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PREFACE

[TO THE FIRST EDITION]

THERE
is a certain well-defined range in Electromagnetic Theory, which

every student of physics may be expected to have covered, with more
or less of thoroughness, before proceeding to the study of special branches

or developments of the subject. The present book is intended to give the

mathematical theory of this range of electromagnetism, together with the

mathematical analysis required in its treatment.

The range is very approximately that of Maxwell's original Treatise, but

the present book is in many respects more elementary than that of Maxwell.

Maxwell's Treatise was written for the fully-equipped mathematician: the

present book is written more especially for the student, and for the physicist

of limited mathematical attainments.

The questions of mathematical analysis which are treated in the text

have been inserted in the places where they are first needed for the

development of the physical theory, in the belief that, in many cases,

the mathematical and physical theories illuminate one another by being

studied simultaneously. For example, brief sketches of the theories of

spherical, zonal and ellipsoidal harmonics are given in the chapter on

Special Problems in Electrostatics, interwoven with the study of harmonic

potentials and electrical applications: Stokes' Theorem is similarly given

in connection with the magnetic vector-potential, and so on. One result

of this arrangement is to destroy, at least in appearance, the balance of

the amounts of space allotted to the different parts of the subject. For

instance, more than half the book appears to be devoted to Electrostatics,

but this space will, perhaps, not seem excessive when it is noticed how

many of the pages in the Electrostatic part of the book are devoted to

non-electrical subjects in applied mathematics (potential-theory, theory of

stress, etc.), or in pure mathematics (Green's Theorem, harmonic analysis,

complex variable, Fourier's series, conjugate functions, curvilinear coordi-

nates, etc.).
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A number of examples, taken mainly from the usual Cambridge

examination papers, are inserted. These may provide problems for the

mathematical student, but it is hoped that they may also form a sort of

compendium of results for the physicist, shewing what types of problem

admit of exact mathematical solution.

It is again a pleasure to record my thanks to the officials of the

University Press for their unfailing vigilance and help during the printing

of the book.

J. H. JEANS.

PRINCETON,

December, 1907.

[TO THE SECOND EDITION]

The second Edition will be found to differ only very slightly from the

first in all except the last few chapters. The chapter on Electromagnetic

Theory of Light has, however, been largely rewritten and considerably

amplified, and two new chapters appear in the present edition, on the

Motion of Electrons and on the General Equations of the Electromagnetic
Field. These last chapters attempt to give an introduction to the more

recent developments of the subject. They do not aim at anything like

completeness of treatment, even in the small parts of the subjects with

which they deal, but it is hoped they will form a useful introduction to more

complete and specialised works and monographs.

J. H. JEANS.

CAMBRIDGE,

August^ 1911.
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INTRODUCTION

THE THREE DIVISIONS OF ELECTROMAGNETISM

1. THE fact that a piece of amber, on being rubbed, attracted to itself

other small bodies, was known to the Greeks, the discovery of this fact being
attributed to Thales of Miletus (640-548 B.C.). A second fact, namely, that

a certain mineral ore (lodestone) possessed the property of attracting iron,

is mentioned by Lucretius. These two facts have formed the basis from

which the modern science of Electromagnetism has grown. It has been

found that the two phenomena are not isolated, but are insignificant units in

a vast and intricate series of phenomena. To study, and as far as possible

interpret, these phenomena is the province of Electromagnetism. And the

mathematical development of the subject must aim at bringing as large

a number of the phenomena as possible within the power of exact mathe-

matical treatment.

2. The first great branch of the science of Electromagnetism is known

as Electrostatics. The second branch is commonly spoken of as Magnetism,
but is more accurately described as

. Magnetostatics. We may say that
1

Electrostatics has been developed from the single property of amber already

mentioned, and that Magnetostatics has been developed from the single

property of the lodestone. These two branches of Electromagnetism deal

solely with states of rest, not with motion or changes of state, and are

therefore concerned only with phenomena which can be described as statical.

The developments of the two statical branches of Electromagnetism, namely
Electrostatics and Magnetostatics, are entirely independent of one another.

The science of Electrostatics could have been developed if the properties of

the lodestone had never been discovered, and similarly the science of

Magnetostatics could have been developed without any knowledge of the

properties of amber.

The third branch of Electromagnetism, namely, Electrodynamics, deals

with the motion of electricity and magnetism, and it is in the development

of this branch that we first find that the two groups of phenomena of

electricity and magnetism are related to one another. The relation is

j. 1



2 Introduction

a reciprocal relation: it is found that magnets in motion produce the same

effects as electricity at rest, while electricity in motion produces the same

effects as magnets at rest. The third division of Electromagnetism, then,

connects the two former divisions of Electrostatics and Magnetostatics, and

is in a sense symmetrically placed with regard to them. Perhaps we may
compare the whole structure of Electromagnetism to an arch made of three

stones. The two side stones can be placed in position independently, neither

in any way resting on the other, but the third cannot be placed in position

until the two side stones are securely fixed. The third stone rests equally

on the two other stones and forms a connection between them.

3. In the present book, these three divisions will be developed in the

order in which they have been mentioned. The mathematical theory will be

identical, as regards the underlying physical ideas, with that given by
Maxwell in his Treatise on Electricity and Magnetism, and in his various

published papers. The principal peculiarity which distinguished Maxwell's

mathematical treatment from that of all writers who had preceded him, was

his insistence on Faraday's conception of the energy as residing in the

medium. On this view, the forces acting on electrified or magnetised bodies

do not form the whole system of forces in action, but serve only to reveal

to us the presence of a vastly more intricate system of forces, which act

at every point of the ether by which the material bodies are surrounded.

It is only through the presence of matter that such a system of forces can

become perceptible to human observation, so that we have to try to

construct the whole system of forces from no data except those given by the

resultant effect of the forces on matter, where matter is present. As might
be expected, these data are not sufficient to give us full and definite knowledge
of the system of ethereal forces

;
a great number of systems of ethereal

forces could be constructed, each of which would produce the same effects on

matter as are observed. Of these systems, however, a single one seems so

very much more probable than any of the others, that it was unhesitatingly

adopted both by Maxwell and by Faraday, and has been followed by all

subsequent workers at the subject.

4. As soon as the step is once made of attributing the mechanical

forces acting on matter to a system of forces acting throughout the whole

ether, a further physical development is made not only possible but also

necessary. A stress in the ether may be supposed to represent either an
electric or a magnetic force, but cannot be both. Faraday supposed a stress

in the ether to be identical with electrostatic force, and the accuracy of this

view has been confirmed by all subsequent investigations. There is now
no possibility, in this scheme of the universe, of regarding magnetostatic
forces as evidence of simple stresses in the ether.
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It has, however, been said that magnetostatic forces are found to be

produced by the motion of electric charges. Now if electric charges at rest

produce simple stresses in the ether, the motion of electric charges must be

accompanied by changes in the stresses in the ether. It is now possible to

identify magnetostatic force with change in the system of stresses in the

ether. This interpretation of magnetic force forms an essential part of

Maxwell's theory. If we compare the ether to an elastic material medium,
we may say that the electric forces must be interpreted as the statical

pressures and strains in the medium, which accompany the compression,
dilatation or displacement of the medium, while magnetic forces must be

interpreted as the pressures and strains in the medium caused by the motion

and momentum of the medium. Thus electrostatic energy must be regarded
as the potential energy of the medium, while magnetic energy is regarded as

kinetic energy. Maxwell has shewn that the whole series of electric and

magnetic phenomena may without inconsistency be interpreted as phenomena

produced by the motion of a medium, this motion being in conformity with

the laws of dynamics. More recently, Larmor has shewn how an imaginary
medium can actually be constructed, which shall produce all these phenomena

by its motion.

The question now arises : If magnetostatic forces are interpreted as

motion of the medium, what properties are we to assign to the magnetic
bodies from which these magnetostatic forces originate ? An answer sug-

gested by Ampere and Weber needs but little modification to represent the

answer to which modern investigations have led. Recent experimental
researches shew that all matter must be supposed to consist, either partially

or entirely, of electric charges. This being so, the kinetic theory of matter

tells us that these charges will possess a certain amount of motion. Every-

thing leads us to suppose that all magnetic phenomena can be explained by
the motion of these charges. If the motion of the charges is governed by a

regularity of a certain kind, the body as a whole will shew magnetic pro-

perties. If this regularity does not obtain, the magnetic forces produced by
the motions of the individual charges will on the whole neutralise one

another, and the body will appear to be non-magnetic. Thus on this view

the electricity and magnetism which at first sight appeared to exist inde-

pendently in the universe, are resolved into electricity alone electricity

and magnetism become electricity at rest and electricity in motion.

This discovery of the ultimate identity of electricity and magnetism is

by no means the last word of the science of Electromagnetism. As far back

as the time of Maxwell and Faraday, it was recognised that the forces at

work in chemical phenomena must be regarded largely if not entirely, as

electrical forces. Later, Maxwell shewed light to be an electromagnetic

12



4 Introduction

phenomenon, so that the whole science of Optics became a branch of

Electromagnetism.

A still more modern view attributes all material phenomena to the action

of forces which are in their nature identical with those of electricity and mag-
netism. Indeed, modern physics tends to regard the universe as a continuous

ocean of ether, in which material bodies are represented merely as peculiarities

in the ether-formation. The study of the forces in this ether must therefore

embrace the dynamics of the whole universe. The study of these forces is

best approached through the study of the forces of electrostatics and magneto-

statics, but does not end until all material phenomena have been discussed

from the point of view of ether forces. In one sense, then, it may be

said that the science of Electromagnetism deals with the whole material

universe.



CHAPTEE I

PHYSICAL PRINCIPLES

THE FUNDAMENTAL CONCEPTIONS OF ELECTROSTATICS

I. State of Electrification of a Body.

5. WE proceed to a discussion of the fundamental conceptions which

form the basis of Electrostatics. The first of these is that of a state of

electrification of a body. When a piece of amber has been rubbed so that it

attracts small bodies to itself, we say that it is in a state of electrification

or, more shortly, that it is electrified.

Other bodies besides amber possess the power of attracting small bodies

after being rubbed, and are therefore susceptible of electrification. Indeed

it is found that all bodies possess this property, although it is less easily

recognised in the case of most bodies, than in the case of amber. For

instance a brass rod with a glass handle, if rubbed on a piece of silk or cloth,

will shew the power to a marked degree. The electrification here resides in

the brass
;

as will be explained immediately, the interposition of glass or

some similar substance between the brass and the hand is necessary in order

that the brass may retain its power for a sufficient time to enable us to

observe it. If we hold the instrument by the brass rod and rub the glass

handle we find that the same power is acquired by the glass.

II. Conductors and Insulators.

6. Let us now suppose that we hold the electrified brass rod in one hand

by its glass handle, and that we touch it with the other hand. We find that

after touching it its power of attracting small bodies will have completely

disappeared. If we immerse it in a stream of water or pass it through a

flame we find the same result. If on the other hand we touch it with

a piece of silk or a rod of glass, or stand it in a current of air, we find

that its power of attracting small bodies remains unimpaired, at any rate

for a time. It appears therefore that the human body, a flame or water
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have the power of destroying the electrification of the brass rod when placed
in contact with it, while silk and glass and air do not possess this property.
It is for this reason that in handling the electrified brass rod, the substance

in direct contact with the brass has been supposed to be glass and not the

hand.

In this way we arrive at the idea of dividing all substances into two

classes according as they do or do not remove the electrification when touch-

ing the electrified body. The class which remove the electrification are

called conductors, for as we shall see later, they conduct the electrification

away from the electrified body rather than destroy it altogether; the class

which allow the electrified body to retain its electrification are called non-

conductors or insulators. The classification of bodies into conductors and

insulators appears to have been first discovered by Stephen Gray (1696-

1736).

At the same time it must be explained that the difference between

insulators and conductors is one of degree only. If our electrified brass rod

were left standing for a week in contact only with the air surrounding it and

the glass of its handle, we should find it hard to detect traces of electrifica-

tion after this time the electrification would have been conducted away by
the air and the glass. So also if we had been able to immerse the rod in a

flame for a billionth of a second only, we might have found that it retained

considerable traces of electrification. It is therefore more logical to speak of

good conductors and bad conductors than to speak of conductors and insula-

tors. Nevertheless the difference between a good and a bad conductor is so

enormous, that for our present purpose we need hardly take into account the

feeble conducting power of a bad conductor, and may without serious incon-

sistency, speak of a bad conductor as an insulator. There is, of course, nothing
to prevent us imagining an ideal substance which has no conducting power
at all. It will often simplify the argument to imagine such a substance,

although we cannot realise it in nature.

It may be mentioned here that of all substances the metals are by very
much the best conductors. Next come solutions of salts and acids, and lastly

as very bad conductors (and therefore as good insulators) come oils, waxes,

silk, glass and such substances as sealing wax, shellac, indiarubber. Gases

under ordinary conditions are good insulators. Indeed it is worth noticing
that if this had not been so, we should probably never have become acquainted
with electric phenomena at all, for all electricity would be carried away by
conduction through the air as soon as it was generated. Flames, however,
conduct well, and, for reasons which will be explained later, all gases become

good conductors when in the presence of radium or of so-called radio-active

substances. Distilled water is an almost perfect insulator, but any other

sample of water will contain impurities which generally cause it to conduct
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tolerably well, and hence a wet body is generally a bad insulator. So also an

electrified body suspended in air loses its electrification much more rapidly in

damp weather than in dry, owing to conduction by water-particles in the air.

When the body is in contact with insulators only, it is said to be

"insulated." The insulation is said to be good when the electrified body
retains its electrification for a long interval of time, and is said to be poor
when the electrification disappears rapidly. Good insulation will enable a

body to retain most of its electrification for some days, while with poor insula-

tion the electrification will last only for a few minutes or seconds.

III. Quantity of Electricity.

7. We pass next to the conception of a definite quantity of electricity,

this quantity measuring the degree of electrification of the body with which

it is associated. It is found that the quantity of electricity associated with

any body remains constant except in so far as it is conducted away by con-

ductors. To illustrate, and to some extent to prove this law, we may use

an instrument known as the gold-leaf electroscope. This consists of a glass

vessel, through the top of which a metal rod is passed, supporting at its lower

end two gold-leaves which under normal conditions hang flat side by side,

touching one another throughout their length. When an electrified body
touches or is brought near to the brass rod, the two gold-leaves are seen to

separate, for reasons which will become clear later ( 21), so that the instru-

ment can be used to examine whether or not a body is electrified.

Let us fix a metal vessel on the top of the brass rod, the vessel being
closed but having a lid through which bodies can be in-

serted. The lid must be supplied with an insulating

handle for its manipulation. Suppose that we have

electrified some piece of matter to make the picture

definite, suppose that we have electrified a small brass

rod by rubbing it on silk and let us suspend this body
inside the vessel by an insulating thread in such a

manner that it does not touch the sides of the vessel.

Let us close the lid of the vessel, so that the vessel

entirely surrounds the electrified body, and note the

amount of separation of the gold-leaves of the electro-

scope. Let us try the experiment any number of times,

placing the electrified body in different positions inside

the closed vessel, taking care only that it does not come

into contact with the sides of the vessel or with any

other conductors. We shall find that in every case the separation of the

gold-leaves is exactly the same.

FIG. 1.
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In this way then, we get the idea of a definite quantity of electrification

associated with the brass rod, this quantity being independent of the position

of the rod inside the closed vessel of the electroscope. We find, further, that

the divergence of the gold-leaves is not only independent of the position of

the rod inside the vessel, but is independent of any changes of state which

the rod may have experienced between successive insertions in the vessel,

provided only that it has not been touched by conducting bodies. We
might for instance heat the rod, or, if it was sufficiently thin, we might
bend it into a different shape, and on replacing it inside the vessel we

should find that it produced exactly the same deviation of the gold-leaves
as before. We may, then, regard the electrical properties of the rod as being
due to a quantity of electricity associated with the rod, this quantity remaining

permanently the same, except in so far as the original charge is lessened by
contact with conductors, or increased by a fresh supply.

8. We can regard the electroscope as giving an indication of the magni-
tude of a quantity of electricity, two charges being equal when they produce
the same divergence of the leaves of the electroscope.

In the same way we can regard a spring-balance as giving an indication

of the magnitude of a weight, two weights being equal when they produce
the same extension of the spring.

The question of the actual quantitative measurement of a quantity of

electricity as a multiple of a specified unit has not yet been touched. We
can, however, easily devise means for the exact quantitative measurement

of electricity in terms of a unit. We can charge a brass rod to any degree
we please, and agree that the charge on this rod is to be taken to be the

standard unit charge. By rubbing a number of rods until each produces

exactly the same divergence of the electroscope as the standard charge, we
can prepare a number of unit charges, and we can now say that a charge is

equal to n units, if it produces the same deviation of the electroscope as

would be produced by n units all inserted in the vessel of the electroscope

at once. This method of measuring an electric charge is of course not one

that any rational being would apply in practice, but the object of the

present explanation is to elucidate the fundamental principles, and not to

give an account of practical methods.

9. Positive and Negative Electricity. Let us suppose that we insert in

the vessel of the electroscope the piece of silk on which one of the brass

rods has been supposed to have been rubbed in order to produce its unit

charge. We shall find that the silk produces a divergence of the leaves of

the electroscope, and further that this divergence is exactly equal to that

which is produced by inserting the brass rod alone into the vessel of the

electroscope. If, however, we insert the brass rod and the silk together into

the electroscope, no deviation of the leaves can be detected.
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Again, let us suppose that we charge a brass rod A with a charge which

the divergence of the leaves shews to be n units. Let us rub a second brass

rod B with a piece of silk C until it has a charge, as indicated by the electro-

scope, of m units, m being smaller than n. If we insert the two brass rods

together, the electroscope will, as already explained, give a divergence corre-

sponding to n + m units. If, however, we insert the rod A and the silk C

together, the deviation will be found to correspond to n m units.

In this way it is found that a charge of electricity must be supposed to

have sign as well as magnitude. As a matter of convention, we agree to

speak of the m units of charge on the silk as m positive units, or more briefly

as a charge + m, while we speak of the charge on the brass as m negative

units, or a charge m.

