -at infinity and the sphere
surrounding B which has already been mentioned!

’
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V. Three equal charges at the corners of an equilateral triangle.

66. As a further example we may examine the disposition of equi-
potentials when the field is produced by three point charges at the corners
of an equilateral triangle. The intersection of these by the plane in which
the charges lie is represented in fig. 21, in which 4, B, €' are the points at
which the charges are placed, and D is the centre of the triangle 4 BC.

It will be found that there are three points of equilibrium, one on each
of the lines AD, BD, CD. Taking AD =a, the distance of each point of
equilibrium from D is just less than }a. The same equipotential passes
through all three points of equilibrium. If the charge at each of the points

Fra. 21.

4, B, C is taken to be unity, this equipotential has a potential g% . The

equipotential has three loops surrounding the points A, B, C. In cach of

these loops the equipotentials are closed curves, which finally reduce to

small circles surrounding the points 4, B, C. Those drawn correspond to
325 35 875

the potentials ——, , —, and 3 :
a @ a a

Outside the equipotential ?'{%4’ the equipotentials are closed curves
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surrounding the former eqmpotentlal and finally reducing to circles at in-

finity. The curves drawn correspond to potentials % 225, 2a5 nd 2—75

There remains the region between the point D and the equipotential 3704;
At D the potential is §2—0, so that the potential falls as we recede from the

equipotential :—3% and reaches its minimum value at D. The potential at

D is of course not a minimum for all directions in space: for the potential
increases as we move away from D in directions which are in the plane
ABC, but obviously decreases as we move away from D in a direction per-

Fia. 22.

pendicular to this plane. Taking D as origin, and the plane 4 B(C as plane
of zy, it will be found that near D the potential is

V—§+-(w’+y — 227).

Thus the equipotential through D is shaped like a right circular cone in
the immediate neighbourhood of the point D. From the equation just
found, it is obvious that near D the sections of the equipotentials by the
plane 4BC will be circles surrounding D.
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From a study of the section of the equipotentials as shewn in fig. 21, it is
easy to construct the complete surfaces. We see that each equipotential for
which ¥ has a very high value consists of three small spheres surrounding the
points 4, B, C. For smaller values of V, which must, however, be greater

than —3—%&, each equipotential still consists of three closed surfaces surround-

ing 4, B, C, but these surfaces are no longer spherical, each one bulging out
towards the point D. As V decreases, the surfaces continue to swell out,

until, when V=§§‘—t , the surfaces touch one another simultaneously, in a

way which will readily be understood on examining the section of this equi-
potential as shewn in fig. 21. It will be seen that this equipotential is
shaped like a flower of three petals from which the centre has been cut away.

As V decreases further the surfaces continue to swell, and when V = g, the

space at the centre becomes filled up. For still smaller values of ¥V the
equipotentials are closed singly-connected surfaces, which finally become
spheres at infinity corresponding to the potential V' =0.

The sections of the equipotentials by a plane through DA perpendicular
to the plane ABC are shewn in fig. 22.

SPECIAL PROPERTIES OF EQUIPOTENTIALS AND LINES OF FORCE.

The Equipotentials and Lines of Force at infinity.
67. In§ 40, we obtained the general equation

- 2!

[@ =) +(y - yy + (e - 20
If r denotes the distance of «, y, z from the origin, and », the distance of
#, %, %1, from the origin, we may write this in the form

e :
[ — 2 (zz, + yyy + 22,) + 7'12]%

At a great distance from the origin this may be expanded in descending
powers of the distance, in the form

e e_l’l xx, + Yy + 22, §(awc,+g/y1+zz,)2__11:1_2
z'r{ it 72 +2 o 21‘2+ i

v

The term of order % 18 2—:;?.

R T |
The term of order = Se (zmy + Yy, + 22,).
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If the origin is taken at the centroid of e, at x,, y,, 2, e, at «, y,, 2., etc.,
we have
Sew=0, ( 2ay =0, ez =0,

Thus by taking the origin at this centroid, the term of order i will

r‘)

disappear. . i

The term of order ;16 is
L3 x» ae X 2
2,9 e, (xxy + yy, + 22))* — 37 Se .

Let 4, B, C, be the moments of inertia about the axes, of ¢, at 2, ¥y, 2,
ete., and let 7 be the moment of inertia about the line joining the origin to .
x,y, z; then

Ser? =3(A4+B+0),
Se (22, + yy, + 22 = r* (Zeyr2 = 1),

and the terms of order %s become

A+B+C-381
273 -
Thus taking the centroid of the charges as origin, the potential at a great
distance from the origin can be expanded in the form

Se A+B+0-3I
r 2r®

Thus except when the total charge Ze vanishes, the field at infinity is
the same as if the total charge Se were collected at the centroid of the
charges. Thus the equipotentials approximate to spheres having this point
as centre, and the asymptotes to the lines of force are radii drawn through
the centroid. These results are illustrated in the special fields of force
considered in §§ 61—66.

e

The Lines of Force from collinear charges.

68. When the field is produced solely by charges all in the same straight
line, the equipotentials are obviously surfaces of revolution about this line,
while the lines of force lie entirely in planes through this line. In this
important case, the equation of the lines of force admits of direct integration.

Let B, B, B, ... be the positions of the charges e,, &, €, .... Let @, @
be any two adjacent points on a line of force. Let N be the foot of the
perpendicular from @ to the axis BE, ..., and let a circle be drawn perpen-
dicular to this axis with centre N and radius QN. This circle subtends
at B a solid angle

27 (1 —cos 6,),
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where 6, is the angle QRN. Thus the surface integral of normal force
arising from e,, taken over the circle QN, is
2me, (1 — cos 6,)
and the total surface integral of normal force taken over this surface is
273 (1 — cos 6,).

If we draw the similar circle through @', we obtain a closed surface
bounded by these two circles and by the surface formed by the revolution

of Q. This contains no electric charge, so that the surface integral of
normal force taken over it must be nil. Hence the integral of force over
the circle QN must be the same as that over the similar circle drawn
through @. This gives the equations of the lines of force in the form

(integral of normal force through circle such as QN') = constant,
which as we have seen, becomes

Se, cos 8, = constant.

Analytically, let the point B have coordinates a,, 0, 0, let B have
coordinates a,, 0, 0, etc. and let @ be the point =z, y, 2. Then

xr—

cos 6, = mei =,
and the equation of the surfaces formed by the revolution of the lines of
force is
i T
Ve -y ety e
It will easily be verified by differentiation that this is an integral of the
differential equation

= constant.

o _Y
ox X
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Equipotentials which vntersect themselves.

69. We have seen that, in general, the equipotential through any point
of equilibrium must intersect itself at the point of equilibrium.