10. Generation of Electricity. It is found to be a general law that, on

rubbing two bodies which are initially uncharged, equal quantities of positive

and negative electricity are produced on the two bodies, so that the total

charge generated, measured algebraically, is nil.

We have seen that the electroscope does not determine the sign of the

charge placed inside the closed vessel, but only its magnitude. We can,

however, determine both the sign and magnitude by two observations. Let

us first insert the charged body alone into the vessel. Then if the divergence
of the leaves corresponds to m units, we know that the charge is either + vn>

or m, and if we now insert the body in company with another charged body,

of which the charge is known to be + n, then the charge we are attempting
to measure will be +ra or m according as the divergence of the leaves

indicates n + m or n^m units. With more elaborate instruments to be

described later (electrometers) it is possible to determine both the magnitude
and sign of a charge by one observation.

11. If we had rubbed a rod of glass, instead of one of brass, on the silk,

we should have found that the silk had a negative charge, and the glass of

course an equal positive charge. It therefore appears that the sign of the

charge produced on a body by friction depends not only on the nature of the

body itself, but also on the nature of the body with which it has been

rubbed.

The following is found to be a general law : If rubbing a substance A on

a second substance B charges A positively and B negatively, and if rubbing
the substance B on a third substance C charges B positively and C negatively,

then rubbing the substance A on the substance G will charge A positively

and G negatively.

It is therefore possible to arrange any number of substances in a list such

that a substance is charged with positive or negative electricity when rubbed
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with a second substance, according as the first substance stands above or

below the second substance on the list. The following is a list of this kind,

which includes some of the most important substances :

Cat's skin, Glass, Ivory, Silk, Rock crystal, The Hand, Wood, Sulphur,

Flannel, Cotton, Shellac, Caoutchouc, Resins, Guttapercha, Metals, Guncotton.

A substance is said to be electropositive or electronegative to a second

substance according as it stands above or below it on a list of this kind.

Thus of any pair of substances one is always electropositive to the other, the

other being electronegative to the first. Two substances, although chemically

the same, must be regarded as distinct for the purposes of a list such as the

above, if their physical conditions are different
;
for instance, it is found that

a hot body must be placed lower on the list than a cold body of the same

chemical composition.

IV. Attraction and Repulsion of Electric Charges.

12. A small ball of pith, or some similarly light substance, coated with

gold-leaf and suspended by an insulating thread, forms a convenient instru-

ment for investigating the forces, if any, which are brought into play by the

presence of electric charges. Let us electrify a pith ball of this kind positively

and suspend it from a fixed point. We shall find that when we bring a

second small body charged with positive electricity near to this first body
the two bodies tend to repel one another, whereas if we bring a negatively

charged body near to it, the two bodies tend to attract one another. From
this and similar experiments it is found that two small bodies charged with

electricity of the same sign repel one another, and that two small bodies

charged with electricity of different signs attract one another.

This law can be well illustrated by tying together a few light silk threads

by their ends, so that they form a tassel, and allowing the threads to hang
vertically. If we now stroke the threads with the hand, or brush them with

a brush of any kind, the threads all become positively electrified, and there-

fore repel one another. They consequently no longer hang vertically but

spread themselves out into a cone. A similar phenomenon can often be

noticed on brushing the hair in dry weather. The hairs become positively
electrified and so tend to stand out from the head.

13. On shaking up a mixture of powdered red lead and yellow sulphur,
the particles of red lead will become positively electrified, and those of the

sulphur will become negatively electrified, as the result of the friction which
has occurred between the two sets of particles in the shaking. If some of

this powder is now dusted on to a positively electrified body, the particles of

sulphur will be attracted and those of red lead repelled. The red lead will

therefore fall off, or be easily removed by a breath of air, while the sulphur
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particles will be retained. The positively electrified body will therefore

assume a yellow colour on being dusted with the powder, and similarly a

negatively electrified body would become red. It may sometimes be con-

venient to use this method of determining whether the electrification of a

body is positive or negative.

14. The attraction and repulsion of two charged bodies is in many
respects different from the force between one charged and one uncharged

body. The latter force, as we have explained, was known to the Greeks : it

must be attributed, as we shall see, to what is known as "electric induction,"

and is invariably attractive. The forces between two bodies both of which

are charged, forces which may be either attractive or repulsive, seem hardly
to have been noticed until the eighteenth century.

The observations of Robert Symmer (1759) on the attractions and

repulsions of charged bodies are at least amusing. He was in the habit

of wearing two pairs of stockings simultaneously, a worsted pair for comfort

and a silk pair for appearance. In pulling off his stockings he noticed that

they gave a crackling noise, and sometimes that they even emitted sparks

when taken off in the dark. On taking the two stockings off together from

the foot and then drawing the one from inside the other, he found that both

became inflated so as to reproduce the shape of the foot, and exhibited

attractions and repulsions at a distance of as much as a foot and a half.

" When this experiment is performed with two black stockings in one

hand, and two white in the other, it exhibits a very curious spectacle ;
the

repulsion of those of the same colour, and the attraction of those of different-

colours, throws them into an agitation that is not unentertaining, and

makes them catch each at that of its opposite colour, and at a greater

distance than one would expect. When allowed to come together they all

unite in one mass. When separated, they resume their former appearance,

and admit of the repetition of the experiment as often as you please, till

their electricity, gradually wasting, stands in need of being recruited."

The Law of Force between charged Particles.

15. The Torsion Balance. Coulomb (1785) devised an instrument known

as the Torsion Balance, which enabled him not only to verify the laws of

attraction and repulsion qualitatively, but also to form an estimate of the

actual magnitude of these forces.

The apparatus consists essentially of two light balls A , (7, fixed at the two

ends of a rod which is suspended at its middle point B by a very fine thread

of silver, quartz or other material. The upper end of the thread is fastened

to a movable head D, so that the thread and the rod can be made to

rotate by screwing the head. If the rod is acted on only by its weight, the



12 Electrostatics Physical Principles [CH. I

condition for equilibrium is obviously that there shall be no torsion in

the thread. If, however, we fix a third small ball E in the same plane as

the other two, and if the three balls are elec-

trified, the forces between the fixed ball and

the movable ones will exert a couple on the

moving rod, and the condition for equilibrium
is that this couple shall exactly balance that

due to the torsion. Coulomb found that the

couple exerted by the torsion of the thread

was exactly proportional to the angle through
which one end of the thread had been turned

relatively to the other, and in this way was

enabled to measure his electric forces. In

Coulomb's experiments one only of the two

movable balls was electrified, the second serv-

ing merely as a counterpoise, and the fixed

ball was at the same distance from the torsion

thread as the two movable balls.
FIG. 2.

Suppose that the head of the thread is

turned to such a position that the balls when uncharged rest in equilibrium,

just touching one another without pressure. Let the balls receive charges

e, e', and let the repulsion between them result in the bar turning through
an angle 0. The couple exerted on the bar by the torsion of the thread

is proportional to 0, and may therefore be taken to be K&. If a is the

radius of the circle described by the movable ball, we may regard the couple

acting on the rod from the electric forces as made up of a force F, equal

to the force of repulsion between the two balls, multiplied by a cos \Q,

the arm of the moment. The condition for equilibrium is accordingly

Let us now suppose that the torsion head is turned through an angle <f>

in such a direction as to make the two charged balls approach each other
;

after the turning has ceased, let us suppose that the balls are allowed to

come to rest. In the new position of equilibrium, let us suppose that the

two charged balls subtend an angle 6' at the centre, instead of the former

angle 6. The couple exerted by the torsion thread is now K (0* + </>),
so that

if Ff

is the new force of repulsion we must have /

aF' cos 10' = K (O
f + <).

By observing the value of
</> required to give definite values to 6' we can

calculate values of F' corresponding to any series of values of 6'. From a

series of experiments of this kind it is found that so long as the charges on

the two balls remain the same, F' is proportional to cosec2

-J0', from which
it is easily seen to follow that the force of repulsion varies inversely as the
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square of the distance. And when the charges on the two balls are varied

it is found that the force varies as the product of the two charges, so long as

their distance apart remains the same. As the result of a series of experi-

ments conducted in this way Coulomb was able to enunciate the law :

The force between two small charged bodies is proportional to the product

of their charges, and is inversely proportional to the square of their distance

apart, the force being one of repulsion or attraction according as the two

charges are of the same or of opposite kinds.

16. In mathematical language we may say that there is a force of repul-

sion of amount

a)

where e, e are the charges, r their distance apart, and c is a positive

constant.

If e
} e are of opposite signs the product ee

f

is negative, and a negative

repulsion must be interpreted as an attraction.

Although this law was first published by Coulomb, it subsequently

appeared that it had been discovered at an earlier date by Cavendish,

whose experiments were much more refined than those of Coulomb. Caven-

dish was able to satisfy himself that the law was certainly intermediate

between the inverse 2 + -^ and 2 -g^th power of the distance (see below,

46 48). Unfortunately his researches remained unknown until his

manuscripts were published in 1879 by Clerk Maxwell.

The experiments of Coulomb and Cavendish, it need hardly be said,

were very rough compared with those which are rendered possible by modern

refinements of theory and practice, so that these experiments are no longer
the justification for using the law expressed by formula (1) as the basis of

the Mathematical Theory of Electricity. More delicate experiments with the

apparatus used by Cavendish, which will be explained later, have, however,

been found to give a complete confirmation of Coulomb's Law, so long as

the charged bodies may both be regarded as infinitely small compared with

their distance apart. Any deviation from the law of Coulomb must accord-

ingly be attributed to the finite sizes of the bodies which carry the charges.

As it is only in the case of infinitely small bodies that the symbol r of

formula (1) has had any meaning assigned to it, we may regard the law (1)

as absolutely true, at any rate so long as r is large enough to be a measurable

quantity.
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The Unit of Electricity.

17. The law of Coulomb supplies us with a convenient unit in which

to measure electric charges.

The unit of mass, the pound or gramme, is a purely arbitrary unit, and

all quantities of mass are measured simply by comparison with this unit.

The same is true of the unit of space. If it were possible to keep a charge
of electricity unimpaired through all time we might take an arbitrary charge

of electricity as standard, and measure all charges by comparison with this

one standard charge, in the way suggested in 8. As it is not possible to do

this, we find it convenient to measure electricity with reference to the units

of mass, length and time of which we are already in possession, and Coulomb's

Law enables us to do this. We define as the unit charge a charge such that

when two unit charges are placed one on each of two small particles at

a distance of a centimetre apart, the force of repulsion between the particles

is one dyne. With this definition it is clear that the quantity c in the

formula (1) becomes equal to unity, so long as the C.G.S. system of units

is used.

In a similar way, if the mass of a body did not remain constant, we might
have to define the unit of mass with reference to those of time and length

by saying that a mass is a unit mass provided that two such masses, placed
at a unit distance apart, produce in each other by their mutual gravitational

attraction an acceleration of a centimetre per second per second. In this

case we should have the gravitational acceleration f given by an equation
of the form

/-,: (2),

and this equation would determine the unit of mass.

18. Physical dimensions. If the unit of mass were determined by

equation (2), m would appear to have the dimensions of an acceleration

multiplied by the square of a distance, and therefore dimensions

Z3T~2
.

As a matter of fact, however, we know that mass is something entirely apart
from length and time, except in so far as it is connected with them through
the law of gravitation. The complete gravitational acceleration is given by

, m
f=V^>

where 7 is the so-called
"
gravitation constant."

By our proposed definition of unit mass we should have made the value

of 7 numerically equal to unity ; but its physical dimensions are not those of
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a mere number, so that we cannot neglect the factor 7 when equating

physical dimensions on the two sides of the equation.

So also in the formula

*- ....................................(3)

we can and do choose our unit of charge in such a way that the numerical

value of c is unity, so that the numerical equation becomes

but we must remember that the factor c still retains its physical dimensions.

Electricity is something entirely apart from mass, length and time, arid it

follows that we ought to treat the dimensions of equation (3), by introducing
a new unit of electricity E and saying that c is of the dimensions of a force

divided by E*/r* and therefore of dimensions

ML*JS-*T-*.

If, however, we compare dimensions in equation (4), neglecting to take

account of the physical dimensions of the suppressed factor c, it appears as

though a charge of electricity can be expressed in terms of the units of

mass, length and time, just as it might appear from equation (2) as though
a mass could be expressed in terms of the units of length and time. The

apparent dimensions of a charge of electricity are now

.................................... (5).

It will be readily understood that these dimensions are merely apparent
and not in any way real, when it is stated that other systems of units are

also in use, and that the apparent physical dimensions of a charge of

electricity are found to be different in the different systems of units. The

system which we have just described, in which the unit is defined as

the charge which makes c numerically equal to unity in equation (3), is

known as the Electrostatic system of units.

There will be different electrostatic systems of units corresponding to

different units of length, mass and time. In the C.G.S. system these units

are taken to be the centimetre, gramme and second. In passing from one

system of units to another the unit of electricity will change as if it were

a physical quantity having dimensions M^L^-T"1
,
so long as we hold to the

agreement that equation (4) is to be numerically true, i.e. so long as the

units remain electrostatic. This gives a certain importance to the apparent

dimensions of the unit of electricity, as expressed in formula (5).
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V. Electrification by Induction.

19. Let us suspend a metal rod by insulating supports. Suppose that

the rod is originally uncharged, and that we bring a small body charged
with electricity near to one end of the rod, without allowing the two bodies

to touch. We shall find on sprinkling the rod with electrified powder of the

kind previously described ( 13), that the rod is now electrified, the signs of

the charges at the two ends being different. This electrification is known as

electrification by induction. We speak of the electricity on the rod as an

induced charge, and that on the originally electrified body as the inducing or

exciting charge. We find that the induced charge at the end of the rod

nearest to the inducing charge is of sign opposite to that of the inducing

charge, that at the further end of the rod being of the same sign as the

inducing charge. If the inducing charge is removed to a great distance

from the rod, we find that the induced charges disappear completely, the rod

resuming its original unelectrified state.

If the rod is arranged so that it can be divided into two parts, we can

separate the two parts before removing the inducing charge, and in this way
can retain the two parts of the induced charge for further examination.

If we insert the two induced charges into the vessel of the electroscope,

we find that the total electrification is nil : in generating electricity by
induction, as in generating it by friction, we can only generate equal

quantities of positive and negative electricity; we cannot alter the algebraic

total charge. Thus the generation of electricity by induction is in no way
a violation of the law that the total charge on a body remains unaltered

except in so far as it is removed by conduction.

20. If the inducing charge is placed on a sufficiently light conductor, we
notice a violent attraction between it and the rod which carries the induced

charge. This, however, as we shall now shew, is only in accordance with

Coulomb's Law. Let us, for the sake of argument, suppose that the

inducing charge is a positive charge e. Let us divide up that part of the

ABC_C' B'A'
( 1

FIG. 3.

rod which is negatively charged into small parts AB, BC, ...
, beginning from

the end A which is nearest to the inducing charge /, in such a way that each

part contains the same small charge e, of negative electricity. Let us

similarly divide up the part of the rod which is positively charged into
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sections A 'B', B'C', ...
, beginning from the further end, and such that each of

these parts contains a charge + e of positive electricity. Since the total

induced charge is zero, the number of positively charged sections A'B',

B'C', ... must be exactly equal to the number of negatively charged sections

AB, BC, .... The whole series of sections can therefore be divided into a

series of pairs
AB and A'B'

;
BG and B'C'

\
etc.

such that the two sections of any pair contain equal and opposite charges.
The charge on A'B' being of the same sign as the inducing charge e, repels

the body / which carries this charge, while the charge on AB, being of the

same sign as the charge on I, attracts /. Since AB is nearer to I than A'B',

it follows from Coulomb's Law that the attractive force ee/r
2 between AB

and / is numerically greater than the repulsive force ee/r
2 between A'B' and

/, so that the resultant action of the pair of sections AB, A'B' upon 7 is an

attraction. Obviously a similar result is true for every other pair of sections,

so that we arrive at the result that the whole force between the two bodies

is attractive.

This result fully accounts for the fundamental property of a charged body
to attract small bodies to which no charge has been given. The proximity of

the charged body induces charges of different signs on those parts of the body
which are nearer to, and further away from, the inducing charge, and although
the total induced charge is zero, yet the attractions will always outweigh the

repulsions, so that the resultant force is always one of attraction.

21. The same conceptions explain the divergence of the gold-leaves of

the electroscope which occurs when a charged body is brought near to the

plate of the electroscope or introduced into a closed vessel standing on this

plate. All the conducting parts of the electroscope gold-leaves, rod, plate

and vessel if any may be regarded as a single conductor, and of this the

gold-leaves form the part furthest removed from the charged body. The

leaves accordingly become charged by induction with electricity of the same

sign as that of the charged body, and as the charges on the two gold-leaves

are of similar sign, they repel one another.

22. On separating the two parts of a conductor while an induced charge

is on it, and then removing both from the influence of the induced charge,

we gain two charges of electricity without any diminution of the inducing

charge. We can store or utilise these charges in any way and on replacing

the two parts of the conductor in position, we shall again obtain an induced

charge. This again may be utilised or stored, and so on indefinitely. There

is therefore no limit to the magnitude of the charges which can be obtained

from a small initial charge by repeating the process of induction.

This principle underlies the action of the Electrophorus. A cake of resin

is electrified by friction, and for convenience is placed with its electrified

j. 2
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surface uppermost on a horizontal table. A metal disc is held by an insulating

handle parallel to the cake of resin and at a slight distance above it. The

operator then touches the upper surface of the disc with his finger. When

the process has reached this stage, the metal disc, the body of the operator

and the earth itself form one conductor. The negative electricity on the resin

induces a positive charge on the nearer parts of this conductor primarily

on the metal disc and a negative charge on the more remote parts of the

conductor the further region of the earth. When the operator removes

his finger, the disc is left insulated and in possession of a positive charge.

As already explained, this charge may be used and the process repeated

indefinitely.

In all its essentials, the principle utilised in the generation of electricity

by the " influence machines
"
of Voss, Holtz, Wimshurst and others is identical

with that of the electrophorus. The machines are arranged so that by the

turning of a handle, the various stages of the process are repeated cyclically

time after time.

23. Electric Equilibrium. Returning to the apparatus illustrated in

fig. 3, p. 16, it is found that if we remove the inducing charge without

allowing the conducting rod to come into contact with other conductors,

the charge on the rod disappears gradually as the inducing charge recedes,

positive and negative electricity combining in equal quantities and neutral-

ising one another. This shews that the inducing charge must be supposed
to act upon the electricity of the induced charge, rather than upon the

matter of the conductor. Upon the same principle, the various parts of the

induced charge must be supposed to act directly upon one another. Moreover,

in a conductor charged with electricity at rest, there is no reaction between

matter and electricity tending to prevent the passage of electricity through
the conductor. For if there were, it would be possible for parts of the induced

charge to be retained, after the inducing charge had been removed, the parts

of the induced charge being retained in position by their reaction with the

matter of the conductor. Nothing of this kind is observed to occur. We
conclude then that the elements of electrical charge on a conductor are each

in equilibrium under the influence solely of the forces exerted by the remaining
elements of charge.

24. An exception occurs when the electricity is actually at the surface

of the conductor. Here there is an obvious reaction between matter and

electricity the reaction which prevents the electricity from leaving the

surface of the conductor. Clearly this reaction will be normal to the surface,

so that the forces acting upon the electricity in directions which lie in the

tangent plane to the surface must be entirely forces from other charges of

electricity, and these must be in equilibrium. To balance the action of the

matter on the electricity there must be an equal and opposite reaction of
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electricity on matter. This, then, will act normally outwards at the surface of

the conductor. Experimentally it is best put in evidence by the electrification

of soap-bubbles. A soap-bubble when electrified is observed to expand, the

normal reaction between electricity and matter at its surface driving the

surface outwards until equilibrium is reestablished (see below, 94).

25. Also when two conductors of different material are placed in con-

tact, electric phenomena are found to occur which have been explained by
Helmholtz as the result of the operation of reactions between electricity and

matter at the surfaces of the conductors. Thus, although electricity can pass

quite freely over the different parts of the same conductor, it is not strictly

true to say that electricity can pass freely from one conductor to another of

different material with which it is in contact. Compared, however, with the

forces with which we shall in general be dealing in electrostatics, it will be

legitimate to disregard entirely any forces of the kind just described. We
shall therefore neglect the difference between the materials of different con-

ductors, so that any number of conductors placed in contact may be regarded
as a single conductor.

THEORIES TO EXPLAIN ELECTRICAL PHENOMENA.

26. One-fluid Theory. Franklin, as far back as 1751, tried to include

all the electrical phenomena with which he was acquainted in one simple

explanation. He suggested that all these phenomena could be explained by

supposing the existence of an indestructible
"
electric fluid," which could be

associated with matter in different degrees. Corresponding to the normal

state of matter, in which no electrical properties are exhibited, there is

a definite normal amount of "electric fluid." When a body was charged
with positive electricity, Franklin explained that there was an excess of

"electric fluid" above the normal amount, and similarly a charge of negative

electricity represented a deficiency of electric fluid. The generation of equal

quantities of positive and negative electricity was now explained: for instance,

in rubbing two bodies together we simply transfer
"
electric fluid

"
from one

to the other. To explain the attractions and repulsions of electrified bodies,

Franklin supposed that the particles of ordinary matter repelled one another,

while attracting the "electric fluid." In the normal state of matter the

quantities of "
electric fluid

"
and ordinary matter were just balanced, so that

there was neither attraction nor repulsion between bodies in the normal state.

According to a later modification of the theory the attractions just out-balanced

the repulsions in the normal state, the residual force accounting for gravitation.

27. Two-fluid Theory. A further attempt to explain electric phenomena
was made by the two-fluid theory. In this there were three things concerned,

ordinary matter and two electric fluids positive and negative. The degree
of electrification was supposed to be the measure of the excess of positive

22
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electricity over negative, or of negative over positive, according to the sign

of the electrification. The two kinds of electricity attracted and repelled,

electricities of the same kind repelling, and of opposite kinds attracting, and

in this way the observed attractions and repulsions of electrified bodies were

explained without having recourse to systems of forces between electricity

and ordinary matter. It is, however, obvious that the two-fluid theory was

too elaborate for the facts. On this theory ordinary matter devoid of both

kinds of electricity would be physically different from matter possessing

equal quantities of the two kinds of electricity, although both bodies would

equally shew an absence of electrification. There is no evidence that it is

possible to establish any physical difference of this kind between totally

unelectrified bodies, so that the two-fluid theory must be dismissed as

explaining more than there is to be explained.

28. Modern view of Electricity. The two theories which have just been

mentioned rested on no experimental evidence except such as is required

to establish the phenomena with which they are directly concerned. The

modern view of electricity, on the other hand, is based on an enormous mass

of experimental evidence, to which contributions are made, not only by the

phenomena of electrostatics, but also by the phenomena of almost every

branch of physics and chemistry. The modern explanation of electricity is

found to bear a very close resemblance to the older explanation of the one-

fluid theory so much so that it will be convenient to explain the modern

view of electricity simply by making the appropriate modifications of the

one-fluid theory.

We suppose the "electric-fluid" of the one-fluid theory replaced by a

crowd of small particles
"
electrons," it will be convenient to call them all

exactly similar, and each having exactly the same charge of negative electricity

permanently attached to it. The electrons are almost unthinkably small
; the

mass of each is about 8 x 10~28

grammes, so that about as many would be

required to make a gramme as would be required of cubic centimetres to make

a sphere of the size of our earth. The charge of an electron is enormously

large compared with its mass the charge of each being about 4'5 x 10~10

in electrostatic units, so that a gramme of electrons would carry a charge

equal to about 5*6 x 1017 electrostatic units. To form some conception of the

intense degree of electrification represented by these data, it may be noticed

that two grammes of electrons, if placed at a distance of a metre apart, would

repel one another with a force equal to the weight of about 3'2 x 1022 tons.

Thus the electric force outweighs the gravitational force in the ratio of about

5 x 1042 to 1.

A piece of ordinary matter in its unelectrified state contains a certain

number of electrons of this kind, and this number is just such that two

pieces of matter each in this state exert no electrical forces on one another
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this condition in fact defines the unelectrified state. A piece of matter

appears to be charged with negative or positive electricity according as the

number of negatively-charged electrons it possesses is in excess or defect of

the number it would possess in its unelectrified state.

Three important consequences follow from these facts.

In the first place it is clear that we cannot go on dividing a charge of

electricity indefinitely a natural limit is imposed as soon as we come to the

charge of one electron, just as in chemistry we suppose a natural limit to be

imposed on the divisibility of matter as soon as we come to the mass of an

atom. The modern view of electricity may then be justly described as an
" atomic

"
view. And of all the experimental evidence which supports this

view none is more striking than the circumstance that these "atoms"

continually reappear in experiments of the most varied kinds, and that the

atomic charge of electricity appears always to be precisely the same.

In the second place, the process of charging an ordinary piece of matter

with positive electricity consists simply in removing some of its electrons

Thus matter without electrons must possess the properties of positive charges
of electricity, but it is not at present known how these properties are to be

accounted for. The origin of negative electric forces
(i.e., forces which repel

a negatively-charged particle) must be looked for in electrons, but the origin

of positive electric forces remains unknown.

In the third place, in charging a body with electricity we either add to or

subtract from its mass according as we charge it with negative electricity

(i.e., add to it a number of electrons), or charge it with positive electricity

(i.e., remove from it a number of electrons). Since the mass of an electron is

so minute in comparison with the charge it carries, it will readily be seen

that the change in its mass is very much too small to be perceptible by any
methods of measurement which are at our disposal. Maxwell mentions, as

an example of a body possessing an electric charge large compared with its

mass, the case of a gramme of gold, which may be beaten into a gold-leaf one

square metre in area, and can, in this state, hold a charge of 60,000 electro-

static units of negative electricity. The mass of the number of negatively

electrified electrons necessary to carry this charge will be found, as the result

of a brief calculation from the data already given, to be about 10~13

grammes.
The change of weight by electrification is therefore one which it is far

beyondj
the power of the most sensitive balance to detect.

On this view of electricity, the electrons must repel one another, and

must be attracted by matter which is devoid of electrons, or in which there is

a deficiency of electrons. The electrons move about freely through conductors,

but not through insulators. The reactions which, as we have seen, must be

supposed to occur at the surface of charged conductors between " matter
"
and

"
electricity," can now be interpreted simply as systems of forces between the
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electrons and the remainder of the matter. Up to a certain extent these

forces will restrain the electrons from leaving the conductor, but if the electric

forces acting on the electrons exceed a certain limit, they will overcome the

forces acting between the electrons and the remainder of the conductor, and

an electric discharge takes place from the surface of the conductor.

Thus an essential feature of the modern view of electricity is that it

regards the flow of electricity as a material flow of charged electrons. Good

conductors and good insulators are now seen to mean simply ^substances in

which the electrons move with extreme ease and extreme difficulty re-

spectively. The law that equal quantities of positive and negative electricity

are generated simultaneously means that electrons may flow about, but

cannot be created or annihilated.

The modern view enables us also to give a simple physical interpretation

to the phenomenon of induction. A positive charge placed near a conductor

will attract the electrons in the conductor, and these will flow through the

conductor towards the charge until electrical equilibrium is established.

There will be then an excess of negative electrons in the regions near the

positive charge, and this excess will appear as an induced negative charge.

The deficiency of electrons in the more remote parts of the conductor will

appear as an induced positive charge. If the inducing charge is negative,

the flow of electrons will be in the opposite direction, so that the signs of the

induced charges will be reversed. In an insulator, no flow of electrons can

take place, so that the phenomenon of electrification by induction does not

occur.

On this view of electricity, negative electricity is essentially different in

its nature from positive electricity : the difference is something more funda-

mental than a mere difference of sign. Experimental proof of this difference

is not wanting, e.g.,
a sharply pointed conductor can hold a greater charge of

positive than of negative electricity before reaching the limit at which a

discharge begins to take place from its surface. But until we come to those

parts of electric theory in which the flow of electricity has to be definitely

regarded as a flow of electrons, this essential difference between positive and

negative electricity will not appear, and the difference between the two will

be adequately, represented by a difference of sign.

SUMMARY.

29. It will be useful to conclude the chapter by a summary of the

results which are arrived at by experiment, independently of all hypotheses
as to the nature of electricity.

These have been stated by Maxwell in the form of laws, as follows :

Law I. The total electrification of a body, or system of bodies,

remains always the same, except in so far as it receives electrification

from or gives electrification to other bodies.
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Law II. When one body electrifies another by conduction, the

total electrification of the two bodies remains the same
;
that is, the

one loses as much positive or gains as much negative electrification as

the other gains of positive or loses of negative electrification.

Law III. When electrification is produced by friction, or by any
other known method, equal quantities of positive and negative electrifi-

cation are produced.

Definition. The electrostatic unit of electricity is that quantity of

positive electricity which, when placed at unit distance from an equal

quantity, repels it with unit of force.

Law IV. The repulsion between two small bodies charged respect-

ively with e and e
r

units of electricity is numerically equal to the

product of the charges divided by the square of the distance.

These are the forms in which the laws are given by Maxwell. Law I, it

will be seen, includes II and III. As regards the Definition and Law IV,

it is necessary to specify the medium in which the small bodies are placed,

since, as we shall see later, the force is different when the bodies are in air,

or in a vacuum, or surrounded by other non-conducting media. It is usual

to assume, for purposes of the Definition and Law IV, that the bodies are in

air. For strict scientific exactness, we ought further to specify the density,

the temperature, and the exact chemical composition of the air. Also we

have seen that when the electricity is not insulated on small bodies, but is

free to move on conductors, the forces of Law IV must be regarded as acting

on the charges of electricity themselves. WT
hen the electricity is not free to

move, there is an action and reaction between the electricity and matter, so

that the forces which really act on the electricity appear to act on the bodies

themselves which carry the charges.
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CHAPTER II

THE ELECTROSTATIC FIELD OF FORCE

CONCEPTIONS USED IN THE SURVEY OF A FIELD OF FORCE

I. The Intensity at a point.

30. THE space in the neighbourhood of charges of electricity, considered

with reference to the electric phenomena occurring in this space, is spoken of

as the electric field.

A new charge of electricity, placed at any point in an electric field,

will experience attractions or repulsions from all the charges in the field.

The introduction of a new charge will in general disturb the arrangement
of the charges on all the conductors in the field by a process of induction.

If, however, the new charge is supposed to be infinitesimal, the effects of

induction will be negligible, so that the forces acting on the new charge may
be supposed to arise from the charges of the original field.

Let us suppose that we introduce an infinitesimal charge e on an infinitely

small conductor. Any charge ^ in the field at a distance r-^ from the point

will repel the charge with a force eejr-f. The charge e will experience a

similar repulsion from every charge in the field, so that each repulsion will be

proportional to e.

The resultant of these forces, obtained by the usual rules for the com-

position of forces, will be a force proportional to e say a force Re in some

direction OP. We define the electric intensity at to be a force of which

the magnitude is R, and the direction is OP. Thus

The electric intensity at any point is given, in magnitude and direction, by
the force per unit charge which would act on a charged particle placed at this

point, the charge on the particle being supposed so small that the distribution

of electricity on the conductors in the field is not affected by its presence.

The electric intensity at 0, defined in this way, depends only on the

permanent field of force, and has nothing to do with the charge, or the size,

or even the existence of the small conductor which has been used to explain
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the meaning of the electric intensity. There will be a definite intensity at

every point of the electric field, quite independently of the presence of small

charged bodies.

A small charged body might, however, conveniently be used for exploring

the electric field and determining experimentally the direction of the electric

intensity at any point in the field. For if we suppose the body carrying a

charge e to be held by an insulating thread, both the body and thread being
so light that their weights may be neglected, then clearly all the forces

acting on the charged body may be reduced to two:

(i) A force Re in the direction of the electric intensity at the point

occupied by e,

(ii) the tension of the thread acting along the thread.

For equilibrium these two forces must be equal and opposite. Hence the

direction of the intensity at the point occupied by the small charged body is

obtained at once by producing the direction of the thread through the charged

body. And if we tie the other end of the thread to a delicate spring balance,

we can measure the tension of the spring, and since this is numerically equal
to Re, we should be able to determine R if e were known. We might in

this way determine the magnitude and direction of the electric intensity at

any point in the field.

In a similar way, a float at the end of a fishing-line might be used to determine the

strength and direction of the current at any point on a small lake. And, just as with the

electric intensity, we should only get the true direction of the current by supposing the

float to be of infinitesimal size. We could not imagine the direction of the current

obtained by anchoring a battleship in the lake, because the presence of the ship would

disturb the whole system of currents.

II. Lines of Force.

31. Let us start at any point in the electric field, and move a short

distance OP in the direction of the electric intensity at 0. Starting from P
let us move a short distance PQ in the direction of the intensity at P,

Q

FIG. 4.

and so on. In this way we obtain a broken path OPQR..., formed of

a number of small rectilinear elements. Let us now pass to the limiting

case in which each of the elements OP, PQ, QR, ... is infinitely small.

The broken path becomes a continuous curve, and it has the property that

at every point on it the electric intensity is in the direction of the tangent
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to the curve at that point. Such a curve is called a Line of Force. We

may therefore define a line of force as follows :

A line of force is a curve in the electric field, such that the tangent at every

point is in the direction of the electric intensity at that point.

If we suppose the motion of a charged particle to be so much retarded by frictional

resistance that it cannot acquire any appreciable momentum, then a charged particle set

free in the electric field would trace out a line of force. In the same way, we should have

lines of current on the surface of a lake, such that the tangent to a line of current at any

point coincided with the direction of the current, and a small float set free on the lake

would describe a current-line.

32. The resultant of a number of known forces has a definite direction,

so that there is a single direction for the electric intensity at every point of

the field. It follows that two lines of force can never intersect
;
for if they

did there would be two directions for the electric intensity at the point of

intersection (namely, the two tangents to the lines of force at this point) so

that the resultant of a number of known forces would be acting in two

directions at once. An exception occurs, as we shall see, when the resultant

intensity vanishes at any point.

The intensity R may be regarded as compounded of three components

X, F, Z, parallel to three rectangular axes Ox, Oy, Oz.

The magnitude of the electric intensity is then given by

R2 = X2 + F2 + Z2
,

and the direction cosines of its direction are

X Y Z
R' R' R'

These, therefore, are also the direction cosines of the tangent at x, y, z

to the line of force through the point. The differential equation of the

system of lines of force is accordingly

dx _dy _dz~

III. The Potential.

33. In moving the small test-charge e about in the field, we may either

have to do work against electric forces, or we may find that these forces

will do work for us. A small charged particle which has been placed at a

point in the electric field may be regarded as a store of energy, this

energy being equal to the work (positive or negative) which has been done

in taking the charge to in opposition to the repulsions and attractions of

the field. The energy can be reclaimed by allowing the particle to retrace

its path. Assume the charge on the moving particle to' be so small that
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the distribution of electricity on the conductors in the field is not affected

by it. Then the work done in bringing the charge e to a point is pro-

portional to e, and may be taken to be Fe. The amount of work done will

of course depend on the position from which the charged particle started.

It is convenient, in measuring Fe, to suppose that the particle started at a

point outside the field altogether, i.e. from a point sor far removed from all

the charges of the field that their effect at this point is inappreciable for

brevity, we may say the point at infinity. We now define F to be the

potential at the point 0. . Thus

The potential at any point in the field is the work per unit charge which

has to be done on a charged particle to bring it to that point, the charge on the

particle being supposed so small that the distribution of electricity on the

conductors in the field is not affected by its presence.

In moving the small charge e from x, y t
z to x + dx, y + dy, z + dz, we

shall have to perform an amount of work

- (Xdx + Ydy + Zdz) e,

so that in bringing the charge e into position at x, y, z from outside the field

altogether, we do an amount of work

- e I(Xdx + Ydy + Zdz),

where the integral is taken along the path followed by e.