Let #, y, z be a point of equilibrium, and let the potential at this point be
denoted by ¥;. Let the potential at an adjacent point «+ £, y + 772+ ¢, be
denoted by V; , ¢ By Taylor’'s Theorem, if f(z, y, 2) is any function of
@, Y, 2, we have

f@+E&y+n,2+0)= f(wy,z)+faf af af+l(§26f faagyJ’"')’

where the differential coefficients of f are evaluated at =z, y, 2. Taking
S (=, y, 2) to be the potential at , ¥, 2, this of course being a function of the
variables x, ¥, 2, the foregoing equation becomes

oV BV 8V an
Vene=V+ E—a—w"*" +%(§’2 + 289 6w8J )...(25).
If , y, z is a point of equlhbrlum
P gV @l o 0
o oy oz
oV v
so that Ve nic V+%(f s e T >

Referred to =, y, z as origin, the coordinates of the point z+§, ¥+ 7,

z + ¢ become &, 7, ¢, and the equation of the equipotential V' = becomes
oV oV
c-T, %(‘52 ks Enamay+ )

In the neighbourhood of the point of equilibrium, the values of &, 5, & are
small, so that in general the terms containing powers of £, 9, ¢ higher than
squares ‘may be neglected, and the equation of the equipotential V= C
becomes

oV oV
E amg'i' Enaa =2(0_VC‘I-)';7\
In particular the equipotential V' =¥ becomes identical, in the neighbourhood
of the point of equilibrium, with the cone
oV 4
o + 260 50

+...=0.

Let this cone, referred to its principal axes, become

EL-1b7) -G = R . 5L v s (26),

then, since the sum of the coefficients of the squares of the variables is an
invariant, ‘

82V 8’V oV
a+b+c= W -a? 0.
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Now a+b+c¢=0 is the condition that the cone shall have three per-
pendicular generators. Hence we see that at the point at which an
equipotential cuts itself, we can always find three perpendicular tangents to
the equipotential. Moreover we can find these perpendicular tangents in an
infinite number of ways.

In the particular case in which the cone is one of revolution (e.g., if the
whole field is symmetrical about an axis, as in figures 16 and 20), the
equation of the cone must become

£ byt - 200 =
where the axis of ¢’ is the axis of symmetry. The section of the equipotential
made by any plane through the axis, say that of £'¢’, must now become

gr—2¢7=0
in the neighbourhood of the point of equilibrium, and this shews that the
tangents to the equipotentials each make a constant angle tan= v/2 (= 54° 44")
with the axis of symmetry.

In the more general cases in which there is not symmetry about an axis,
the two branches of the surface will in general intersect in a line, and the
cone reduces to two planes, the equation being

afE”+ by =

where the axis of ¢’ is the line of intersection. We now have a +b=0, so
that the tangent planes to the equipotential intersect at right angles.

An analogous theorem can be proved when n sheets of an equipotential
intersect at a point. The theorem states that the n sheets make equal
angles 7/n with one another. (Rankin’s Theorem, see Maxwell's Electricity
and Magnetism, § 115, or Thomson and Tait’s Natural Philosophy, § 780.)

70. A conductor is always an equipotential, and can be constructed so as
to cut itself at any angle we please. It will be seen that the foregoing
theorems can fail either through the @, b and ¢ of equation (24) all vanishing,
or through their all becoming infinite. In the former case the potential near
a point at which the conductor cuts it;self, is of the form (cf. equation (25)),

2
Vuns= W4 (50 + 360 ),

~so that the components of 1ntens1ty are of the forms

oV g oV

ﬁ"%@ = +2£778a,28y )

oV
— 2
%aa: (f 7t T 26 8x8y+ )

The intensity near the point of equilibrium is therefore a small quantity of
the second order, and since by Coulomb’s Law R =4wa, it follows that the
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surface density is zero along the line of intersection, and is proportional to
the square of the distance from the line of intersection at adjacent points.

If, however, @, b and ¢ are all infinite, we have the electric intensity also
infinite, and therefore the surface density is infinite along the line of inter-
section.

It is clear that the surface density will vanish when the-conducting
surface cuts itself in such a way that the angle less than two right angles
is external to the conductor; and that the surface density will become
infinite when the angle greater than two right angles is external to the
conductor. This becomes obvious on examining the arrangement of the
lines of force in the neighbourhood of the angle.

|

7

F1e. 24. Angle greater than two right angles external to conductor.

Fre. 25. Angle less than two right angles external to conductor.

71. The arrangement shewn in fig. 25 is such as will be found at the
point of a lightning conductor. The object of the lightning conductor is
to ensure that the intensity shall be greater at its point than on any part
of the buildings it is designed to protect. The discharge will therefore take
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place from the point of the lightning conductor sooner than from any part of
the building, and by putting the conductor in good electrical communication
with the earth, it is possible to ensure that no harm shall be done to the
main buildings by the electrical discharge.

An application of the same principle will explain the danger to a human
being or animal of standing in the open air in the presence of a thunder cloud,
or of standing under an isolated tree. The upward point, whether the head
of man or animal, or the summit of the tree, tends to collect the lines of force
which pass from the cloud to the ground, so that a discharge of electricity
will take place from the head or tree rather than from the ground. -

Fia. 26.

72. The property of lines of force of clustering together in this way is
utilised also in the manufacture of electrical instruments. A cage of wire is

\

Fia. 27.

placed round the instrument and almost all the lines of force from any
charges which there may be outside the instrument will cluster together on
the convex surfaces of the wire. Very few lines of force escape through this
cage, so that the instrument inside the cage is hardly affected at all by any
electric phenomena which may take place outside it. Fig. 27 shews the
way in which lines of force are absorbed by a wire grating. It is drawn to
represent the lines of force of a uniform field meeting a plane grating placed
at right angles to the field of force.
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EXAMPLES.

1. Two particles each of mass m and charged with e units of electricity of the same
sign are suspended by strings each of length & from the same point; prove that the
inclination @ of each string to the vertical is given by the equation

4dmga? sin® §=¢? cos 6.

V. 2. Charges +4e, —e¢ are placed at the points 4, B, and C is the point of equilibrium.

_ Prove that the line of force which passes through ¢ meets 48 at an angle of 60° 4t 4 and
at right angles at C. U QA Acaidll neopety pleeuy (CW S
x u \ { A /\ d\. e \

' 3. Find the angle at 4 (question 2) between 4B and the line of force which leaves B
at right angles to 45.

(4 Two positive charges ¢; and e, are placed at the points 4 and B respectively.
Shew that the tangent at infinity to the line of force which starts from ¢, making an angle
a with B4 produced, makes an angle

Loty €1 . g
2 sin (\/el_'_ezsm2

with B4, and passes through the point €' in 4B such that
i AC : CB=e¢, : ¢,.

9. Point charges +e, —eare placed at the points 4, B. The line of force which leaves
\d making an angle a with 4B meets the plane which bisects 4B at right angles, in
Shew that
PAB
5

sin%:Jé sin

6. If any closed surface be drawn not enclosing a charged body or any part of one,
shew that at every point of a certain closed line on the surface it intersects the equi-
potential surface through the point at right angles.

7. The potential is given at four points near each other and not all in one plane.
Obtain an approximate construction for the direction of the field in their neighbourhood.

IS
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| 8. The potentials at the four corners of a small tetrahedron 4, B, C, D are V3, V3,
V3, V; respectively. @ is the centre of gravity of masses M; at A4, M, at B, M at C|
M, at D. Shew that the potential at G is ;
M Vi+ My Vot My Vs+ M, V4
My + Mo+ M+ M, X

9. Charges 3¢, —e¢, —e are placed at 4, B, C respectively, where B is the middle
}Joint of AC. Draw a rough diagram of the lines of force ; shew that a liné of force which
starts from 4 making an angle a with AB>cos~!(~}) will not,reach B or C, and shew
that the asymptote of the line of force for which a=cos~1(~3) is at right angles to AC.