Denoting the work done on the charge e in bringing it to any point

a, y, z in the electric field by Fe, we clearly have

(6),

giving a mathematical expression for the potential at the point x, y, z.

The same result can be put in a different form. If ds is any element of

the path, and if the intensity R at the extremity of this element makes an

angle with ds, then the component of the force acting on e when moving

along ds, resolved in the direction of motion of e, is Re cos 0. The work

done in moving e along the element ds is accordingly

Re cos 0ds,

so that the whole work in bringing e from infinity to x, y, z is

t, v, *

R cos 0ds,

(7).

and since this is equal, by definition, to Fe, we must have

' Z
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We see at once that the two expressions (6) and (7) just obtained for V
are identical, on noticing that 6 is the angle between two lines of which the

direction cosines are respectively

X Y Z dx dy dz_

R' R' R * l

ds' ds' ds'

p Xdx
, Tdy J

Zdz
We therefore have cos o=D3~+D^+l3^~'R ds Rds Rds

so that R cos 6ds = Xdx + Ydy + Zdz,

and the identity of the two expressions becomes obvious.

If the Theorem of the Conservation of Energy is true in the Electro-

static Field, the work done in bringing a small charge e from infinity to any

point P must be the same whatever path to P we choose. For if the

amounts of work were different on two different paths, let these amounts

be Vpe and Tp'e, and let the former be the greater. Then by taking the

charge from P to infinity by the former path and bringing it back by the

latter, we should gain an amount of work (VP Vp) 6, which would be

contrary to the Conservation of Energy. Thus Vp and Vp' must be equal,

and the potential at P is the same, no matter by what path we reach P.

The potential at P will accordingly depend only on the coordinates x, y, z

of P.

As soon as we introduce the special law of the inverse square, we shall

find that the potential must be a single-valued function of x, y, z, as a

consequence of this law ( 39), and hence shall be able to prove that the

Theorem of Conservation of Energy is true in an Electrostatic field. For

the moment, however, we assume this.

34. Let us denote by W the work done in moving a charge e from P
to Q. In bringing the charge from infinity to P, we do an amount of work

FIG. 5.

which by definition is equal to Vp e where Vp denotes the value of V at the

point P. Hence in taking it from infinity to Q, we do a total amount of

work Vp e -f W. This, however, is also equal by definition to Vq e. Hence

we have

Vpe-}- W=VQ e,

or W=(VQ -Vp)e (8).
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35. DEFINITION. A surface in the electric field such that at every point

on it the potential has the same value, is called an Equipotential Surface.

In discussing the phenomena of the electrostatic field, it is convenient to think of the

whole field as mapped out by systems of equipotential surfaces and lines of force, just as

in geography we think of the earth's surface as divided up by parallels of latitude and of

longitude. A more exact parallel is obtained if we think of the earth's surface as mapped
out by

" contour-lines
"

of equal height above sea-level, and by lines of greatest slope.

These reproduce all the properties of equipotentials and lines of force, for in point of fact

they are actual equipotentials and lines of force for the gravitational field of force.

THEOREM. Equipotential surfaces cut lines of force at right angles.

Let P be any point in the electric field, and let Q be an adjacent point

on the same equipotential as. P. Then, by definition, Vp = Vq )
so that by

equation (8) W = 0, W being the amount of work done in moving a charge e

from P to Q. If R is the intensity at Q, and the angle which its direction

makes with QP, the amount of this work must be Re cos 9 x PQ, so that

R cos = 0.

Hence cos 6 = 0, so that the line of force cuts the equipotential at right

angles. As in a former theorem, an exception has to be made in favour of

the case in which R = Q.

36. Instead of P, Q being on the same equipotential, let them now be

on a line parallel to the axis of a, their coordinates being x, y, z and x + dx,

y, z respectively. In moving the charge e from P to Q the work done is

Xedx, and by equation (8) it is also (Vq Vp) e. Hence

-Xdx=VQ -VP .

Since Q and P are adjacent, we have, from the definition of a differential

coefficient,
217 T _ PL

= A;dV_VQ - P
dx dx

hence we have the relations

Z , F=- 3

/, Z (9),
dx dy dz

results which are of course obvious on differentiating equation (6) with

respect to x, y and z respectively.

Similarly, if we imagine P, Q to be two points on the same line of force

we obtain

3FR=
~te'

where
^-

denotes differentiation along a line of force. Since R is necessarily
OS

positive, it follows that --is negative, i.e. V decreases as s increases, or the
OS
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intensity is in the direction of V decreasing. Thus the lines of force run

from higher to lower values of F, and, as we have already seen, cut all

equipotentials at right angles.

37. At a point which is occupied by conducting material, the electric

charges, as has already been said, must be in equilibrium under the action of

the forces from all the other charges in the field. The resultant force from

all these charges on any element of charge e is however JRe, so that we must

have R = 0. Hence X = Y= 2 = 0, so that

====
da) dy dz

In other words, V must be constant throughout a conductor for electro-

static equilibrium to be possible. And in particular the surface of a

conductor must be an equipotential surface, or part of one. The equi-

potential of which the surface of a conductor is part has the peculiarity

of being three-dimensional instead of two-dimensional, for it occupies the

whole interior as well as the surface of the conductor.

In the same way, in considering the analogous arrangement of contour-lines and lines

of greatest slope on a map of the earth's surface, we find that the edge of a lake or sea

must be a contour-line, but that in strictness this particular contour must be regarded as

two-dimensional rather than one-dimensional, since it coincides with the whole surface of

the lake or sea.

If V is not constant in any conductor, the intensity is in the direction of

V decreasing. Hence positive electricity tends to flow in the direction of V
decreasing, and negative electricity in the direction of V increasing. If two

conductors in which the potential has different values are joined by a third

conductor, the intensity in the third conductor will be in direction from

the conductor at higher potential to that at lower potential. Electricity will

flow through this conductor, and will continue to flow until the redistribution

of potential caused by the transfer of this electricity is such that the potential

is the same at all points of the conductors, which may now be regarded as

forming one single conductor.

Thus although the potential has been defined only with reference to

single points, it is possible to speak of the potential of a whole conductor.

In fact, the mathematical expression of the condition that equilibrium shall

be possible for a given system of charges is simply that the potential shall

be coristant throughout each conductor. And when electric contact is

established between two conductors, either by joining them by a wire or by
other means, the new condition for equilibrium which is made necessary by
the new physical condition introduced, is simply that the potentials of the

two conductors shall be equal.
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The earth is a conductor, and is therefore at the same potential through-

out. In all practical applications of electrostatics, it will be legitimate to

regard the potential of the earth as zero, a distant point on the earth's

surface replacing the imaginary point at infinity, with reference to which

potentials have so far been measured. Thus any conductor can be reduced

to potential zero by joining it by a metallic wire to the earth.

MATHEMATICAL EXPRESSIONS OF THE LAW OF THE INVERSE SQUARE.

I. Values of Potential and Intensity.

38. We now discuss the values of the potential and components of

electric intensity when the space between the conductors is air, so that

the electric forces are determined by Coulomb's Law.

If we have a single point charge el at a point P, the value of R, the

resultant intensity at any point 0, is

_!L_
PO2 '

and its direction is that of PO. Hence if 6 is the angle between OP and

?'

FIG. 6.

00', the line joining to an adjacent point 0', the work done in moving a

charge e from to 0'

= eR cos d . 00'
= eR(OP-0'P)

where OP r, O'P = r + dr. Hence the work done against the repulsion
of the charge el in bringing e from infinity to 0' by any path is

rr=0'P rr=0'P
f> ep

-6 Rdr = -e
6

^dr = 1

,

Jr = oo Jr=< r* r,

where rx
= O'P.

If there are other charges e.2 ,
es , ... the work done against all the

repulsions in bringing a charge e to 0' will be the sum of terms such as the

above, say

r r
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where r2 ,
r3 ,

... are the distances from 0' to e.2 ,
e3) ..., so that by definition

"=*++?+ , do)-
' 1 ' 2 ' 3

39. It is now clear that the potential at any point depends only on the

coordinates of the point, so that the work done in bringing a small charge
from infinity to a point P is always the same, no matter what path we

choose, the result assumed in 33.

It follows that we cannot alter the amount of energy in the field by

moving charges about in such a way that the final state of the field is the

same as the original state. In other words, the Conservation of Energy is

true of the Electrostatic Field.

40. Analytically, let us suppose that the charge el is at xlt ylt z1 \
e at

#2, 2/a >
z^ and so on - The repulsion on a small charge e at x, y, z resulting

from the presence of el at xlt ylt ^ is

and the direction-cosines of the direction in which this force acts on the

charge e, are

[O - otf + (y
-

ytf + (*
-

gtf]
*

'

[(x
-

xtf + (y- y

Hence the component parallel to the axis of x is

,
etc.

By adding all such components, we' obtain as the component of the

electric intensity at x, y, ,

and there are similar equations for Y and Z.

We have as the value of V at x, y, z, by equation (6),

V=-T <Z

(Xdx + Ydy + Zdz)
J CO

_ [*'*'

z
S0! {(x

-
x,) dx + (y- y,) dy + (z

-
z,} dz

P

giving the same result as equation (10).
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41. If the electric distribution is not confined to points, we can imagine
it divided into small elements which may be treated as point charges. For

instance if the electricity is spread throughout a volume, let the charge on

any element of volume dx'dydz' be pdx'dy'dz' so that p may be spoken of as

the
"
density

"
of electricity at x, y, z. Then in formula (11) we can replace

el by pdxdy'dz', and xly ylt zlt by x, y', z'. Instead of summing the charges
elt ... we of course integrate pdx dy'dz through all those parts of the space
which contain electrical charges. In this way we obtain

v f f f P (x ~ x'} dx'dydzA = ---
, etc.,

JJJ [(*
-

a,J + (y
- yj + (z

-
/)*]

and F = ff(-
<""****

)]][(x - xy + (y- yy + (z-zy$
These equations are one form of mathematical expression of the law of

the inverse square of the distance. An attempt to perform the integration,

in even a few simple cases, will speedily convince the student that the form

is not one which lends itself to rapid progress. A second form of mathe-

matical expression of the law of the inverse square is supplied by a Theorem

of Gauss which we shall now prove, and it is this expression of the law which

will form the basis of our development of electrostatical theory.

II. Gauss' Theorem.

42. THEOREM. // any closed surface is taken in the electric field, and

ifN denotes the component of the electric intensity at any point of this surface
in the direction of the outward normal, then

where the integration extends over the whole of the surface, and E is the total

charge enclosed by the surface.

Let us suppose the charges in the field, both inside and outside the closed

surface, to be e
l at /?, e2 at P2 ,

and so on. The intensity at any point is

the resultant of the intensities due to the charges separately, so that at any

point of the surface, we may write

N = N1 + N,+ (12),

where Nlt N9 ,
... are the normal components of intensity due to el) e2) ...

separately.

Instead of attempting to calculate llNdS directly, we shall calculate

separately the values of
ff^dS, (JN^dS,

.... The value of
jfNdS will,

by equation (12), be the sum of these integrals.

j. 3
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Let us take any small element dS of the closed surface in the neighbour-

hood of a point Q on the surface and join each point of its boundary to the

point /?. Let the small cone so formed cut off an element of area do- from

FIG. 7.

a sphere drawn through Q with Pl as centre, and an element of area dw from

a sphere of unit radius drawn about 7J as centre. Let the normal to the

closed surface at Q in the direction away from /? make an angle with /JQ.

The intensity at Q due to the charge e^ at /? is e^/P^Q
2 in the direction

PjQ, so that the component of the intensity along the normal to the surface

in the direction away from 7? is

The contribution to I IN^S from the element of surface is accordingly

the + or sign being taken according as the normal at Q in the direction

away from 7? is the outward or inward normal to the surface.

Now cos 6 dS is equal to da; the projection of dS on the sphere through Q
having % as centre, for the two normals to dS and da- are inclined at an

angle 6. Also da- = PlQz
d(o. For da-, dw are the areas cut off by the same

cone on spheres of radii P^Q and unity respectively. Hence

e1 ~ JO e^da- ,

p^2
cos 0dS =

1p^-
= e.dw.

-nv *ity

If /? is inside the closed surface, a line from 7? to any point on the unit

sphere surrounding 7? may either cut the closed surface only once as at

Q (fig. 8) in which case the normal to the surface at Q in the direction

away from 1$ is the outward normal to the surface or it may cut three

times, as at Q', Q", Q"' in which case two of the normals away from 7? (those

at Q, Q'" in
fig. 8) are outward normals to the surface, while the third normal

away from P
l (that at Q" in the figure) is an inward normal or it may
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cut five, seven, or any odd number of times. Thus a cone through a small

element of area da) on a unit sphere about R may cut the closed surface any
odd number of times. However many times it cuts, the first small area cut

off will contribute el da> to liN^S, the second and third small areas if they

FIG. 8.

occur will contribute e^co and + gjcfa) respectively, the fourth and fifth if

they occur will contribute e^w and -{-e^a respectively, and so on. The

total contribution from the cone surrounding dco is, in every case, + e1 co>.

FIG. 9.

Summing over all cones which can be drawn in this way through 7? we obtain

the whole value of I IN^S, which is thus seen to be simply e1 multiplied by

the total surface area of the unit sphere round 7?, and therefore 4nrei.

32
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On the other hand if 7? is outside the closed surface, as in fig. 9, the

cone through any element of area da) on the unit sphere may either not cut

the closed surface at all, or may cut twice, or four, six or any even number

of times. If the cone through da) intersects the surface at all, the first pair

of elements of surface which are cut off by the cone contribute e^a) and

+ 6^0) respectively to I IN^S. The second pair, if they occur, make a similar

contribution and so on. In every case the total contribution from any small

cone through J? is nil. By summing over all such cones we shall include

the contributions from all parts of the closed surface, so that if 7? is outside

the surface llN^S is equal to zero.

We have now seen that IIN^S is equal to 4i7re1 when the charge el is

inside the closed surface, and is equal to zero when the charge e is outside

the closed surface. Hence

4t7rx (the sum of all the charges inside the surface)

which proves the theorem.

Obviously the theorem is true also when there is a continuous distribution

of electricity in addition to a number of point charges. For clearly we can

divide up the continuous distribution into a number of small elements and

treat each as a point charge.

Since N, the normal component of intensity, is equal by 36 to -~
,

where ~- denotes differentiation along the outward normal, it appears that

we can also express Gauss' Theorem in the form

dii

Gauss' theorem forms the most convenient method at our disposal, of

expressing the law of the inverse square.

We can obtain a preliminary conception of the physical meaning under-

lying the theorem by noticing that if the surface contains no charge at all,

the theorem expresses that the average normal intensity is nil. If there is

a negative charge inside the surface, the theorem shews that the average
normal intensity is negative, so that a positively charged particle placed at

a point on the imaginary surface will be likely to experience an attraction to

the interior of the surface rather than a repulsion away from it, and vice

versa if the surface contains a positive charge.
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Corollaries to Gauss Theorem.

43. THEOREM. If a closed surface be drawn, such that every point on it

is occupied by conducting material, the total charge inside it is nil.

We have seen that at any point occupied by conducting material, the

electric intensity must vanish. Hence at every point of the closed surface
;

JV =-. 0, so that I \NdS = 0, and therefore, by Gauss' Theorem, the total charge

inside the closed surface must vanish.

The two following special cases of this theorem are of the greatest

importance.

44. THEOREM. There is no charge at any point which is occupied by con-

ducting material, unless this point is on the surface of a conductor.

For if the point is not on the surface, it will be possible to surround the

point by a small sphere, such that every point of this sphere is inside the

conductor. By the preceding theorem the charge inside this sphere is nil,

hence there is no charge at the point in question.

This theorem is often stated by saying :

The charge of a conductor resides on its surface.

45. THEOREM. // we have a hollow closed conductor, and place any
number of charged bodies inside it, the charge on its inner surface will be equal

in magnitude but opposite in sign, to the total charge on the bodies inside.

For we can draw a closed surface entirely inside the material of the

conductor, and by the theorem of 43, the whole charge inside this surface

must be nil. This whole charge is, however, the sum of (i) the charge on the

inner surface of the conductor, and (ii) the charges on the bodies inside the

conductor. Hence these two must be equal and opposite.

This result explains the property of the electroscope which led us to the

conception of a definite quantity of electricity. The vessel placed on the

plate of the electroscope formed a hollow closed conductor. The charge on

the inner surface of this conductor, we now see, must be equal and opposite

to the total charge inside, and since the total charge on this conductor is nil,

the charge on its outer surface must be equal and opposite to that on the

inner surface, and therefore exactly equal to the sum of the charges placed

inside, independently of the position of these charges.

The Cavendish Proof of the Law of the Inverse Square.

46. We have deduced from the law of the inverse square, that the

charge inside a closed conductor is zero. We shall now shew that the

converse theorem is also true. Hence, in the known fact, revealed by the
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observations of Cavendish and Maxwell, that the charge inside a closed

conductor is zero, we have experimental proof of the law of the inverse

square which admits of much greater accuracy than the experimental proof

of Coulomb.

The theorem that if there is no charge inside a spherical conductor the

law of force must be that of the inverse square is due to Laplace. We need

consider this converse theorem only in its application to a spherical conductor,

this being the actual form of conductor used by Cavendish. The apparatus

illustrated in
fig.

10 is not that used by Cavendish, but is an improved
form designed by Maxwell, who repeated Cavendish's experiment in a more

delicate form.

Two spherical shells are fixed by a ring of ebonite so as to be concentric

with one another, and insulated from one another.

Electrical contact can be established between the two

by letting down the small trap-door B through which

a wire passes, the wire being of such a length as just

to establish contact when the trap-door is closed. The

experiment is conducted by electrifying the outer

shell, opening the trap-door by an insulating thread

without discharging the conductor, afterwards dis-

charging the outer conductor and testing whether any

charge is to be found on the inner shell by placing it

in electrical contact with a delicate electroscope by
means of a conducting wire inserted through the trap-

door. It is found that there are no traces of a charge
on the inner sphere.

FIG. 10. 47. Suppose we start to find the law of electric

force such that there shall be no charge on the inner

sphere. Let us assume a law of force such that the repulsion between two-

charges e, e' at distance r apart is ee'(f)(r). The potential, calculated as

explained in 33, is

(r)-4r .............................. (13),

where the summation extends over all the charges in the field.

Let us calculate the potential at a point inside the sphere due to a charge
E spread entirely over the surface of the sphere. If the sphere is of radius a,

the area of its surface is 4?ra2
,
so that the amount of charge per unit area is

E/4nra?, and the expression for the potential becomes

a' sn (14),

the summation of expression (13) being now replaced byari integration which
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extends over the whole sphere. In this expression r is the distance from the

point at which the potential is evaluated, to the element a2

sinOddd(f) of

spherical surface.

If we agree to evaluate the potential at a point situated on the axis 0=0
at a distance c from the centre, we may write

r'
2 = a? + c2 2ac cos 6.

Since c is a constant, we obtain as the relation between dr arid dd, by
differentiation of this last equation,

rdr = acsin OdO

If we integrate expression (14) with respect to $, the limits being of

course = and = 2?r, we obtain

or, on changing the variable from 6 to r, by the help of relation (15)

J r=a-c \J r / dC

If we introduce a new function f(r), defined by

we obtain as the value of V,

If the inner and outer spheres are in electrical contact, their potentials

are the same
;
and if, as experiment shews to be the case, there is no charge

on the inner sphere, then the whole potential must be that just found. This

expression must, accordingly, have the same value whether c represents the

radius of the outer sphere or that of the inner. Since this is true whatever

the radius of the inner sphere may be, the expression must be the same for

all values of c. We must accordingly have

2acF -, N ...

E =/(a + c)-/(a-c)

where V is the same for all values of c. Differentiating this equation twice

with respect to c, we obtain

0=/
//

(a + c)-/
//

(a-c).

Since by definition, /(r) depends only on the law of force, and not on a or c,

it follows from the relation

that/
/r

(r) must be a constant, say (7.
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Hence f(r) = A + Br + \Cr\

and by definition /(r )
=

I

( | $(r)drj
r dr,

so that on equating the two values off* (r),

r 7?

Therefore <(r)dr= + - ,

J r ^

or </><>)
= -

2 >

so that the law of force is that of the inverse square.

48. Maxwell has examined what charge would be produced on the inner

sphere if, instead of the law of force being accurately B/r
2
,
it were of the

form B/r*
+
9, where q is some small quantity. In this way he found that if q

were even so great as YT
:

SWO> ^ne charge on the inner sphere would have been

too great to escape observation. As we have seen, the limit which Cavendish

was able to assign to q was ^.

It may be urged that the form B/r
2+v is not a sufficiently general

law of force to assume. To this Maxwell has replied that it is the most

general law under which conductors which are of different sizes but geometri-

cally similar can be electrified similarly, while experiment shews that in point

of fact geometrically similar conductors are electrified similarly. We may
say then with confidence that the error in the law of the inverse square, if

any, is extremely small. It should, however, be clearly understood that

experiment has only proved the law B/r
2 for values of r which are great

enough to admit of observation. The law of force between two electric

charges which are at very small distances from one another still remains

entirely unknown to us.

III. The Equations of Poisson and Laplace.

49. There is still a third way of expressing the law of the inverse

square, and this can be deduced most readily from

Gauss' Theorem.

Let us examine the small rectangular parallel-

epiped, of volume dxdydz, which is bounded by
the six plane faces

We shall suppose that this element does not con-

6 x tain any point charges of electricity, or part of

FIO< 11. any charged surface, but for the sake of generality
we shall suppose that the whole space is charged
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with a continuous distribution of electricity, the volume-density of electrifi-

cation in the neighbourhood of the small element under consideration being

p. The whole charge contained by the element of volume is accordingly

pdxdydz, so that Gauss' Theorem assumes the form

(16).

The surface integral is the sum of six contributions, one from each face of

the parallelepiped. The contribution from that face which lies in the plane
x ^ Jcforis equal to dydz, the area of the face, multiplied by the mean

value of N over this face. To a sufficient approximation, this may be

supposed to be the value of N at the centre of the face, i.e. at the point

f ^ dx, ?/, f, and this again may be written

'$"!*;*$

so that the contribution to NdS from this face is

Similarly the contribution from the opposite face is

9F\

the sign being different because the outward normal is now the positive axis

of x, whereas formerly it was the negative axis. The sum of the contributions

from the two faces perpendicular to the axis of x is therefore

The expression inside curled brackets is the increment in the function -=-

when x undergoes a small increment dx. This we know is
dx^-i-^-},

so

that expression (17) can be put in the form

vv ,

-dxdydz.

The whole value of I INdS is accordingly

92F . , ,- + ^ y J

and equation (16) now assumes the form

92F 9
2F
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This is known as Poisson's Equation; clearly if we know the value of the

potential at every point, it enables us to find the charges by which this

potential is produced.

50. In free space, where there are no electric charges, the equation
assumes the form

21 tfy
^4 =

(19),2

and this is known as Laplace's Equation. We shall denote the operator

92 a2 92

I 1

by V2
,
so that Laplace's equation may be written in the abbreviated form

V2F=0 (20).

Equations (18) and (20) express the same fact as Gauss' Theorem, but

express it in the form of a differential equation. Equation (20) shews that

in a region in which no charges exist, the potential satisfies a differential

equation which is independent of the charges outside this region by which

the potential is produced. It will easily be verified by direct differentiation

that the value of F given in equation (10) is a solution of equation (20).

We can obtain an idea of the physical meaning of this differential

equation as follows.

Let us take any point and construct a sphere of radius r about this

point. The mean value of F averaged over the surface of the sphere is

V= -2i[vdS

where r, 6, $ are polar coordinates, having as origin. If we change the

radius of this sphere from r to r + dr, the rate of change of V is

= IY-
4?rr2

JJ dr
dS

= 0, by Gauss' Theorem,

shewing that_Fis independent of the radius r of the sphere. Taking r = 0,

the value of Fis seen to be equal to the potential at the origin 0.

This gives the following interpretation of the differential equation :

F varies from point to point in such a way that the average value of V
taken over any sphere surrounding any point is equal to the value of V at 0.
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DEDUCTIONS FROM LAW OF INVERSE SQUARE.

51. THEOREM. The potential cannot have a maximum or a minimum
value at any point in space which is not occupied by an electric charge.

For if the potential is to be a maximum at any point 0, the potential at

every point on a sphere of small radius r surrounding must be less than

that at 0. Hence the average value of the potential on a small sphere

surrounding must be less than the value at 0, a result in opposition to

that of the last section.

A similar proof shews that the value of V cannot be a minimum.

52. A second proof of this theorem is obtained at once from Laplace's

equation. Regarding V simply as a function of x, y, z, a necessary condition

for V to have a maximum value at anv point is that -*.-
, -?r

- and ^r
- shall

da? ty* dz*

each be negative at the point in question, a condition which is inconsistent

with Laplace's equation
92F d2F 82F_ A
9*2

+
df

+
9*2

~

So also for V to be a minimum, the three differential coefficients would

have to be all positive, and this again would be inconsistent with Laplace's

equation.

53. If V is a maximum at any point 0, which as we have just seen

9F
must be occupied by an electric charge, then the value of -- must be

negative as we cross a sphere of small radius r. Thus l-^-d8
is negative

where the integration is taken over a small sphere surrounding 0, and by
Gauss' Theorem the value of the surface integral is -

4>7re, where e is the

total charge inside the sphere. Thus e must be positive, and similarly if F
is a minimum, e must be negative. Thus :

If V is a maximum at any point, the point must be occupied by a positive

charge, and if V is a minimum at any point, the point must be occupied by a

negative charge.

54. We have seen ( 36) that in moving along a line of force we are

moving, at every point, from higher to lower potential, so that the potential

continually decreases as we move along a line of force. Hence a line of

force can end only at a point at which the potential is a minimum, and

similarly by tracing a line of force backwards, we see that it can begin only
at a point of which the potential is a maximum. Combining this result

with that of the previous theorem, it follows that :

Lines of force can begin only on positive charges, and can end only on

negative charges.
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It is of course possible for a line of force to begin on a positive charge,

and go to infinity, the potential decreasing all the way, in which case the

line of force has, strictly speaking, no end at all. So also, a line of force may
come from infinity, and end on a negative charge.

Obviously a line of force cannot begin and end on the same conductor,

for if it did so, the potential at its two ends would be the same. Hence there

can be no lines of force in the interior of a hollow conductor which contains

no charges ; consequently there can be no charges on its inner surface.

Tubes of Force.

55. Let us select any small area dS in the field, and let us draw the

lines of force through every point of the boundary of this small area. If

dS is taken sufficiently small, we can suppose the electric intensity to be the

same in magnitude and direction at every point of dS, so that the directions

of the lines of force at all the points on the boundary will be approximately
all parallel. By drawing the lines of force, then, we shall obtain a " tubular

"

surface i.e., a surface such that in the neighbourhood of any point the

surface may be regarded as cylindrical. The surface obtained in this way
is called a " tube of force." A normal cross-section of a " tube of force

"
is a

section which cuts all the lines of force through its boundary at right angles.
It therefore forms part of an equipotential surface.

56. THEOREM. // (olt o>2 be the areas of two normal cross-sections of the

same tube offorce, and R1} R2 the intensities at these sections, then

Consider the closed surface formed by the two cross-sections of areas

o>!, ft>2 ,
and of the part of the tube of force

joining them. There is no charge inside this

surface, so that by Gauss' theorem, 1 1NdS = 0.

If the direction of the lines of force is from

&>! to &) 2 ,
then the outward normal intensity

over a>2 is R2 ,
so that the contribution from this

area to the surface integral is R2 (o2 . So also

the outward normal intensity is -R1} so that o^ gives a contribution

-#!<!. Over the rest of the surface, the outward normal is perpendicular to

the electric intensity, so that ^=0, and this part of the surface contributes

nothing to llNdS. The whole value of this integral, then, is

FIG. 12.

over

and since this, as we have seen, must vanish, the theorem is proved.
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57. COULOMB'S LAW. If R is the outward intensity at a point just

outside a conductor, then R = 47r<r, where a is the surface density of electri-

fication on the conductor.

We have already seen that the whole electrification of a conductor must

reside on the surface. Therefore we no longer deal with a volume density

of electrification p, such that the charge in the element of volume dxdydz is

p dxdydz, but with a surface-density of electrification a such that the charge

on an element dS of the surface of the conductor is adS.

The surface of the conductor, as we have seen, is an equipotential, so that

by the theorem of p. 29, the intensity is in a direction normal to the

surface. Let us draw perpendiculars to the surface at every

point on the boundary of a small element of area dS, these per-

pendiculars each extending a small distance into the conductor

in one direction and a small distance away from the conductor

in the other direction. We can close the cylindrical surface so

formed, by two small plane areas, each equal and parallel to the

original element of area dS. Let us now apply Gauss' Theorem

to this closed surface. The normal intensity is zero over every

part of this surface except over the cap of area dS which is

outside the conductor. Over this cap the outward normal in-

tensity is R, so that the value of the surface integral of normal

intensity taken over the closed surface, consists of the single term RdS.

The total charge inside the surface is crdS, so that by Gauss' Theorem,

RdS = 4,7r<rdS (21),

and Coulomb's Law follows on dividing by dS.

58. Let us draw the complete tube of force which is formed by the

lines of force starting from points on the boundary of the element dS of the

surface of the conductor. Let us suppose that the surface density on this

element is positive, so that the area dS forms the normal cross-section at

FIG. 13.

FIG. 14.

the positive end, or beginning, of the tube of force. Let us suppose that at

the negative end of the tube of force, the normal cross-section is dS', that
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the surface density of electrification is a', &' being of course negative, and

that the intensity in the direction of the lines of force is R'. Then, as in

equation (21),
R'dS' = - faa'dS',

since the outward intensity is now R'.

Since R, Rf

are the intensities at two points in the same tube of force

at which the normal cross-sections are dS, dS', it follows from the theorem

of 56, that

and hence, on comparing the values just found for RdS and R'dS', that

o-dS=-(7'dS'.

Since adS and cr'dS' are respectively the charges of electricity from which

the tube begins and on which it terminates, we see that :

The negative charge of electricity on which a tube of force terminates is

numerically equal to the positive charge from which it starts.

If we close the ends of the tube of force by two small caps inside the

conductors, as in fig. 14, we have a closed surface such that the normal

intensity vanishes at every point. Thus, by Gauss' Theorem, the total

charge inside must vanish, giving the result at once.

59. The numerical value of either of the charges at the ends of a

tube of force may conveniently be spoken of as the strength of the tube. A
tube of unit strength is spoken of by many writers as a unit tube offorce.

The strength of a tube of force is vdS in the notation already used, and

this, by Coulomb's Law, is equal to
^

RdS where R is the intensity at the

end dS of the tube. By the theorem of 56, RdS is equal to Rl co 1 where

R!, G>I are the intensity and cross-section at any point of the tube. Hence

.#!! = 4?r times the strength of the tube. It follows that :

The intensity at any point is equal to 4?r times the aggregate strength per
unit area of the tabes which cross a plane drawn at right angles to the

direction of the intensity.

In terms of unit tubes of force, we may say that the intensity is 4?r

times the number of unit tubes per unit area which cross a plane drawn at

right angles to the intensity.

The conception of tubes of force is due to Faraday : indeed it formed
almost his only instrument for picturing to himself the phenomena of the
Electric Field. It will be found that a number of theorems connected with
the electric field become almost obvious when interpreted with the help of

the conception of tubes of force. For instance we proved on p. 37 that
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when a number of charged bodies are placed inside a hollow conductor, they

induce on its inner surface a charge equal and opposite to the sum of all

their charges. This may now be regarded as a special case of the obvious

theorem that the total charge associated with the beginnings and termi-

nations of any number of tubes of force, none of which pass to infinity, must

be nil.

EXAMPLES OF FIELDS OF FORCE.

60. It will be of advantage to study a few particular fields of electric

force by means of drawing their lines of force and equipotential surfaces.

I. Two Equal Point Charges.

61. Let A, B be two equal point charges, say at the points # = a, 4- a.

The equations of the lines of force which are in the plane of x, y are

easily found to be

X PB'-PA'
,22}

where P is the point x, y.

This equation admits of integration in the form

x + a x a
(23).PA PB

From this equation the lines of force can be drawn, and will be found to lie

as in
fig. 15.

62. There are, however, only a few cases in which the differential

equations of the lines offeree can be integrated, and it is frequently simplest
to obtain the properties of the lines of force directly from the differential

equation. The following treatment illustrates the method pf treating lines

of force without integrating the differential equation.

From equation (22) we see that obvious lines of force are

(i) 2/
=

0, o^
= 0, giving the axis AB]

(ii) x 0, PA = PB, ~ oo
, giving the line which bisects AB at

()00

right angles.

These lines intersect at C, the middle point of AB. At this point, then,

~ has two values, and since ^- -^> it follows that we must have X = 0,
dx dx X
F=0. In other words, the point C is a point of equilibrium, as is otherwise

obvious.
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The same result can be seen in another way. If we start from A and

draw a small tube surrounding the line AB, it is clear that the cross-section

of the tube, no matter how small it was initially, will have become infinite

by the time it reaches the plane which bisects AB at right angles in fact

the cross-section is identical with the infinite plane. Since the product of

the cross-section and the normal intensity is constant throughout a tube, it

follows that at the point C, the intensity must vanish.

FIG. 15.

At a great distance R from the points A and B, the fraction

PB3 - PA*
PB* + PAS

vanishes to the order of 1/R, so that

except for terms of the order of 1/R
2

. Thus at infinity the lines of force

become asymptotic to straight lines passing through the origin.

Let us suppose that a line of force starts from A making an angle 6 with

BA produced, and is asymptotic at infinity to a line through C which makes
an angle <f>

with BA produced. By rotating this line of force about the

axis AB we obtain a surface which may be regarded as the boundary of

a bundle of tubes of force. This surface cuts off an area

2?r (1
- cos 6) r2
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from a small sphere of radius r drawn about A, and at every point of

this sphere the intensity is e/r* normal to the sphere. The surface again
cuts off an area

2?r (1
- cos

</>)
R2

from a sphere of very great radius R drawn about (7, and at every point
of this sphere the intensity is 2e/R

2
. Hence, applying Gauss' Theorem

to the part of the field enclosed by the two spheres of radii r and R,
and the surface formed by the revolution of the line of force about AB,
we obtain

R* x = 0,2rr (1
- cos 6} r8 x - -

2^r'(l
- cos

ft

from which follows the relation

sin \ 6 = v'2 sin J ^>.

In particular, the line of force which leaves A in a direction perpendicular
to AB is bent through an angle of 30 before it reaches its asymptote at

infinity.

The sections of the equipotentials made by the plane of xy for this case

are shewn in fig. 16 which is drawn on the same scale as fig. 15. The equa-
tions of these curves are of course

curves of the sixth degree. The equipotential which passes through C is

of interest, as it intersects itself at the point C. This is a necessary conse-

FIG. 16.

quence of the fact that C is a point of equilibrium. Indeed the conditions

for a point of equilibrium, namely

^.o, ^=o,
a

^=o,
may be interpreted as the condition that the equipotential (V constant)

through the point should have a double tangent plane or a tangent cone at

the point.

j. 4
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II. Point charges + e, e.

63. Let charges + e be at the points x=a (A, B) respectively. The

differential equations of the lines of force are found to be

X

and the integral of this is

x + a x a

PA PB

The lines of force are shewn in fig. 17.

= cons.

FIG. 17.

III. Electric Doublet.

64. An important case occurs when we have two large charges + e, e,

equal and opposite in sign, at a small distance apart. Taking Cartesian

coordinates, let us suppose we have the charge + e at a, 0, and the charge
e at a, 0, 0, so. that the distance of the charges is 2 a.