410. If there are three electrified points 4, B, € in a straight line, such that 4C'=f,

a? —ea
BC=— S At
x &

spherical equipotential surface, and discuss the position of the points of equilibrium on
the line ABC when V=e (};t Z)z and when V=e (%%2-.

« 11. 4 and C are spherical conductors with charges e4¢ and —e respecfively. Shew
that there is either a point or a line of equilibrium, depending on the relative size and
positions of the spheres, and on €/e. Draw a diagram for each case giving the lines of
force and the sections of the equipotentials by a plane through the centres.

, and the charges are ¢, and Va respectively, shew that there is always a

12. An electrified body is placed in the vicinity of a conductor in the form of a
surface of anticlastic curvature. Shew that at that point of any line of force passing from
the body to the conductor, at which the force is a minimum, the principal curvatures of
the equipotential surface are equal and opposite.

\

~13. Shew that it is not possible for every family of non-intersecting surfaces in free
space to be a family of equipotentials, and that the condition that the family of surfaces

f &2 9, 2)=0
shall be capable of being equipotentials is that

o\ | O\ | O

oz 0y ' 022

oA\ 2 oA\ 2 oA\ 2
(a?) % (a.?) +(52)

~14. In the last question, if the condition is satisfied find the potential.

shall be a function of X only.

15. Shew that the confocal ellipsoids

22 P 22
antaptan!

can form a system of equipotentials, and express the potential as a function of A.

v

16. If two charged concentric shells be connected by a wire, the inner one is wholly

J ;
discharged. If the law of force were r“’l*“ 5+ brove that thére would be a charge B on the

inner shell such that if 4 were the charge on the outer shell, and f, g the sum and differ-
ence of the radii,

29B=~dp {(f-g)log (f+g) —flog f+glog g}
approximately.
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17. Three infinite parallel wires cut a plane perpendicular to them in the angular
points A, B, C of an equilateral triangle, and have charges ¢, ¢, —¢' per unit length
respectively. Prove that the extreme lines of force which pass from 4 to ¢ make at

2e—be’ 2¢ ¢’

starting angles =—— = and

o i with 40, provided that e’:#ée.

18. A negative point charge —e; lies between two positive point charges ¢; and ¢; on
the line joining them and at distances a, 8 from them respectively. Shew that, if the
magnitudes of the charges are given by

/3’ and if 1< 7\2<<a+§> B

61_63 e
B

there is a circle at every point of which the force vanishes. Determine the general form
of the equipotential surface on which this circle lies.

19. Charges of electricity e;, —e, ¢35, (e3>>¢;) are placed in a straight line, the
negative charge being midway between the other two. Shew that, if 4e;, lie between

(e3é —61%)3 and (eﬁ +elé)3, the number of unit tubes of force that pass from e, to e, is

3 (e +eg—e3)+ \/ﬁ (es% — &%) (91 - 28} +e3§)’l’.



CHAPTER III
CONDUCTORS AND CONDENSERS

73. By a conductor, as previously explained, is meant any body or
system of bodies, such that electricity can flow freely over the whole. When
electricity is at rest on such a conductor, we have seen (§ 44) that the charge
will reside entirely on the outer surface, and (§ 37) that the potential will
be constant over this surface.

A conductor may be used for the storage of electricity, but it is found
that a much more efficient arrangement is obtained by taking two or more
conductors—generally thin plates of metal—and arranging them in a certain
way. This arrangement for storing electricity is spoken of as a “con-
denser.” In the present Chapter we shall discuss the theory of single
conductors and of condensers, working out in full the theory of some of the
simpler cases.

CONDUCTORS.

A Spherical Conductor.

74. The simplest example of a conductor is supplied by a sphere, it
being supposed that the sphere is so far removed from all other bodies that
their influence may be neglected. In this case it is obvious from symmetry
that the charge will spread itself uniformly over the surface. Thus if ¢ is
the charge, and a the radius, the surface density o is given by

_ total charge ¢
" total area of surface 4mra?’

The electric intensity at the surface being, as we have seen, equal to
dma, 1s efa’ .

From symmetry the direction of the intensity at any point outside the
sphere must be in a direction passing through the centre. To find the
amount of this intensity at a distance r from the centre, let us draw a sphere
of radius r, concentric with the conductor. At every point of this sphere
the amount of the outward electric intensity is by symmetry the same, say R,
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and its direction as we have seen is normal to the surface. Applying Gauss’
Theorem to this sphere, we find that the surface integral of normal intensity

f f NdS becomes simply B multiplied by the area of the surface 4772 so that
4R = dare,

e
or R=—.

r

This becomes e/a* at the surface, agreeing with the value previously
obtained.

- Thus the electric force at any point is the same as if the charged sphere
were replaced by a point charge e, at the centre of the sphere. And, just
as in the case of a single point charge e, the potential at a point outside the
sphere, distant 7 from its centre, is '

e e
V=fx;2d‘r—-—,

w

so that at the surface of the sphere the potential is %.

Inside the sphere, as has been proved in § 37, the potential is constant,
and therefore equal to e/a, its value at the surface, while the electric intensity
vanishes.

As we gradually charge up the conductor, it appears that the potential
at the surface is always proportional to the charge of the conductor.

It is customary to speak of the potential at the surface of a conductor as
“ the potential of the conductor,” and the ratio of the charge to this potential
is defined to be the “capacity ” of the conductor. From a general theorem,
which we shall soon arrive at, it will be seen that the ratio of charge to
potential remains the same throughout the process of charging any conductor
or condenser, so that in every case the capacity depends only on the shape
and size of the conductor or condenser in question. For a sphere, as we
have seen,

capacity = chatge _ ¢ =q
PACIEY = potential 89,
a

so that the capacity of a sphere is equal to its radius.

A Cylindrical Conductor.

* 76. Let us next consider the distribution of electricity on a circular
cylinder, the cylinder either extending to infinity, or else having its ends so
far away from the parts under consideration that their influence may be
neglected.

As in the case of the sphere, the charge distributes itself symmetrically,
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so that if « is the radius of the cylinder, and if it has a charge e per unif
length, we have
e
=g

To find the intensity at any point outside the conductor, construct a Gauss’
surface by first drawing a cylinder of radius 7, coaxal with the original
cylinder, and then cutting off a wunit length by two parallel planes at
unit distance apart, perpendicular to the axis. From sym-
metry the force at every point is perpendicular to the axis
of the cylinder, so that the normal intensity vanishes at
every point of the plane ends of this Gauss’ surface. The
surface integral of normal intensity will therefore consist
entirely of the contributions from the curved part of the
surface, and this curved part consists of a circular band, of
unit width and radius »—hence of area 27r. If R is the

outward intensity at every point of this curved surface,
Gauss’ Theorem supplies the relation
27rR = 4are,
8o that R=27?. SLEY

This, we notice, is independent of @, so that the intensity is the same as
it would be if @ were very small, 7.e., as if we had a fine wire electrified with
a charge e per unit length.

In the foregoing, we must suppose r to be so small, that at a distance
from the cylinder the influence of the ends is still negligible in comparison
with that of the nearer parts of the cylinder, so that the investigation does
not_hold for large values of r. It follows that we cannot find the potential
by integrating the intensity from infinity, as has been done in the cases of
the~ point charge and of the sphere. We have, however, the general
differential equation

oV
o=k
so that in the present case, so long as r remains sufficiently small
WV ool
3 B S
giving upon integration
V=0C-2elogr.

The constant of integration ' cannot be determined without a knowledge
of the conditions at the ends of the cylinder. Thus for a long cylinder, the
intensity at points near the cylinder is independent of the conditions at the
ends, but the potential and capacity depend on these conditions, and are
therefore not investigated here.
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An Infinite Plane.

76. Suppose we have a plane extending to infinity in all directions, and
electrified with a charge o per unit area. From symmetry it is obvious that
the lines of force will be perpendicular to the plane at every point, sn that
the tubes of force will be of uniform cross-section. Let us take as Gauss’
surface the tube of force which has as cross-section any element w of area
of the charged plane, this tube being closed by two cross-sections each of
area o at distance r from the plane. If R is the intensity over either of
these cross-sections the contribution of each cross-section to Gauss’ integral
is Rw, so that Gauss’ Theorem gives at once

2Rw = 47row,
whence R = 276

The intensity is therefore the same at all distances from the plane.

The result that at the surface of the plane the intensity is 27, may at
first seem to be in opposition to Coulomb’s Theorem (§ 57) which states that
the intensity at the surface of a conductor is 47o. It will, however, be seen
from the proof of this theorem, that it deals only with conductors in
which the conducting matter is of finite thickness; if we wish to regard
the electrified plane as a conductor of this kind we must regard the
total electrification as being divided between the two faces, the surface
density being 4o on each, and Coulomb’s Theorem then gives the correct
result.

If the plane is not actually infinite, the result obtained for an infinite
plane will hold within a region which is sufficiently near to the plane for the
edges to have no influence. As in the former case of the cylinder, we can
obtain the potential within this region by integration. If r measures the
perpendicular distance from the plane

oV

—a—r=R=27ra',

so that ’ V=_(-2mwor,
and, as before, the constant of integration cannot be determined without

a knowledge of the conditions at the edges.

77. 1t is instructive to compare the three expressions which have been
obtained for the electric intensity at points outside a charged sphere, cylinder
and plane respectively. Taking » to be the distance from the centre of the
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sphere, from the axis of the cylinder, and from the plane, respectively, we
have found that

: : z 1
outside the sphere, R is proportional to 5

outside the cylinder, R is proportional to %,

outside the plane, R is constant.

From the point of view of tubes of force, these results are obvious enough
deductions from the theorem that the intensity varies inversely as the cross-
section of a tube of force. The lines of force from a sphere meet in a point,
the centre of the sphere, so that the tubes of force are cones, with cross-
section proportional to the square of the distance from the vertex. The
lines of force from a cylinder all meet a line, the axis of the cylinder, at right
angles, so that the tubes of force are wedges, with cross-section proportional
to the distance from the edge. And the lines of force from a plane all meet
the plane at right angles, so that the tubes of force are prisms, of which the
cross-section is constant. ;

78. We may also examine the results from the point of view which
regards the electric intensity as the resultant of the attractions or repulsions
from different elements of the charged surface.

Let us first consider the charged plane. Let P, P’ be two points at
distances r, 7" from the plane, and let @ be the
foot of the perpendicular from either on to the
plane. If P is near to @, it will be seen that
almost the whole of the intensity at P is due
to the charges in the immediate neighbourhood
of @ The more distant parts contribute forces
which make angles with QP nearly equal to a
right angle, and after being resolved along QP
these forces hardly contribute anything to the
resultant intensity at P.

Owing to the greater distance of the point P”,
the forces from given elements of the plane are
smaller at P’ than at P, but have to be resolved
through a smaller angle. The forces from the
regions near  are greatly diminished from the
former cause and are hardly affected by the latter.
The forces from remote regions are hardly affected
by the former circumstance, but their effect is
greatly increased by the latter. Thus on moving Fre. 29.
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from P to P’ the forces exerted by regions near @ decrease in efficiency,
while those exerted by more remote regions gain. The result that the
total resultant intensity is the same at P’ as at P, shews that the
decrease of the one just balances the gain of the other.

If we replace the infinite plane by a sphere, we find that the force at
a near point P is as before contributed
almost entirely by the charges in the
neighbourhood of @. On moving from P
to P’, these forces are diminished just as
before, but the number of distant elements
of area which now add contributions to
the intensity at P’ is much less than
before. Thus the gain in the contributions Fie. 30.
from these elements does not suffice to
balance the diminution in the contributions from the regions near @, so that
the resultant intensity falls off on withdrawing from P to P’.

The case of a cylinder is of course intermediate between that of a plane
and that of a sphere.

CONDENSERS.

Spherical Condenser.

79. Suppose that we enclose the spherical conductor of radius a dis-
cussed in § 74, inside a second spherical conductor of internal radius b, the
two conductors being placed so as to be concentric and insulated from one
another.

It again appears from symmetry that the intensity at every point must
be in a direction passing through the common centre of the two spheres, and
must be the same in amount at every point of any sphere concentric with
the two conducting spheres. Let us imagine a concentric sphere of radius r
drawn between the two conductors, and when the charge on the inner sphere
is e, let the intensity at every point of the imaginary sphere of radius r be
R. Then, as before, Gauss’ Theorem, applied to the sphere of radius », gives

the relation
472 R = dare,

so that R= —2

r
This only holds for values of » intermediate between a and b, so that to
obtain the potential we cannot integrate from infinity, but must use the
differential equation. This is

8V=R_ e

or T
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which upon integration gives

We can determine the constant of integration as soon as we know the
potential of either of the spheres. Suppose for instance that the outer
sphere is put to earth so that ¥'=0 over the sphere » =5, then we obtain at
once from equation (27)

e
0=0C+ B
so that €' = — e/b, and equation (27) becomes

Tk

31 ®

S

On taking = a, we find that the potential of the inner sphere is ¢ G = %) ;

and its charge is e, so that the capacity of the condenser is

ab
b—a’

|~

or

Rl
|
Sl

80. In the more ‘general case in which the outer sphere is not put to
earth, let us suppose that V,, ¥; are the potentials of the two spheres of
radii @ and b, so that, from equation (27)

=C0+2,
a
(4

%=O+‘I;'.

Then we have on subtraction
1L Cai |
(Kw—%)=e(a“5> ,

e

so that the capacity is !
i V.~V

The lines of force which start from the inner sphere must all end on the.
inner surface of the outer sphere, and each line of force has equal and
opposite charges at its two ends. Thus if the charge on the inner sphere is
e, that on the inner surface of the outer sphere must be —e. We can there-
fore regard the capacity of the condenser as being the charge on either of
the two spheres divided by the difference of potential, the fraction being
taken always positive. On this view, however, we leave out of account any
charge which there may be on the outer surface of the outer sphere this
is not regarded as part of the charge of the condenser.
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An examination of the expression for the capacity,

ab

b—a’

will shew that it can be made as large as we please by making b—a
sufficiently small. This explains why a condenser is so much more
efficient for the storage of electricity than a single conductor.