The potential is

e e

(a?
- of + y* + zz

(> + a)
2 + f + zz

and when a is very small, so that squares and higher powers of a may be

neglected, this becomes

+

If a is made to vanish, while e becomes infinite, in such a way that

2ea retains the finite value
/-t,

the system is described as an electric
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doublet of strength /-i having for its direction the positive axis of x. Its

potential is

+

FIG. 18.

or, if we turn to polar coordinates and write # = rcos#, is

yLtCOS 6
.(24).

The lines of force are shewn in
fig. 18. Obviously the lines at the

centre of this figure become identical with those shewn in fig. 17, if the

latter are shrunk indefinitely in size.

42
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IV. Point charges + 4e, e.

65. Fig. 19 represents the distribution of the lines of force when the

electric field is produced by two point charges, + 4>e at A and - e at B.

At infinity the resultant force will be 3e/r
2
,
where r is the distance from

a point near to A and B. The direction of this force is outwards. Thus no

lines of force can arrive at B from infinity, so that all the lines of force

which enter B must come from A. The remaining lines of force from A go

to infinity. The tubes of force from A to B form a bundle of aggregate

FIG. 19.

strength e, while those from A to infinity have aggregate strength 3e. The

two bundles of tubes of force are separated by the lines of force through G.

At C the direction of the resultant force is clearly indeterminate, so that G
is a point of equilibrium. As the condition that G is a point of equilibrium
we have

AC* BC*

So that AB = BC. At G the two lines of force from A coalesce and then

separate out into two distinct lines of .force, one from G to B, and the other

from G to infinity in the direction opposite to CB.

The equipotentials in this field, the system of curves

4 1

PA~PB =

are represented in
fig. 20, which is drawn on the same scale as fig. 19.
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Since C is a point of equilibrium the equipotential through the point C
must of course cut itself at C. At C the potential

40 e e

since CA=2CB. From the loop of this equipotential which surrounds J5,

the potential must fall continuously to oo as we approach B, since, by the

theorem of 51, there can be no maxima or minima of potential between

this loop and the point B. Also no equipotential can intersect itself since

there are obviously no points of equilibrium except C. One of the inter-

FIG. 20.

mediate equipotentials is of special interest, namely that over which the

potential is zero. This is the locus of the point P given by

PA PB

and is therefore a sphere. This is represented by the outer of the two

closed curves which surround B in the figure.

In the same way we see that the other loop of the equipotential through

C must be occupied by equipotentials for which the potential rises steadily

to the value + oo at A. So also outside the equipotential through (7, the

potential falls steadily to the value zero at infinity. Thus the zero equi-

potential consists of two> spheres the sphere at infinity and the sphere

surrounding B which has already been mentioned*
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V. Three equal charges at the corners of an equilateral triangle.

66. As a further example we may examine the disposition of equi-

potentials when the field is produced by three point charges at the corners

of an equilateral triangle. The intersection of these by the plane in which

the charges lie is represented in fig. 21, in which A, B, G are the points at

which the charges are placed, and D is the centre of the triangle ABC.

It will be found that there are three points of equilibrium, one on each

of the lines AD, BD, CD. Taking AD=,a, the distance of each point of

equilibrium from D is just less than J a. The same equipotential passes

through all three points of equilibrium. If the charge at each of the points

FIG. 21.

3-04
A, B, C is taken to be unity, this equipotential has a potential . The

a

equipotential has three loops surrounding the points A, B, C. In each of

these loops the equipotentials are closed curves, which finally reduce to

small circles surrounding the points A, B, C. Those drawn correspond to

,, 3-25 3-5 3-75 , 4
the potentials

- -
,

- -
,

- -
, and -

.

a a a a

Outside the equipotential
' -

,
the equipotentials are closed curves

CL
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surrounding the former equipotential, and finally reducing to circles at in-

2 2*25 2* 5 2'75
finity. The curves drawn correspond to potentials ,

- --

, ,
and -

.

3'04
There remains the region between the point D and the equipotential

-
.

O.AA

At D the potential is -
,
so that the potential falls as we recede from the

equipotential
- - and reaches its minimum value at D. The potential at

D is of course not a minimum for all directions in space : for the potential

increases as we move away from D in directions which are in the plane

ABC, but obviously decreases as we move away from D in a direction per-

FIG. 22.

pendicular to this plane. Taking D as origin, and the plane ABC as plane

of xy, it will be found that near D the potential is

Thus the equipotential through D is shaped like a right circular cone in

the immediate neighbourhood of the point D. From the equation just

found, it is obvious that near D the sections of the equipotentials by the

plane ABC will be circles surrounding D.
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From a study of the section of the equipotentials as shewn in fig. 21, it is

easy to construct the complete surfaces. We see that each equipotential for

which V has a very high value consists of three small spheres surrounding the

points A, B, C. For smaller values of V, which must, however, be greater

than -
,
each equipotential still consists of three closed surfaces surround-

a

ing A, B, C, but these surfaces are no longer spherical, each one bulging out

towards the point D. As V decreases, the surfaces continue to swell out,

3'04
until, when V =

,
the surfaces touch one another simultaneously, in a

way which will readily be understood on examining the section of this equi-

potential as shewn in
fig.

21. It will be seen that this equipotential is

shaped like a flower of three petals from which the centre has been cut away.
o

As V decreases further the surfaces continue to swell, and when V = -
,
the

a

space at the centre becomes filled up. For still smaller values of V the

equipotentials are closed singly-connected surfaces, which finally become

spheres at infinity corresponding to the potential V = 0.

The sections of the equipotentials by a plane through DA perpendicular
to the jjrfane ABC are shewn in fig. 22.

SPECIAL PROPERTIES OF EQUIPOTENTIALS AND LINES OF FORCE.

The Equipotentials and Lines of Force at infinity.

67. In 40, we obtained the general equation

r-- -*-

If r denotes the distance of x, y, z from the origin, and ^ the distance of

#1 > y\ >
z

\ .
fr m the origin, we may write this in the form

e,

IT
1 - 2 (3^+3^ + **!>+*,

At a great distance from the origin this may be expanded in descending
powers of the distance, in the form

The term of order - is .

r r

The term of order - is - 5^ (xxl -f yyl + zz-,).
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If the origin is taken at the centroid of el at xl . yl ,
zlt e^ at #2 , 2/2 > ^2 > etc.,

we have

Thus by taking the origin at this centroid, the term of order will

disappear.

The term of order is
ri

3 1

8 2, (xx, + 2/2/1
+ zztf

-^ S^n*.

Let A, B, C, be the moments of inertia about the axes, of el at xl) yl} zlf

etc., and let / be the moment of inertia about the line joining the origin to

x, y, z\ then

! (xx, + 2/2/1 + ^i)
2 = r* (S^r,

8 -
/),

and the terms of order - become
r*

A+B+C-3I
2r3

%
Thus taking the centroid of the charges as origin, the potential at a great

distance from the origin can be expanded in the form

Thus except when the total charge 2e vanishes, the field at infinity is

the same as if the total charge %e were collected at the centroid of the

charges. Thus the equipotentials approximate to spheres having this point
as centre, and the asymptotes to the lines of force are radii drawn through
the centroid. These results are illustrated in the special fields of force

considered in 6166.

The Lines of Force from collinear charges.

68. When the field is produced solely by charges all in the same straight

line, the equipotentials are obviously surfaces of revolution about this line,

while the lines of force lie entirely in planes through this line. In this

important case, the equation of the lines of force admits of direct integration.

Let 7J, jfj, J?, ... be the positions of the charges elt e2 ,
es ,

.... Let Q, Q
r

be any two adjacent points on a line of force. Let N be the foot of the

perpendicular from Q to the axis #/J, ..., and let a circle be drawn perpen-
dicular to this axis with centre N and radius QN. This circle subtends

at /J a solid angle

2-7T (1
- COS 0,),
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where Ol is the angle QRN. Thus the surface integral of normal force

arising from el} taken over the circle QN, is

2-73-0! (1
- COS 6>j)

and the total surface integral of normal force taken over this surface is

l -cos 00.

If we draw the similar circle through Q', we obtain a closed surface

bounded by these two circles and by the surface formed by the revolution

Q'

of QQ'. This contains no electric charge, so that the surface integral of

normal force taken over it must be nil. Hence the integral of force over

the circle QN must be the same as that over the similar circle drawn

through Q'. This gives the equations of the lines of force in the form

(integral of normal force through circle such as QN) = constant,

which as we have seen, becomes

2X cos 6
l
= constant.

Analytically, let the point 7? have coordinates al9 0, 0, let 7? have

coordinates a2 , 0, 0, etc. and let Q be the point x, y, z. Then

cos 9l
= -.-.

x xl

, -atf+?++
and the equation of the surfaces formed by the revolution of the lines of

force is

v el (x x-i) - constant.

It will easily be verified by differentiation that this is an integral of the

differential equation

dy Y
dx X'
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Equipotentials which intersect themselves.

69. We have seen that, in general, the equipotential through any point

of equilibrium must intersect itself at the point of equilibrium.

Let as, y, z be a point of equilibrium, and let the potential at this point be

denoted by TJ. Let the potential at an adjacent point x + f , y -f 77, z + ,
be

denoted by "Pf, ,, ^ . By Taylor's Theorem, if /(a?, y, z) is any function of

x
y y, z, we have

where the differential coefficients of f are evaluated at x, y, z. Taking

f(x, y, z) to be the potential at x, y, z
y this of course being a function of the

variables x, y, z, the foregoing equation becomes

If x, y, z is a point of equilibrium,

~<s
==

~o
ss

~o
==

>

ox dy dz

so that Vt
r, <

= TJ + i ( f
2
^r + 2f?? ^-^r- + . . .

\ d^?
2

da?dy

Referred to x, y, z as origin, the coordinates of the point x + , y -f

2- + f become f, 77, f, and the equation of the equipotential V=G becomes

In the neighbourhood of the point of equilibrium, the values of f, r), are

small, so that in general the terms containing powers of f, r], higher than

squares may be neglected, and the equation of the equipotential V= G
becomes

In particular the equipotential F= TJ becomes identical, in the neighbourhood
of the point of equilibrium, with the cone

3217*

.

dxdy

Let this cone, referred to its principal axes, become

of
" + fo/

8 + c?
/a = ........................... (26),

then, since the sum of the coefficients of the squares of the variables is an

invariant,

&V 82F
,

82F .

a + 6 + c=- + - + - - = 0.
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Now a + 6 + c is the condition that the cone shall have three per-

pendicular generators. Hence we see that at the point at which an

equipotential cuts itself, we can always find three perpendicular tangents to

the equipotential. Moreover we can find these perpendicular tangents in an

infinite number of ways.

In the particular case in which the cone is one of revolution (e.g., if the

whole field is symmetrical about an axis, as in figures 16 and 20), the

equation of the cone must become

where the axis of f
'

is the axis of symmetry. The section of the equipotential

made by any plane through the axis, say that of f'", must now become

in the neighbourhood of the point of equilibrium, and this shews that the

tangents to the equipotentials each make a constant angle tan"1

/</2 (= 54 44')

with the axis of symmetry.

In the more general cases in which there is not symmetry about an axis,

the two branches of the surface will in general intersect in a line, and the

cone reduces to two planes, the equation being

where the axis of
'

is the line of intersection. We now have a + 6 = 0, so

that the tangent planes to the equipotential intersect at right angles.

An analogous theorem can be proved when n sheets of an equipotential
intersect at a point. The theorem states that the n sheets make equal

angles irfn with one another. (Rankin's Theorem, see Maxwell's Electricity

and Magnetism, 115, or Thomson and Tait's Natural Philosophy, 780.)

70. A conductor is always an equipotential, and can be constructed so as

to cut itself at any angle we please. It will be seen that the foregoing
theorems can fail either through the a, b and c of equation (2%) all vanishing,
or through their all becoming infinite. In the former case the potential near

a point at which the conductor cuts itself, is of the form (cf. equation (25)),

i/

so that the components of intensity are of the forms

The intensity near the point of equilibrium is therefore a small quantity of

the second order, and since by Coulomb's Law R = 4urcr, it follows that the
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surface density is zero along the line of intersection, and is proportional to

the square of the distance from the line of intersection at adjacent points.

If, however, a, b and c are all infinite, we have the electric intensity also

infinite, and therefore the surface density is infinite along the line of inter-

section.

It is clear that the surface density will vanish when the conducting
surface cuts itself in such a way that the angle less than two right angles
is external to the conductor; and that the surface density will become

infinite when the angle greater than two right angles is external to the

conductor. This becomes obvious on examining the arrangement of the

lines of force in the neighbourhood of the angle.

FIG. 24. Angle greater than two right angles external to conductor.

FIG. 2,5. Angle less than two right angles external to conductor.

71. The arrangement shewn in fig. 25 is such as will be found at the

point of a lightning conductor. The object of the lightning conductor is

to ensure that the intensity shall be greater at its point than on any part
of the buildings it is designed to protect. The discharge will therefore take
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place from the point of the lightning conductor sooner than from any part of

the building, and by putting the conductor in good electrical communication

with the earth, it is possible to ensure that no harm shall be done to the

main buildings by the electrical discharge.

An application of the same principle will explain the danger to a human

being or animal of standing in the open air in the presence of a thunder cloud,

or of standing under an isolated tree. The upward point, whether the head

of man or animal, or the summit of the tree, tends to collect the lines of force

which pass from the cloud to the ground, so that a discharge of electricity

will take place from the head or tree rather than from the ground.

Fm. 26.

72. The property of lines of force of clustering together in this way is

utilised also in the manufacture of electrical instruments. A cage of wire is

Fm. 27.

placed round the instrument and almost all the lines of force from any

charges which there may be outside the instrument will cluster together on

the convex surfaces of the wire. Very few lines of force escape through this

cage, so that the instrument inside the cage is hardly affected at all by any
electric phenomena which may take place outside it. Fig. 27 shews the

way in which lines of force are absorbed by a wire grating. It is drawn to

represent the lines of force of a uniform field meeting a plane grating placed
at right angles to the field of force.
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EXAMPLES.

v/1. Two particles each of mass m and charged with e units of electricity of the same

sign are suspended by strings each of length a from the same point; prove that the

inclination 6 of each string to the vertical is given by the equation

mga2 sin3 6 e2 cos 6.

2. Charges + 4e, e are placed at the points A, B, and C is the point of equilibrium.

Prove that the line of force which passes through C meets AB at an angle of 60 qt A and

at right angles at C. \f c^ /i^vux^ ,

W "GfcV

3. Find the angle at A (question 2) between AB and the line of force which leaves B
at right angles to AB.

LA. Two positive charges e and <?2 are placed at the points A and B respectively.

Shew that the tangent at infinity to the line of force which starts from ex making an angle

a with BA produced, makes an angle

with BA, and passes through the point C in AB such that

AC : CB=e2 : e
v

.

5. Point charges +e, - e are placed at the points A, B. The line of force which leaves

\A making an angle a with AB meets the plane which bisects AB at right angles, in P.

STiew that

sin<W2sin
P
-^.

ft o

6. If any closed surface be drawn not enclosing a charged body or any part of one,

shew that at every point of a certain closed line on the surface it intersects the equi-

potential surface through the point at right angles.

7. The potential is given at four points near each other arid not all in one plane.

Obtain an approximate construction for the direction of the field in their neighbourhood.
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[
8. The potentials at the four corners of a small tetrahedron A, B, C, I) are Fl5 F2 ,

F3 ,
F4 respectively. O is the centre of gravity of masses MI at A, J/2 at -# J/s at 6Y

,

J!/4 at /). Shew that the potential at G is

9. Charges 3e, e,e are placed at J, Z?, (7 respectively, where 5 is the middle

ifoint of AC. Draw a rough diagram of the lines of force; shew that a line of force which

starts from A making an angle a with AB>cos~ l
( %) will not reach B or C, and shew

that the asymptote of the line of force for which a= cos~ 1
(- 1) is at right angles to AC.

\ 10. If there are three electrified points A, Z?, C in a straight line, such that AC=f,

BC=
^r , and the charges are e, * and Fa respectively, shew that there is always a

spherical equipotential surface, and discuss the position of the points of equilibrium on

the line ABC when V=e
~rf^,

and when V=e^~ .

N 11. A and C are spherical conductors with charges e+ e' and e respectively. Shew

that there is either a point or a line of equilibrium, depending on the relative size and

positions of the spheres, and on e'/e. Draw a diagram for each case giving the lines of

force and the sections of the equipotentials by a plane through the centres.

12. An electrified body is placed in the vicinity of a conductor in the form of a

surface of anticlastic curvature. Shew that at that point of any line of force passing from

the body to the conductor, at which the force is a minimum, the principal curvatures of

the equipotential surface are equal and opposite.

13. Shew that it is not possible for every family of non-intersecting surfaces in free

space to be a family of equipotentials, and that the condition that the family of surfaces

/(A,.*,y, *)=0

shall be capable of being equipotentials is that

axv /3x /ax

shall be a function of A only.

-* 14. In the last question, if the condition is satisfied find the potential.

15. Shew that the confocal ellipsoids

xz
y* _f!_ = 1

can form a system of equipotentials, and express the potential as a function of A.

16. If two charged concentric shells be connected by a wire, the inner one is wholly
fj

'

i

discharged. If the law of force were -j^, prove that there would be a charge B on the

inner shell such that if A were the charge on the outer shell, and /, g the sum and differ-

ence of the radii,

2gB= - Ap {(f-g] log (/+</)
-

approximately .
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\J 17. Three intinite parallel wires cut a plane perpendicular to them in the angular

points A, B, C of an equilateral triangle, and have charges e, e, -e per unit length

respectively. Prove that the extreme lines of force which pass from A to C make at

starting angles
- IT and TC with AC, provided that e'^>2e.

18. A negative point charge
- e>2 lies between two positive point charges el and e3 on

the line joining them and at distances a, /3 from them respectively. Shew that, if the

magnitudes of the charges are given by

-^ = = 2
^ , and if 1

there is a circle at every point of which the force vanishes. Determine the general form

of the equipotential surface on which this circle lies.