81. By taking more than two spheres we can form more complicated
condensers. Suppose, for instance, we take concentric spheres of radii
@, b, ¢ in ascending order of magnitude, and connect both the spheres of
radii @ and ¢ to earth, that of radius b remaining insulated. Let V be the
potential of the middle sphere, and let ¢, and e, be the total charges on its
inner and outer surfaces. Regarding the inner surface of the middle sphere
and the surface of the innermost sphere as fornnng a single spherical
condenser, we have

izl Vab
1 F b —a >

and again regarding the outer surface of the middle sphere and the outermost
sphere as forming a second spherical condenser, we have

Ve
c—0b"

Hence the total charge K of the middle sheet is given by

2=

E=e,+6’2

ab be
- V(b—ct+c—b>’
so that regarded as a single condenser, the system of three spheres has a
capacity
ab % be
b—a c¢c-b’
which is equal to the sum of the capacities of the two constituent condensers

into which we have resolved the system. This is a special case of a general
theorem to be given later (§ 85).

Coaxal Cylinders.

82. A conducting circular cylinder of radius a surrounded by a second
coaxal cylinder of internal radius b will form a condenser. If e is the charge
on the inner cylinder per unit length, and if V" is the potential at any point
between the two cylmders at a distance 7 from their common axis, we have,
as in § 75,

Ve=0C-2elogr,
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and it is now possible to determine the constant C as soon as the potential of
either cylinder is known.

Let ¥, ¥, be the potentials of the inner and outer cylinders, so that

V,=C —2elog a,
V= C — 2¢elog b.
By subtraction V.-V, =2elog (g) :
1

so that the capacity is TR
2 log (5)

Parallel Plate Condenser.

per unit length.

83. This condenser consists of two parallel plates facing one another,
say at distance d apart. Lines of force will pass from the inner face of one
to the inner face of the other, and in regions sufficiently far removed from
the edges of the plate these lines of force will be perpendicular to the plate
throughout their length. If o is the surface density of electrification of one
plate, that of the other will be —o. Since the cross-section of a tube
remains the same throughout its length, and since the electric intensity
varies as the cross-section, it follows that the intensity must be the same
throughout the whole length of a tube, and this, by Coulomb’s Theorem,
will be 4o, its value at the surface of either plate. Hence the difference of
potential between the two plates, obtained by integrating the intensity 4mo
along a line of force, will be

dmrad,

The capacity per unit area is equal to the charge per unit area o
divided by this difference of potential, and is therefore

1
dwd’
The capacity of a condenser formed of two parallel plates, each of area 4,
is therefore
a0
drd’ .
except for a correction required by the irregularities in the lines of force
near the edges of the plates.

Inductive Capacity.

84. It was found by Cavendish, and afterwards independently by
Faraday, that the capacity of a condenser depends not only on the shape
and size of the conducting plates but also on the nature of the insulating
material, or dielectric to use Faraday's word, by which they are separated.
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It is further found that on replacing air by some' other dielectric, the
capacity of a condenser is altered in a ratio which is independent of the
shape and size of the condenser, and which depends only on the dielectric
itself. This constant ratio is called the specific inductive capacity of the
dielectric, the inductive capacity of air being taken to be unity.

We shall discuss the theory of dielectrics in a later Chapter. At present
it will be enough to know that if C is the capacity of a condenser when its
plates are separated by air, then its capacity, when the plates are separated
by any dielectric, will be KC, where K is the inductive capacity of the
particular dielectric used. The capacities calculated in this Chapter have all
been calculated on the supposition that there is air between the plates, so
that when the dielectric is different from air each capacity must be multi-
plied by K.

The following table will give some idea of the values of A actually observed for
different dielectrics. For a great many substances the value of X is found to vary widely
for different specimens of the material and for different physical conditions.

Sulphur 28 to 4-0. I Ebonite 20 to 3°15.
Mica 60t080. |  Water 75 to 81.
Glass 66 to 9°9. ! Ice at —23° 780.
Paraffin 2:0 to 2-3. Ice at —185° 2:4 to 2°9.

The values of K for some gases are given on p. 132.

CoMPOUND CONDENSERS.

Condensers in Parallel.

85. Let us suppose that we take any number of condensers of capacities
Ci, C,, ... and connect all their high potential plates together by a conducting

T

Fia, 31.
wire, and all their low potential plates together in the same way. This is
known as connecting the condensers in parallel.

The high potential plates have now all the same potential, say V,, while
the low potential plates have all the same potential, say V,. If e, e,,... are
the charges on the separate high potential plates, we have

6 = CI(VI i Vo);
e =0, (Vi = V), ete,,
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Pracrical. CONDENSERS.

Practical Unats.

87. As will be explained more fully later, the practical units of
electricians are entirely different from the theoretical units in which we
have so far supposed measurements to be made. The practical unit of
capacity is called the farad, and is equal, very approximately, to 9 x 10" times
the theoretical C.G.s. electrostatic unit, ¢e., is equal to the actual capacity
of a sphere of radius 9 x 10" cms. This unit is too large for most purposes,
so that it 1s convenient to introduce a subsidiary unit—the microfarad—
equal to a millionth of the farad, and therefore to 9 x 10° c.G.s. electrostatic
units. Standard condensers can be obtained of which the capacity is equal
to a given fraction, frequently one-third or one-fifth, of the microfarad.

The Leyden Jar.

88. For experimental purposes the commonest form of condenser is the
Leyden. Jar. This consists essentially of a glass vessel, bottle-shaped, of
which the greater part of the surface is coated
inside and outside with tinfoil. The two coatings
form the two plates of the condenser, contact with
the inner coating being established by a brass
rod which comes through the neck of the bottle,
the lower end having attached to it a chain
which rests on the inner coating of tinfoil.

To form a rough numerical estimate of the
capacity of a Leyden Jar, let us suppose that the
thickness of the glass is § cm., that its specific Bretisas
inductive capacity is 7, and that the area covered
with tinfoil is 400 sq. cms. Neglecting corrections required by the irregu-
larities in the lines of force at the edges and at the sharp angles at the
bottom of the jar, and regarding the whole system as a single parallel plate
condenser, we obtain as an approximate value for the capacity

e electrostatic units,

4mrd

in which we must put K=17, 4 =400 and d =4. On substituting these
values the capacity is found to be approximately 450 electrostatic units,
or about ook microfarad.

Parallel Plates.

89. A more convenient condenser for some purposes is a modification of
the parallel plate condenser. Let us suppose that we arrange n plates, each
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of area A, parallel to one another, the distance between any two adjacent
plates being d. If alternate plates are joined together so as to be in electrical
contact the space between each adjacent pair of plates may be regarded as

Fi6. 34.

forming a single parallel plate condenser of capacity % , 0 that the capacity

of the compound condenser is (n—1) KA/4wd. By making n large and d
small, we can ake this capacity large without causing the apparatus to
occupy an unduly large amount-of space. For this reason standard con-
densers are usually made of this pattern.

90. Guard Ring. In both the condensers described the capacity can.
only be calculated approximately. Lord Kelvin has devised a modification
of the parallel plate condenser in which the error caused by the irregularities
of the lines of force near the edges is dispensed with, so that it is possible
accurately to calculate the capacity from measurements of the plates.

T KRS A RS

8
Fie. 35.

The principle consists in making one plate B of the condenser larger than
the second plate 4, the remainder of the space opposite B being occupied by
a “guard ring” C which fits 4 so closely as almost to touch, and is in the
same plane with it. The guard ring C and the plate 4, if at the same
potential, may without serious error be regarded as forming a single plate of
a parallel plate condenser of which the other plate is B. The irregularities
in the tubes of force now occur at the outer edge of the guard ring C, while
the lines of force from A to B are perfectly straight and uniform. Thus if 4
is the area of the plate 4 its capacity may be supposed, with great accuracy,

to be
A

dmd’ .
where d is the distance between the plates 4 and B.



89-92] Mechanical Force 79

Submarine Cables.

91. Unfortunately for practical electricians, a submarine cable forms
a condenser, of which the capacity is frequently very considerable. The
effect of this upon the transmission of signals will be discussed later. A cable
consists generally of a core of strands of copper wire surrounded by a layer of
insulating material, the whole being enclosed in a sheathing of iron wire.
This arrangement acts as a condenser of the type of the coaxal cylinders
investigated in § 82, the core forming the inner cylinder whilst the iron
sheathing and the sea outside form the outer cylinder.

In the capacity formula obtained in § 82, namely
K

2 log (%)

let us suppose that b= 2a, and that K = 32, this being about the value for
the insulating material generally used. Using the value log, 2 = 69315, we
find a capacity of 2:31 electrostatic units per unit length. Thus a cable
2000 miles in length has a capacity equal to that of a sphere of radius
2000 x 2'31 miles, t.e., of a sphere greater than the earth. In practical units,
the capacity of such a cable would be about 827 microfarads.

MEcHANICAL FORCE ON A CONDUCTING SURFACE.

92. Let @ be any point on the surface of a conductor, and let the
surface-density at the point @ be o. Let us draw any small area dS

\_/

Fia. 36.

enclosing @. By taking dS sufficiently small, we may regard the area as
perfectly plane, and the charge on the area will be ¢dS. The electricity on
the remainder of the conductor will exert forces of attraction or repulsion on
the charge odS, and these forces will shew themselves as a mechanical force
acting on the element of area diS of the conductor. We require to find the
amount of this mechanical force.
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The electric intensity at a point near ¢ and just outside the conductor is
47ra, by Coulomb’s Law, and its direction is normally away from the surface.
Of this intensity, part arises from the charge on dS itself, and part from the
charges on the remainder of the conductor. As regards the first part, which
arises from the charge on dS itself, we may notice that when we are con-
sidering a point sufficiently close to the surface, the element dS may be
treated as an infinite electrified plane, the electrification being of uniform
density o. The intensity arising from the electrification of dS at such a
point is accordingly an intensity 27o normally away from the surface. Since
the total intensity is 4mo normally away from the surface, it follows that the
intensity arising from the electrification of the parts of the conductor other
than dS must also be 2wo normally away from the surface. It is the forces
composing this intensity which produce the mechanical action on d&.
The charge on dS being adS, the total force will be 27o?dS normally away
from the surface. Thus per unit area there is a force 2ma* tending to repel
the charge normally away from the surface. The charge is prevented from
leaving the surface of the conductor by the action between electricity and
matter which has already been explained. Action and reaction being equal -
and opposite, it follows that there 1s a mechanical force 270 per unit area
acting normally outwards on the material surface of the conductor.

Remembering that R = 470, we find that the mechanical force can also
R? ]
be expressed as g, ber unit area.

93. Let us try to form some estimate of the magnitude of this mechanical
force as compared with other mechanical forces with which we are more
familiar. We have already mentioned Maxwell’s estimate that a gramme of
gold, beaten into a gold-leaf one square metre in area, can hold a charge of
60,000 electrostatic units. This gives 3 units per square centimetre as the
charge on each face, giving for the intensity at the surface,

R = 47o = 38 €.G.S. units,
and for the mechanical force

R2
2mwa® = Sty = 56 dynes per sq. cm.

Lord Kelvin, however, found that air was capable of sustaining a
tension of 9600 grains wt. per sq. foot, or about 700 dynes per sq. cm.
This gives R =130, ¢ = 10.

Taking R =100 as a large value of R, we ﬁnd 5— =400 dynes per

sq. em. The pressure of a normal atmosphere is

1,013,570 dynes per sq. cm.,
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so that the force on the conducting surface would be only about 5755 of an
atmosphere : say ‘3 mm. of mercury.

If a gold-leaf is beaten so thin that 1 gm. occupies 1 sq. metre of area,
the weight of this is ‘0981 dyne per sq. cm. In order that 2mwe® may be
equal to ‘0981, we must have ¢ ='1249. Thus a small piece of gold-leaf
would be lifted up from a charged surface on which it rested as soon as the
surface acquired a charge of about § of a unit per sq. cm.

Electrified Soap-Bubble.

94. As has already been said, this mechanical force shews itself well on
electrifying a soap-bubble.

Let us first suppose a closed soap-bubble blown, of radius a. If the
atmospheric pressure is II, the pressure inside will be somewhat greater than
II, the resulting outward force being just balanced by the tension of the
surface of the bubble. If, however, the bubble is electrified there will be an

_additional force acting normally outwards on the surface of the bubble, namely
the force of amount 27o? per unit area just investigated, and the bubble will
expand until equilibrium is reached between this and the other forces acting
on the surface.

As the electrification and consequently the radius change, the pressure
inside will vary inversely as the volume, and therefore inversely as a®. Let

Fie. 37.

us, then, suppose the pressure to be «/a®. Consider the equilibrium of the
small element of surface cut off by a circular cone through the centre, of small
semi-vertical angle @. This element is a circle of radius a6, and therefore
of area wa%0%. The forces acting are:

() The atmospheric pressure II7a?6® normally inwards.
(ii) The internal pressure g—s wa?6? normally outwards.

3 il 6
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(iti) The mechanical force due to electrification, 2ma? X ma?¢® normally

outwards.

(iv) The system of tensions acting in the surface of the bubble across

the boundary of the element.

If T is the tension per unit length, the tension across any element of
length ds of the small circle will be T'ds acting at an angle 6 with the tangent
plane at P, the centre of the circle. This may be resolved into 7'ds cos € in
the tangent plane, and T'dssin 6 along PO. Combining the forces all round
the small circle of circumference 2waf, we find that the components in the
tangent plane destroy one another, while those along PO combine into a
resultant 2mwaf x T'sin . To a sufficient approximation this may be written

as 2ma6?T.
The equation of equilibrium of the element of area is accordingly

Ilra?6® — a!% 7a20? — 2mwa’wa?0? + 27a 0?1 = 0,

or, simplifying, I- f - 27a® + %,= O3 EGRE TS L8ks . aorvist S (28).

Let a, be the radius when the bubble is uncharged, and let the radius be
a, when the bubble has a charge e, so that

e

a'=4m_a12.
Then 11——"—+2—T_o
ag’ (423
2
¥ s

Ta 8mar " a
We can without serious error assume 7' to be the same in the two cases.
If we eliminate 7' from these two equations, we obtain

H(al-—ao)—x(aql—l>—

a,?

62
8ma,®’
giving the charge in terms of the radii in the charged and uncharged states.

95. We have seen (§ 93) that the maximum pressure on the surface
which electrification can produce is only about 445 atmosphere: thus it is
not possible for electrification to change the pressure inside by more than
about 455 atmosphere, so that the increase in the size of the bubble is
necessarily very slight.

If, however, the bubble is blown on a tube which is open to the air,
equation (28) becomes
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As a rough approximation, we may still regard the bubble as a uniformly
charged sphere, so that if V is its potential,

g = V/4ma,
and the relation is Ve=167waT,

giving V in terms of the radius of the bubble, if the tension 7' is known. In
this case the electrification can be made to produce a large change in the
radius, by using films for which 7' is very small.