19. Charges of electricity els -e.2 ,
e3 , (&3>el ) are placed in a straight line, the

negative charge being midway between the other two. Shew that, if 4e2 He between

(e^-efy and (e^ + e^}\ the number of unit tubes of force that pass from ^ to e2 is



CHAPTER III

CONDUCTORS AND CONDENSERS

73. BY a conductor, as previously explained, is meant any body or

system of bodies, such that electricity can flow freely over the whole. When

electricity is at rest on such a conductor, we have seen ( 44) that the charge

will reside entirely on the outer surface, and ( 37) that the potential will

be constant over this surface.

A conductor may be used for the storage of electricity, but it is found

that a much more efficient arrangement is obtained by taking two or more

conductors generally thin plates of metal and arranging them in a certain

way. This arrangement for storing electricity is spoken of as a "con-

denser." In the present Chapter we shall discuss the theory of single

conductors and of condensers, working out in full the theory of some of the

simpler cases.

CONDUCTORS.

A Spherical Conductor.

74. The simplest example of a conductor is supplied by a sphere, it

being supposed that the sphere is so far removed from all other bodies that

their influence may be neglected. In this case it is obvious from symmetry
that the charge will spread itself uniformly over the surface. Thus if e is

the charge, and a the radius, the surface density a is given by

total charge e

total area of surface 4?ra2
'

The electric intensity at the surface being, as we have seen, equal to

47T0-, is e/a?.

From symmetry the direction of the intensity at any point outside the

sphere must be in a direction passing through the centre. To find the

amount of this intensity at a distance r from the centre, let us draw a sphere
of radius r, concentric with the conductor. At every point of this sphere
the amount of the outward electric intensity is by symmetry the same, say R,
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and its direction as we have seen is normal to the surface. Applying Gauss'

Theorem to this sphere, we find that the surface integral of normal intensity

\\NdS becomes simply R multiplied by the area of the surface 47rr2
,
so that

e
or R =

.

r2

This becomes e/a? at the surface, agreeing with the value previously

obtained.

Thus the electric force at any point is the same as if the charged sphere
were replaced by a point charge e, at the centre of the sphere. And, just

as in the case of a single point charge e, the potential at a point outside the

sphere, distant r from its centre, is

I)

so that at the surface of the sphere the potential is -
.

Inside the sphere, as has been proved in 37, the potential is constant,

and therefore equal to e/a, its value at the surface, while the electric intensity

vanishes.

As we gradually charge up the conductor, it appears that the potential
at the surface is always proportional to the charge of the conductor.

It is customary to speak of the potential at the surface of a conductor as
"
the potential of the conductor," and the ratio of the charge to this potential

is defined to be the "
capacity

"
of the conductor. From a general theorem,

which we shall soon arrive at, it will be seen that the ratio of charge to

potential remains the same throughout the process of charging any conductor

or condenser, so that in every case the capacity depends only on the shape
and size of the conductor or condenser in question. For a sphere, as we
have seen,

charge e

capacity = - -A -.
= - = a,

potential e_

a

so that the capacity of a sphere is equal to its radius.

A Cylindrical Conductor.

75. Let us next consider the distribution of electricity on a circular

cylinder, the cylinder either extending to infinity, or else having its ends so

far away from the parts under consideration that their influence may be

neglected.

As in the case of the sphere, the charge distributes itself symmetrically,
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so that if a, is the radius of the cylinder, and if it has a charge e per unit

length, we have

=

To find the intensity at any point outside the conductor, construct a Gauss'

surface by first drawing a cylinder of radius r, coaxal with the original

cylinder, and then cutting off a unit length by two parallel planes at

unit distance apart, perpendicular to the axis. From sym-

metry the force at every point is perpendicular to the axis

of the cylinder, so that the normal intensity vanishes at

every point of the plane ends of this Gauss' surface. The

surface integral of normal intensity will therefore consist

entirely of the contributions from the curved part of the

surface, and this curved part consists of a circular band, of

unit width and radius r hence of area 2?rr. If R is the

outward intensity at every point of this curved surface,

Gauss' Theorem supplies the relation

so that FIG. 28.

This, we notice, is independent of a, so that the intensity is the same as

it would be if a were very small, i.e., as if we had a fine wire electrified with

a charge e per unit length.

In the foregoing, we must suppose r to be so small, that at a distance r

from the cylinder the influence of the ends is still negligible in comparison
with that of the nearer parts of the cylinder, so that the investigation does

not hold for large values of r. It follows that we cannot find the potential

by integrating the intensity from infinity, as has been done in the cases of

the~ .point charge and of the sphere. We have, however, the general
differential equation

d R

so that in the present case, so long as r remains sufficiently small

giving upon integration

The constant of integration C cannot be determined without a knowledge
of the conditions at the ends of the cylinder. Thus for a long cylinder, the

intensity at points near the cylinder is independent of the conditions at the

ends, but the potential and capacity depend on these conditions, and are

therefore not investigated here.
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An Infinite Plane.

76. Suppose we have a plane extending to infinity in all directions, and

electrified with a charge a per unit area. From symmetry it is obvious that

the lines of force will be perpendicular to the plane at every point, so that

the tubes of force will be of uniform cross-section. Let us take as Gauss'

surface the tube of force which has as cross-section any element co of area

of the charged plane, this tube being closed by two cross-sections each of

area a) at distance r from the plane. If R is the intensity over either of

these cross-sections the contribution of each cross-section to Gauss' integral

is Ra), so that Gauss' Theorem gives at once

%R(t) = 47TCTW,

whence R =

The intensity is therefore the same at all distances from the plane.

The result that at the surface of the plane the intensity is 2-Tro-, may at

first seem to be in opposition to Coulomb's Theorem (57) which states that

the intensity at the surface of a conductor is 47T0-. It will, however, be seen

from the proof of this theorem, that it deals only with conductors in

which the conducting matter is of finite thickness; if we wish to regard

the electrified plane as a conductor of this kind we must regard the

total electrification as being divided between the two faces, the surface

density being |<r on each, and Coulomb's Theorem then gives the correct

result.

If the plane is not actually infinite, the result obtained for an infinite

plane will hold within a region which is sufficiently near to the plane for the

edges to have no influence. As in the former case of the cylinder, we can

obtain the potential within this region by integration. If r measures the

perpendicular distance from the plane

so that F=G'-27rar,

and, as before, the constant of integration cannot be determined without

a knowledge of the conditions at the edges.

77. It is instructive to compare the three expressions which have been

obtained for the electric intensity at points outside a charged sphere, cylinder

and plane respectively. Taking r to be the distance from the centre of the
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sphere, from the axis of the cylinder, and from the plane, respectively, we

have found that

outside the sphere, R is proportional to
,

outside the cylinder, R is proportional to
,

outside the plane, R is constant.

From the point of view of tubes of force, these results are obvious enough
deductions from the theorem that the intensity varies inversely as the cross-

section of a tube of force. The lines of force from a sphere meet in a point,

the centre of the sphere, so that the tubes of force are cones, with cross-

section proportional to the square of the distance from the vertex. The
lines of force from a cylinder all meet a line, the axis of the cylinder, at right

angles, so that the tubes of force are wedges, with cross-section proportional
to the distance from the edge. And the lines of force from a plane all meet

the plane at right angles, so that the tubes of force are prisms, of which the

cross-section is constant.

78. We may also examine the results from the point of view which

regards the electric intensity as the resultant of the attractions or repulsions
from different elements of the charged surface.

Let us first consider the charged plane. Let P, P' be two points at

distances r, r from the plane, and let Q be the

foot of the perpendicular from either on to the

plane. If P is near to Q, it will be seen that

almost the whole of the intensity at P is due

to the charges in the immediate neighbourhood
of Q. The more distant parts contribute forces

which make angles with QP nearly equal to a

right angle, and after being resolved along QP
these forces hardly contribute anything to the

resultant intensity at P.

Owing to the greater distance of the point P',

the forces from given elements of the plane are

smaller at P' than at P, but have to be resolved

through a smaller angle. The forces from the

regions near Q are greatly diminished from the

former cause and are hardly affected by the latter.

The forces from remote regions are hardly affected

by the former circumstance, but their effect is

greatly increased by the latter. Thus on moving FIG. 29.
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from P to P' the forces exerted by regions near Q decrease in efficiency,

while those exerted by more remote regions gain. The result that the

total resultant intensity is the same at P' as at P, shews that the

decrease of the one just balances the gain of the other.

If we replace the infinite plane by a sphere, we find that the force at

a near point P is as before contributed

almost entirely by the charges in the

neighbourhood of Q. On moving from P
to P', these forces are diminished just as

;

before, but the number of distant elements

of area which now add contributions to

the intensity at P' is much less than

before. Thus the gain in the contributions FIG. 30.

from these elements does not suffice to

balance the diminution in the contributions from the regions near Q, so that

the resultant intensity falls off on withdrawing from P to P'.

The case of a cylinder is of course intermediate between that of a plane

and that of a sphere.

CONDENSERS.

Spherical Condenser.

79. Suppose that we enclose the spherical conductor of radius a dis-

cussed in 74, inside a second spherical conductor of internal radius 6, the

two conductors being placed so as to be concentric and insulated from one

another.

It again appears from symmetry that the intensity at every point must

be in a direction passing through the common centre of the two spheres, and

must be the same in amount at every point of any sphere concentric with

the two conducting spheres. Let us imagine a concentric sphere of radius r

drawn between the two conductors, and when the charge on the inner sphere

is e, let the intensity at every point of the imaginary sphere of radius r be

R. Then, as before, Gauss' Theorem, applied to the sphere of radius r, gives

the relation
= 47T0,

so that R =
.

r2

This only holds for values of r intermediate between a and 6, so that to

obtain the potential we cannot integrate from infinity, but must use the

differential equation. This is

dV_ e
~ ~

'
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which upon integration gives

F=<7 + - ................................. (27).

We can determine the constant of integration as soon as we know the

potential of either of the spheres. Suppose for instance that the outer

sphere is put to earth so that V over the sphere r = b, then we obtain at

once from equation (27)

so that C = e/b, and equation (27) becomes

V- e-- e
-
r b'

On taking r = a, we find that the potential of the inner sphere is el-- r
J

,

and its charge is e, so that the capacity of the condenser is

1 ab
or11 b-a'

a b

80. In the more general case in which the outer sphere is not put to

earth, let us suppose that Va ,
T are the potentials of the two spheres of

radii a and b, so that, from equation (27)

15-0+J
Then we have on subtraction

so that the capacity is ~ =, .

The lines of force which start from the inner sphere must all end on the

inner surface of the outer sphere, and each line of force has equal and

opposite charges at its two ends. Thus if the charge on the inner sphere is

e, that on the inner surface of the outer .sphere must be e. We can there-

fore regard the capacity of the condenser as being the charge on either of

the two spheres divided by the difference of potential, the fraction being
taken always positive. On this view, however, we leave out of account any

charge which there may be on the outer surface of the outer sphere : this

is not regarded as part of the charge of the condenser.
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An examination of the expression for the capacity,

ab

b a
'

will shew that it can be made as large as we please by making b a

sufficiently small. This explains why a condenser is so much more

efficient for the storage of electricity than a single conductor.

81. By taking more than two spheres we can form more complicated
condensers. Suppose, for instance, we take concentric spheres of radii

a, b, c in ascending order of magnitude, and connect both the spheres of

radii a and c to earth, that of radius b remaining insulated. Let V be the

potential of the middle sphere, and let el and ez be the total charges on its

inner and outer surfaces. Regarding the inner surface of the middle sphere
and the surface of the innermost sphere as forming a single spherical

condenser, we have

Vab

and again regarding the outer surface of the middle sphere and the outermost

sphere as forming a second spherical condenser, we have

Vbc
2

c b'

Hence the total charge E of the middle sheet is given by

E' =
#1 + #2

nb be

so that regarded as a single condenser, the system of three spheres has a

capacity

ab be

b a c b
'

which is equal to the sum of the capacities of the two constituent condensers

into which we have resolved the system. This is a special case of a general
theorem to be given later ( 85).

Coaxal Cylinders.

82. A conducting circular cylinder of radius a surrounded by a second

coaxal cylinder of internal radius b will form a condenser. If e is the charge
on the inner cylinder per unit length, and if V is the potential at any point

between the two cylinders at a distance r from their common axis, we have,

as in 75,
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and it is now possible to determine the constant C as soon as the potential of

either cylinder is known.

Let Va ,
Vb be the potentials of the inner and outer cylinders, so that

Va = C - 2e log a,

Vb =C-2e\ogb.

By subtraction Va - Vb = 2e log (

-
)

,

v*/

so that the capacity is

per unit length.

Parallel Plate Condenser.

83. This condenser consists of two parallel plates facing one another,

say at distance d apart. Lines of force will pass from the inner face of one

to the inner face of the other, and in regions sufficiently far removed from

the edges of the plate these lines of force will be perpendicular to the plate

throughout their length. If a- is the surface density of electrification of one

plate, that of the other will be or. Since the cross-section of a tube

remains the same throughout its length, and since the electric intensity

varies as the cross-section, it follows that the intensity must be the same

throughout the whole length of a tube, and this, by Coulomb's Theorem,

will be 47T<7, ifcs value at the surface of either plate. Hence the difference of

potential between the two plates, obtained by integrating the intensity 4?ro-

along a line of force, will be

The capacity per unit area is equal to the charge per unit area a

divided by this difference of potential, and is therefore

1

The capacity of a condenser formed of two parallel plates, each of area A,
is therefore

A

except for a correction required by the irregularities in the lines of force

near the edges of the plates.

Inductive Capacity.

84. It was found by Cavendish, and afterwards independently by

Faraday, that the capacity of a condenser depends not only on the shape
and size of the conducting plates but also on the nature of the insulating

material, or dielectric to use Faraday's word, by which they are separated.
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It is further found that on replacing air by some' other dielectric, the

capacity of a condenser is altered in a ratio which is independent of the

shape and size of the condenser, and which depends only on the dielectric

itself. This constant ratio is called the specific inductive capacity of the

dielectric, the inductive capacity of air being taken to be unity.

We shall discuss the theory of dielectrics in a later Chapter. At present
it will be enough to know that if G is the capacity of a condenser when its

plates are separated by air, then its capacity, when the plates are separated

by any dielectric, will be KG, where K is the inductive capacity of the

particular dielectric used. The capacities calculated in this Chapter have all

been calculated on the supposition that there is air between the plates, so

that when the dielectric is different from air each capacity must be multi-

plied by K.

The following table will give some idea of the values of K actually observed for

different dielectrics. For a great many substances the value of K is found to vary widely
for different specimens of the material and for different physical conditions.

Sulphur 2-8 to 4'0. Ebonite 2'0 to 3'15.

Mica 6-0 to 8'0. Water 75 to 81.

Glass 6-6 to 9-9. Ice at -23 78U
Paraffin 2-0 to 2-3. Ice at - 185 2 "4 to 2 '9.

The values of K for some gases are given on p. 132.

COMPOUND CONDENSERS.

Condensers in Parallel.

85. Let us suppose that we take any number of condensers of capacities

Clt Cz ,
... and connect all their high potential plates together by a conducting

\
FIG. 31.

wire, and all their low potential plates together in the same way. This is

known as connecting the condensers in parallel.

The high potential plates have now all the same potential, say Fi, while

the low potential plates have all the same potential, say F . If e1} 2 >
are

the charges on the separate high potential plates, we have

,
= C,(F1 -F.>,etc.,
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and the total charge E is given by

[CH. Ill

Thus the system of condensers behaves like a single condenser of capacity

It will be noticed that the compound condenser discussed in 81 con

sisted virtually of two simple spherical condensers connected in parallel.

Condensers in Cascade.

86. We might, however, connect the low potential plate of the first to

the high potential plate of the second, the low potential plate of the second

to the high potential plate of the third, and so on. This is known as

arranging the condensers in cascade.

FIG. 32.

Suppose that the high potential plate of the first has a charge e. This

induces a charge e on the low potential plate, and since this plate together
with the high potential plate of the second condenser now form a single

insulated conductor, there must be a charge 4- e on the high potential plate

of the second condenser. This induces a charge e on the low potential

plate of this condenser, and so on indefinitely ;
each high potential plate will

have a charge + e, each low potential plate a charge e.

Thus the difference of potential of the two plates of the first condenser

will be e/Clt that of the second condenser will be e/Cz ,
and so on, so that the

total fall of potential from the high potential plate of the first to the low

potential plate of the last will be

1 1
p i ^i i

We see that the arrangement acts like a single condenser of capacity

1



85-89] The Leyden Jar 77

PRACTICAL CONDENSERS.

Practical Units.

87. As will be explained more fully later, the practical units of

electricians are entirely different from the theoretical units in which we

have so far supposed measurements to be made. The practical unit of

capacity is called the farad, and is equal, very approximately, to 9 x 1011 times

the theoretical C.G.S. electrostatic unit, i.e., is equal to the actual capacity

of a sphere of radius 9 x 1011 cms. This unit is too large for most purposes,

so that it is convenient to introduce a subsidiary unit the microfarad-

equal to a millionth of the farad, and therefore to 9 x 105
C.G.S. electrostatic

units. Standard condensers can be obtained of which the capacity is equal

to a given fraction, frequently one-third or one-fifth, of the microfarad.

The Leyden Jar.

88. For experimental purposes the commonest form of condenser is the

Leyden. Jar. This consists essentially of a glass vessel, bottle-shaped, of

which the greater part of the surface is coated

inside and outside with tinfoil. The two coatings

form the two plates of the condenser, contact with

the inner coating being established by a brass

rod which comes through the neck of the bottle,

the lower end having attached to it a chain

which rests on the inner coating of tinfoil.

To form a rough numerical estimate of the

capacity of a Leyden Jar, let us suppose that the

thickness of the glass is \ cm., that its specific

inductive capacity is 7, and that the area covered

with tinfoil is 400 sq. cms. Neglecting corrections required by the irregu-

larities in the lines of force at the edges and at the sharp angles at the

bottom of the jar, and regarding the whole system as a single parallel plate

condenser, we obtain as an approximate value for the capacity

KA
.

,
electrostatic units,

o

/TX

FIG. 33.

in which we must put K = 7, A = 400 and d = \. On substituting these

values the capacity is found to be approximately 450 electrostatic units,

or about - microfarad.

Parallel Plates.