Energy of Discharge.

96. On discharging a conductor or condenser, a certain amount of
energy is set free. This may shew itself in various ways, e.g. as a spark or
sound (as in lightning and thunder), the heating of a wire, or the piercing
of a hole through a solid dielectric. The energy thus liberated has been
previously stored up in charging the conductor or condenser.

To calculate the amount of this energy, let us suppose that one plate of
a condenser is to earth, and that the other plate has a charge e and is at
potential V, so that if C is the capacity of the condenser,

e G . s o i ste Al (29).

If we bring up an additional charge de from infinity, the work to be
done is, in accordance with the definition of potential, Vde. This is equal
to dW, where W denotes the total work done in charging the condenser up
to this stage, so that

dW = Vde

= @ by equation (29).

On integration we obtain
e 2
W=4% T e (30),

no constant of integration being added since W must vanish when e=0.
This expression gives the work done in charging a condenser, and therefore
gives also the energy of discharge, which may be used in creating a spark,
in heating a wire, etc.

Clearly an exactly similar investigation will apply to a single conductor,
so that expression (30) gives the energy either of a condenser or of a single
conductor. Using the relation e = CV, the energy may be expressed in any
one of the forms

W=%%j=%eV=%0V* ........................ (31).

97. As an example of the use of this formula, let us suppose that we
have a parallel plate condenser, the area of each plate being 4, and the

6—2
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distance of the plates being d, so that C'= A/4wd, by §83. Let o be the
surface density of the high potential plate, so that e=o4. Let the low
potential plate be at zero potential, then the potential of the high potential
plate is

and the electrical energy is
W =4eV =2nwds?A.
Now let us pull the plates apart, so that d is increased to d’. The

electrical energy is now 2wd'c®4, so that there has been an increase of
electrical energy of amount

2ma?A (d' — d).

It is easy to see that this exactly represents the work done in separating
the two plates. The mechanical force on either plate is 27o® per unit area,
so that the total mechanical force on a plate is 2wo?4. Obviously, then,
the above is the work done in separating the plates through a distance
d —d.

It appears from this that a parallel plate condenser affords a ready means
of obtaining electrical energy at the expense of mechanical. A more valuable

property of such a condenser is that it enables us to increase an initial
difference of potential. The initial difference of potential

dardo
is increased, by the separation, to
dard’o.

By taking d small and d' large, an initial small difference of potential
may be multiplied almost indefinitely, and a potential difference which is
too small to observe may be increased until it is sufficiently great to affect
an instrument. By making use of this principle, Volta first succeeded in
detecting the difference of electrostatic potential between the two terminals
of an electric battery.
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EXAMPLES.

“1. The two plates of a parallel plate'condenser are each of area 4, and the distance
between them is d, this distance being small compared with the size of the plates. Find
the attraction between them when charged to potential difference V, neglecting the
irregularities caused by the edges of the plates. Find also the energy set free when the
plates are connected by a wire. :
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7

2. A sheet of metal of thickness ¢ is introduced between the two plates of a parallel
plate condenser which are at a distance o apart, and is placed so as to be parallel to the
plates. Shew that the capacity of the condenser is increased by an amount

(7
Ind(d—1)

per unit area. Examine the case in which ¢ is very nearly equal to d.

3. A high-pressure main consists first of a central conductor, which is'a copper tube
of inner and outer diameters of % and 1 inches. The outer conductor is a second copper
tube coaxal with the first, from which it is separated by insulating material, and of
diameters 137 and 1}§ inches. Outside this is more insulating material, and enclosing
the whole is an iron tube of internal diameter 2% inches. The capacity of the conductor
is found to be *367 microfarad per mile : calculate the inductive capacity of the insulating.
material. 7

4. An infinite plane is charged to surface density o, and P is a point distant half an
inch from the plane. Shew that of the total intensity 2zo at P, half is due to the charges
at points which are within one inch of P, and half to the charges beyond.

"5. A disc of vulcanite (non-conducting) of radius 5 inches, is charged to a uniform
surface density o by friction. Find the electric intensities at points on the axis of the
disc distant respectively 1, 3, 5, 7 inches from the surface.

6. A condenser consists of a sphere of radius @ surrounded by a concentric spherical
shell of radius . The inner sphere is put to earth, and the outer shell is insulated.
2

b
b—a’

Shew that the capacity of the condenser so formed is

7. Four equal large conducting plates 4, B, O, D are fixed parallel to one another.
4 and D are connected to earth, B has a charge £ per unit area, and ¢ a charge £’ per
unit area. The distance between 4 and B is a, between B and C is b, and between € and
Dis ¢ Find the potentials of B and C.

\A. A circular gold-leaf of radius b is laid on the surface of a charged conducting
sphere of radius a, a being large compared to . Prove that the loss of electrical energy
in removing the leaf from the conductor—assuming that it carries away its whole charge—
is approximately } b2E2/a3, where E is the charge of the conductor, and the capacity of the
leaf is comparable to b.

v

9. Two condensers of capacities C; and C3, and possessing initially charges @; and @,
are connected in parallel. Shew that there is a loss of energy of amount

(0201 - C1s)
\/ 2010 (C1+Cy)°
10. Two Leyden Jars A, B have capacities €y, C; respectively. 4 is charged and a
spark taken : it is then charged as before and a spark passed between the knobs of
A and B. 4 and B are then separated and are each discharged by a spark. Shew that
the energies of the four sparks are in the ratio

(.01+Gg)2 H (01+02) 02 5 012 . 0102.
11. Assuming an adequate number of condensers of equal capacity C, shew how a

compound condenser can be formed of equivalent capacity 6C, where 6 is any rational
number.
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J 12. Three insulated concentric spherical conductors, whose radii in ascending order
of magnitude are a, b, ¢, have charges e;, ;, e3 respectively, find their potentials and shew
that if the innermost sphere be connected to earth the potential of the outermost is

diminished by
a (el +2 2y >

13. A conducting sphere of radius e is surrounded by two thin concentric spherical
conducting shells of radii b and ¢, the intervening spaces being filled with dielectrics of
inductive capacities A and L respectively. If the shell b receives a charge E, the other
two being uncharged, determine the loss of energy and the potential at any point when

he spheres 4 and C are connected by a wire.

14 Three thin conducting sheets are in the form of concentric spheres of radii
a+d, a, a—c respectively. The dielectric between the outer and middle sheet is of
inductive capacity X, that between the middle and inner sheet is air. - At first the outer
sheet is uninsulated, the inner sheet is uncharged and insulated, the middle sheet is
charged to potential ¥V and insulated. The inner sheet is now uninsulated without
connection with the middle sheet. Prove that the potential of the middle sheet falls to

KVe(a+d)
Ke(a+d)+d (a—c)’

15, Two insulated conductors 4 and B are geometrically similar, the ratio of their
linear dimensions being as Z to Z'. The conductors are placed so as to be out of each
other’s field of induction. The potential of 4 is V and its charge is Z, the potential
of B is V'’ and its charge is £'. The conductors are then connected by a thin wire.
Prove that, after electrostatic equilibrium has been restored, the loss of electrostatic
energy is

%(EL' E'Ly(V- V)
/ L+1'
16. If two surfaces be taken in any family of equipotentials in free space, and two
metal conductors formed so as to occupy their positions, then the capacity of the

€10,

condenser thus formed is z '0—, where (), C, are the capacities of the external and
%)

internal conductors when existing alone in an infinite field.

17. A conductor (B) with one internal cavity of radius & is kept at potential U. 4
conducting sphere (4), of radius @, at great height above B contains in a cavity water
which leaks down a very thin wire passing without contact into the cavity of B through
a hole in the top of B. At the end of the wire spherical drops are formed, concentric
with the cavity ; and, when of radius d, they fall passing without contact through a small
hole in the bottom of B, and are received in a cavity of a third conductor (C) of capacity ¢
at a great distance below B. Initially, before leaking commences, the conductors 4 and €
are uncharged. Prove that after the 7th drop has fallen the potential of (' is

ar (b—-dy (8
{(ab_+_b——d Zady 1} ol
where the disturbing effect of the wire and hole on the capacities is neglected.

18. An insulated spherical conductor, formed of two hemispherical shells in contact,
whose inner and outer radii are b and ¥, has within it a concentric spherical conductor of
radius @, and without it another spherical conductor of which the internal radius is e
These two conductors are earth-connected and the middle one receives a charge. Shew
that the two shells will not separate if

2ac>bec+ba.
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9. Outside a spherical charged conductor there is a concentric insulated but un-
charged conducting spherical shell, which consists of two segments. Prove that the two
segments will not separate if the dlstance of the separating plane from the centre is less
than 3

ab
i e 3 gy
(a2 402}

where a, b are the internal and external radii of the shell.

0. A soap-bubble of radius a is formed by a film of tension 7', the external

mospheric pressure being II. The bubble is touched by a wire from a large conductor

at potential V, and the film is an electrical conductor. Prove that its radius increases to
r, given by 3

(P a%) 42T (= at) =L T

21. If the radius and tension of a spherical soap-bubble be a and 7' respectively,
shew that the chargé of electricity required to expand the bubble to twice its linear
dimensions would be

4 \/ma® (67T +71a),

II being the atmospheric pressure.

22. A thin spherical conducting envelope, of tension 7' for all magnitudes of its
radius, and with no air inside or outside, is insulated and charged with a quantity @ of
electricity. Prove that the total gain in mechanical energy involved in bringing a charge
¢ from an infinite distance and placing it on the envelope, which both initially and finally
is in mechanical equilibrium, is

3@t (Q+9)% - @Y

23. A spherical soap-bubble is blown inside another concentric with it, and the
former has a charge £ of electricity, the latter being originally uncharged. The latter
now has a small charge given to it. Shew that if a and 2a were the original radii, the
new radii will be approximately e+, 2a-+y, where

2
12y (Ma+ 7)== (241'[0L+E)—1 T+ gf:;a)

where II is the atmospheric pressure, and 7' is the surface-tension of each bubble.~

v24. Shew that the electric capacity of a conductor is less than that of any other
conductor which can completely surround it.

25. -If the inner sphere of a concentric spherical condenser is moved slightly out of
position, so that the two spheres are no longer concentric, shew that the capacity is
increased.



CHAPTER IV

SYSTEMS OF CONDUCTORS

98. IN the present Chapter we discuss the general theory of an electro-
static field in which there are any number of conductors. The charge on
each conductor will of course influence the distribution of charges on the other
conductors by induction, and the problem is to investigate the distributions
of electricity which are to be expected after allowing for this mutual
induction.

We have seen that in an electrostatic field the potential cannot be a
maximum or a minimum except at points where electric charges occur. It
follows that the highest potential in the field must occur on a conductor, or
else at infinity, the latter case occurring only when the potential of every
conductor is negative. Excluding this case for the moment, there must be
one conductor of which the potential is higher than that anywhere else in
the field. Since lines of force run only from higher to lower potential (§ 36),
it follows that no lines of force can enter this conductor, there being no
higher potential from which they can come, so that lines of force must leave
it at every point of its surface. In other words, its electrification must be
positive at every point.

So also, except when the potential of every conductor is positive, there
must be one conductor of which the potential is lower than that anywhere
else in the field, and the electrification at every point of this conductor must
be negative.

If the total charge on a conductor is nil, the total strength of the tubes
of force which enter it must be exactly equal to the total strength of the
tubes which leave it. There must therefore be both tubes which enter and
tubes which leave its surface, so that its potential must be intermediate
between the highest and lowest potentials in the field. For if its potential
were the highest in the field, no tubes could enter it, and wice versd. On
any such conductor the regions of positive electrification are separated from
regions of negative electrification by “lines of no electrification,” these lines
being loci along which ¢ =0. 1In general the resultant intensity at any
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point of a conductor is 4wo. At any point of a line of no electrification,
this intensity vanishes, so that every point of a “line of no electrification ”
is also a point of equilibrium.

At a point of equilibrium we have already seen that the equipotential
through the point cuts itself. A line of no electrification, however, lies
entirely on a single equipotential, so that this equipotential must cut itself
along the line of no electrification. Moreover, by § 69, it must cut itself at
right angles, except when it consists of more than two sheets.

99. We can prove the two following propositions :

L. If the potential of every conductor in the field is given, there s only
one distribution of electric charges which will produce this distribution of
potential.

II.  If the total charge of every conductor in the field ©s given, there is
only one way in which these charges can distribute themselves so as to be in
equalibrium, i

If proposition I. is not true, let us suppose that there are two different
distributions of electricity which will produce the required potentials. Let
o denote the surface density at any point in the first distribution, and ¢’ in
the second. Consider an imaginary distribution of electricity such that the
surface density at any point is o —o’. The potential of this distribution

at any point P is
5 Vp=ff0;d dS,

where the integration extends over the surfaces of all the conductors, and
r is the distance from P to the element dS. If P is a point on the surface

of any conductor,
[[Zas ana [[Zas
r r

are by hypothesis equal, each being equal to the given potential of the
conductor on which P lies. Thus
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so that the supposed distribution of density o — ¢’ is such that the potential
vanishes over all the surfaces of the conductors. There can therefore be no
lines of force, so that there can be no charges, t.e., o — ¢’ = 0 everywhere, so
that the two distributions are the same.

And again, if proposition IL is not true, let us suppose that there are
two different distributions o and o’ such that the total charge on each
conductor has the assigned value. A distribution ¢ — o’ now gives zero
as the total charge on each conductor. It follows, as in § 98, that the
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potential of every conductor must be intermediate between the highest and
lowest potentials in the field, a conclusion which is obviously absurd, as
it prevents every conductor from having either the highest or the lowest
potential. It follows that the potentials of all the conductors must be equal,
so that again there can be no lines of force and no charges at any point,
t.e., o =0’ everywhere.

It is clear from this that the dlstrlbutlon of electricity in the field is fully

specified when we know either
(i) the total charge on each conductor,

or (i) the potential of each conductor.

SUPERPOSITION OF EFFECTS.

100. Suppose we have two equilibrium distributions :

(i) A distribution of which the surface density is ¢ at any point,
giving total charges K, E,, ... on the different conductors, and potentials

W ..

(i1) A distribution of surface density ¢/, giving total charges E, E,, ...
and potentials V', V', .

Consider a distribution of surface density o+’ Clearly the total
charges on the conductors will be £, + E\, E, + E,, ..., and if ¥, is the
potential at any point P,

ffezas
r

where the notation is the same as before. If P is on the first conductor,
however, we know that .
[[Zas=7,
r

[[Zas=mw,
T
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