89. A more convenient condenser for some purposes is a modification of

the parallel plate condenser. Let us suppose that we arrange n plates, each
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of area A, parallel to one another, the distance between any two adjacent

plates being d. If alternate plates are joined together so as to be in electrical

contact the space between each adjacent pair of plates may be regarded as

FIG. 34.

KA
forming a single parallel plate condenser of capacity j /

>
so that the capacity

of the compound condenser is (n 1) KA/4vrd. By making n large and d

small, we can make this capacity large without causing the apparatus to

occupy an unduly large amount of space. For this reason standard con-

densers are usually made of this pattern.

90. Guard Ring. In both the condensers described the capacity can

only be calculated approximately. Lord Kelvin has devised a modification

of the parallel plate condenser in which the error caused by the irregularities

of the lines of force near the edges is dispensed with, so that it is possible

accurately to calculate the capacity from measurements of the plates.

The principle consists in making one plate B of the condenser larger than

the second plate A, the remainder of the space opposite B being occupied by
a "

guard ring
" C which fits A so closely as almost to touch, and is in the

same plane with it. The guard ring C and the plate A, if at the same

potential, may without serious error be regarded as forming a single plate of

a parallel plate condenser of which the other plate is B. The irregularities

in the tubes of force now occur at the outer edge of the guard ring (7, while

the lines of force from A to B are perfectly straight and uniform. Thus if A
is the area of the plate A its capacity may be supposed, with great accuracy,
to be

where d is the distance between the plates A and B.
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Submarine Gables.

91. Unfortunately for practical electricians, a submarine cable forms

a condenser, of which the capacity is frequently very considerable. The

effect of this upon the transmission of signals will be discussed later. A cable

consists generally of a core of strands of copper wire surrounded by a layer of

insulating material, the whole being enclosed in a sheathing of iron wire.

This arrangement acts as a condenser of the type of the coaxal cylinders

investigated in 82, the core forming the inner cylinder whilst the iron

sheathing and the sea outside form the outer cylinder.

In the capacity formula obtained in 82, namely

K

let us suppose that b = 2a, and that K = 3*2, this being about the value for

the insulating material generally used. Using the value loge 2
= '69315, we

find a capacity of 2'31 electrostatic units per unit length. Thus a cable

2000 miles in length has a capacity equal to that of a sphere of radius

2000 x 2'31 miles, i.e., of a sphere greater than the earth. In practical units,

the capacity of such a cable would be about 827 microfarads.

MECHANICAL FORCE ON A CONDUCTING SURFACE.

92. Let Q be any point on the surface of a conductor, and let the

surface-density at the point Q be <r. Let us draw any small area dS

Fm. 36.

enclosing Q. By taking dS sufficiently small, we may regard the area as

perfectly plane, and the charge on the area will be crdS. The electricity on

the remainder of the conductor will exert forces of attraction or repulsion on

the charge vdS, and these forces will shew themselves as a mechanical force

acting on the element of area dS of the conductor. We require to find the

amount of this mechanical force.
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The electric intensity at a point near Q and just outside the conductor is

47ra, by Coulomb's Law, and its direction is normally away from the surface.

Of this intensity, part arises from the charge on dS itself, and part from the

charges on the remainder of the conductor. As regards the first part, which

arises from the charge on dS itself, we may notice that when we are con-

sidering a point sufficiently close to the surface, the element dS may be

treated as an infinite electrified plane, the electrification being of uniform

density <r. The intensity arising from the electrification of dS at such a

point is accordingly an intensity 27ro- normally away from the surface. Since

the total intensity is 47r<r normally away from the surface, it follows that the

intensity arising from the electrification of the parts of the conductor other

than dS must also be 27rcr normally away from the surface. It is the forces

composing this intensity which produce the mechanical action on dS.

The charge on dS being 0dS, the total force will be 27rcr-dS normally away
from the surface. Thus per unit area there is a force ^Tro-'

2

tending to repel

the charge normally away from the surface. The charge is prevented from

leaving the surface of the conductor by the action between electricity and

matter which has already been explained. Action and reaction being equal
and opposite, it follows that there is a mechanical force 2-Tra'

2

per unit area

acting normally outwards on the material surface of the conductor.

Remembering that R 4?r(7, we find that the mechanical force can also

be expressed as ^
-
per unit area.

07T

93. Let us try to form some estimate of the magnitude of this mechanical

force as compared with other mechanical forces with which we are more

familiar. We have already mentioned Maxwell's estimate that a gramme of

gold, beaten into a gold-leaf one square metre in area, can hold a charge of

60,000 electrostatic units. This gives 3 units per square centimetre as the

charge on each face, giving for the intensity at the surface,

R = 47T0- = 38 c.G.s. units,

and for the mechanical force

jR2

27Tcr
2 = = 56 dynes per. sq. cm.

Lord Kelvin, however, found that air was capable of sustaining a

tension of 9600 grains wt. per sq. foot, or about 700 dynes per sq. cm.

This gives R = 130, a- = 10.

R2

Taking R = 100 as a large value of R, we find - - = 400 dynes per
OTT

sq. cm. The pressure of a normal atmosphere is

1,013,570 dynes per sq. cm.,



92-94] Electrified Soap-Bubble 81

so that the force on the conducting surface would be only about ^^ of an

atmosphere : say *3 mm. of mercury.

If a gold-leaf is beaten so thin that 1 gm. occupies 1 sq. metre of area,

the weight of this is '0981 dyne per sq. cm. In order that 2?ro-
2

may be

equal to '0981, we must have o- = *1249. Thus a small piece of gold-leaf

would be lifted up from a charged surface on which it rested as soon as the

surface acquired a charge of about of a unit per sq. cm.

Electrified Soap-Bubble.

94. As has already been said, this mechanical force shews itself well on

electrifying a soap-bubble.

Let us first suppose a closed soap-bubble blown, of radius a. If the

atmospheric pressure is IT, the pressure inside will be somewhat greater than

II, the resulting outward force being just balanced by the tension of the

surface of the bubble. If, however, the bubble is electrified there will be an

additional force acting normally outwards on the surface of the bubble, namely
the force of amount 2-Tro'

2

per unit area just investigated, and the bubble will

expand until equilibrium is reached between this and the other forces acting

on the surface.

As the electrification and consequently the radius change, the pressure

inside will vary inversely as the volume, and therefore inversely as a3
. Let

FIG. 37.

us, then, suppose the pressure to be tc/a
3
. Consider the equilibrium of the

small element of surface cut off by a circular cone through the centre, of small

semi-vertical angle 6. This element is a circle of radius a0, and therefore

of area 7ra2 2
. The forces acting are :

(i) The atmospheric pressure Il7ra2 2
normally inwards,

(ii) The internal pressure vra2^2

normally outwards.
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(iii) The mechanical force due to electrification, 2-7r<7
2 x Tra2^2

normally
outwards.

(iv) The system of tensions acting in the surface of the bubble across

the boundary of the element.

If T is the tension per unit length, the tension across any element of

length ds of the small circle will be Tds acting at an angle 6 with the tangent

plane at P, the centre of the circle. This may be resolved into Tds cos 6 in

the tangent plane, and Tds sin along PO. Combining the forces all round

the small circle of circumference 2jraO, we find that the components in the

tangent plane destroy one another, while those along PO combine into a

resultant 2-7ra0 x Tsin 0. To a sufficient approximation this may be written

as 27ra02 T.

The equation of equilibrium of the element of area is accordingly

or, simplifying,

- 27r<7
27ra2 2 +

^=0
a

0,

.(28).

Let a be the radius when the bubble is uncharged, and let the radius be

oh when the bubble has a charge e, so that

a- =

Then

n-A-

3
a<>

6*

We can without serious error assume T to be the same in the two cases.

If we eliminate T from these two equations, we obtain

I 1 \ e2

giving the charge in terms of the radii in the charged and uncharged states.

95. We have seen ( 93) that the maximum pressure on the surface

which electrification can produce is only about ^-^ atmosphere : thus it is

not possible for electrification to change the pressure inside by more than

about ^-g^ atmosphere, so that the increase in the size of the bubble is

necessarily very slight.

If, however, the bubble is blown on a tube which is open to the air,

equation (28) becomes
T

7T<7
2 = -

.

a
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As a rough approximation, we may still regard the bubble as a uniformly

charged sphere, so that if V is its potential,

o- = F/47ra,

and the relation is F2 = 16-rraT,

giving V in terms of the radius of the bubble, if the tension T is known. In

this case the electrification can be made to produce a large change in the

radius, by using lms for which T is very small.

Energy of Discharge.

96. On discharging a conductor or condenser, a certain amount of

energy is set free. This may shew itself in various ways, e.g. as a spark or

sound (as in lightning and thunder), the heating of a wire, or the piercing

of a hole through a solid dielectric. The energy thus liberated has been

previously stored up in charging the conductor or condenser.

To calculate the amount of this energy, let us suppose that one plate of

a condenser is to earth, and that the other plate has a charge e and is at

potential F, so that if C is the capacity of the condenser,

e = CV (29).

If we bring up an additional charge de from infinity, the work to be

done is, in accordance with the definition of potential, Vde. This is equal

to d W, where W denotes the total work done in charging the condenser up
to this stage, so that

dW=Vde

On integration we obtain

P Ci P
-~- by equation (29).

W .(30),

no constant of integration being added since W must vanish when e = 0.

This expression gives the work done in charging a condenser, and therefore

gives also the energy of discharge, which may be used in creating a spark,

in heating a wire, etc.

Clearly an exactly similar investigation will apply to a single conductor,

so that expression (30) gives the energy either of a condenser or of a single

conductor. Using the relation e = CV, the energy may be expressed in any
one of the forms

97. As an example of the use of this formula, let us suppose that we

have a parallel plate condenser, the area of each plate being A, and the

62



84 Conductors and Condensers [CH. Ill

distance of the plates being d, so that C = A/4irrd) by 83. Let cr be the

surface density of the high potential plate, so that e = <rA. Let the low

potential plate be at zero potential, then the potential of the high potential

plate is

and the electrical energy is

W =

Now let us pull the plates apart, so that d is increased to d'. The

electrical energy is now 27rd'(r
2
A, so that there has been an increase of

electrical energy of amount

%7rcr*A (d' d).

It is easy to see that this exactly represents the work done in separating

the two plates. The mechanical force on either plate is 27rcr
2

per unit area,

so that the total mechanical force on a plate is 27rcrzA. Obviously, then,

the above is the work done in separating the plates through a distance

d'-d.

It appears from this that a parallel plate condenser affords a ready means

of obtaining electrical energy at the expense of mechanical. A more valuable

property of such a condenser is that it enables us to increase an initial

difference of potential. The initial difference of potential

4-7Tda

is increased, by the separation, to

4<7rd'o:

By taking d small and d
f

large, an initial small difference of potential

may be multiplied almost indefinitely, and a potential difference which is

too small to observe may be increased until it is sufficiently great to affect

an instrument. By making use of this principle, Volta first succeeded in

detecting the difference of electrostatic potential between the two terminals

of an electric battery.
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EXAMPLES.

1. The two plates of a parallel plate"condenser are each of area A, and the distance

between them is d, this distance being small compared with the size of the plates. Find

the attraction between them when charged to potential difference F, neglecting the

irregularities caused by the edges of the plates. Find also the energy set free when the

plates are connected by a wire.
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2. A sheet of metal of thickness t is introduced between the two plates of a parallel

plate condenser which are at a distance d apart, and is placed so as to be parallel to the

plates. Shew that the capacity of the condenser is increased by an amount

t

4ird(d-t)

per unit area. Examine the case in which t is very nearly equal to d.

3. A high-pressure main consists first of a central conductor, which is a copper tube

of inner and outer diameters of^ and ^ inches. The outer conductor is a second copper

tube coaxal with the first, from which it is separated by insulating material, and of

diameters Iff and l}f inches. Outside this is more insulating material, and enclosing

the whole is an iron tube of internal diameter 2^- inches. The capacity of the conductor

is found to be -367 microfarad per mile : calculate the inductive capacity of the insulating

material.

4. An infinite plane is charged to surface density <r,
and P is a point distant half an

inch from the plane. Shew that of the total intensity 770- at P, half is due to the charges

at points which are within one inch of P, and half to the charges beyond.

5. A disc of vulcanite (non-conducting) of radius 5 inches, is charged to a uniform

surface density a- by friction. Find the electric intensities at points on the axis of the

disc distant respectively 1, 3, 5, 7 inches from the surface.

6. A condenser consists of a sphere of radius a surrounded by a concentric spherical

shell of radius b. The inner sphere is put to earth, and the outer shell is insulated.

b2

Shew that the capacity of the condenser so formed is , .

7. Four equal large conducting plates A, B, C, D are fixed parallel to one another.

A and D are connected to earth, B has a charge E per unit area, and C a charge E' per

unit area. The distance between A and B is a, between B and C is 6, and between C and

D is c. Find the potentials of B and C.

\/8. A circular gold-leaf of radius b is laid on the surface of a charged conducting

sphere of radius a, a being large compared to b. Prove that the loss of electrical energy

in removing the leaf from the conductor assuming that it carries away its whole charge

is approximately %b
2E2

la
3
,
where E is the charge of the conductor, and the capacity of the

leaf is comparable to b.

9. Two condensers of capacities GI and (72 ,
and possessing initially charges Qi and $2 >

are connected in parallel. Shew that there is a loss of energy of amount

10. Two Leyden Jars A, B have capacities Ci, C2 respectively. A is charged and a

spark taken : it is then charged as before and a spark passed between the knobs of

A and B. A and B are then separated and are each discharged by a spark. Shew that

the energies of the four sparks are in the ratio

11. Assuming an adequate number of condensers of equal capacity (7,
shew how a

compound condenser can be formed of equivalent capacity 0C, where B is any rational

number.
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12. Three insulated concentric spherical conductors, whose radii in ascending order

of magnitude are a, 6, c, have charges eit e2 ,
e3 respectively, find their potentials and shew

that if the innermost sphere be connected to earth the potential of the outermost is

diminished by

I 13. A conducting sphere of radius a is surrounded by two thin concentric spherical

''conducting shells of radii b and c, the intervening spaces being filled with dielectrics of

inductive capacities K and L respectively. If the shell b receives a charge E, the other

two being uncharged, determine the loss of energy and the potential at any point when

ijhe spheres A and C are connected by a wire.

14. Three thin conducting sheets are in the form of concentric spheres of radii

a+ d, a, a c respectively. The dielectric between the outer and middle sheet is of

inductive capacity K, that between the middle and inner sheet is air. , At first the outer

sheet is uninsulated, the inner sheet is uncharged and insulated, the middle sheet is

charged to potential V and insulated. The inner sheet is now uninsulated without

connection with the middle sheet. Prove that the potential of the middle sheet falls to

Kc(a+d)+d(a-cy

^X" 15. Two insulated conductors A and B are geometrically similar, the ratio of their

linear dimensions being as L to L'. The conductors are placed so as to be out of each

other's field of induction. The potential of A is V and its charge is E, the potential

of B is V and its charge is E'. The conductors are then connected by a thin wire.

Prove that, after electrostatic equilibrium has been restored, the loss of electrostatic

energy is

(EL'-E'L)(V-V'}
/ L + L'

16. If two surfaces be taken in any family of equipotentials in free space, and two

metal conductors formed so as to occupy their positions, then the capacity of the

C1 C1

condenser thus formed is n
1

^ ,
where Ci, C2 are the capacities of the external and

t/i-C2

internal conductors when existing alone in an infinite field.

17. A conductor (B) with one internal cavity of radius b is kept at potential U. A
conducting sphere (.4), of radius a, at great height above B contains in a cavity water

which leaks down a very thin wire passing without contact into the cavity of B through
a hole in the top of B. At the end of the wire spherical drops are formed, concentric

with the cavity ; and, when of radius d, they fall passing without contact through a small

hole in the bottom of B, and are received in a cavity of a third conductor (C) of capacity c

at a great distance below B. Initially, before leaking commences, the conductors A and G
are uncharged. Prove that after the rth drop has fallen the potential of C is

^

where the disturbing effect of the wire and hole on the capacities is neglected.

18. An insulated spherical conductor, formed of two hemispherical shells in contact,

whose inner and outer radii are b and b'} has within it a concentric spherical conductor of

radius a, and without it another spherical conductor of which the internal radius is c.

These two conductors are earth-connected and the middle one receives a charge. Shew
that the two shells will not separate if
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19. Outside a spherical charged conductor there is a concentric insulated but un-

charged conducting spherical shell, which consists of two segments. Prove that the two

segments will not separate if the distance of the separating plane from the centre is less

than

ab

where <z, b are the internal and external radii of the shell.

20. A soap-bubble of radius a is formed by a film of tension T, the external

^mospheric pressure being II. The bubble is touched by a wire from a large conductor

at potential F", and the film is an electrical conductor. Prove that its radius increases to

r, given by
V*r

n(r^-a^ + 2T(r2 -az
}
=^-.

O7T

21. If the radius and tension of a spherical soap-bubble be a and T respectively,

shew that the charge of electricity required to expand the
'

bubble to twice its linear

dimensions would be

n being the atmospheric pressure.

22. A thin spherical conducting envelope, of tension T for all magnitudes of its

radius, and with no air inside or outside, is insulated and charged with a quantity Q of

electricity. Prove that the total gain in mechanical energy involved in bringing a charge

q from an infinite distance and placing it on the envelope, which both initially and finally

is in mechanical equilibrium, is

23. A spherical soap-bubble is blown inside another concentric with it, and the

former has a charge E of electricity, the latter being originally uncharged. The latter

now has a small charge given to it. Shew that if a and 2a were the original radii, the

new radii will be approximately a +x, *2a+y, where

\ 2
J

where n is the atmospheric pressure, and T is the surface-tension of each bubble. -

, 24. Shew that the electric capacity of a conductor is less than that of any other

conductor which can completely surround it.

25. If the inner sphere of a concentric spherical condenser is moved slightly out of

position, so that the two spheres are no longer concentric, shew that the capacity is

increased.



CHAPTER IV

SYSTEMS OF CONDUCTORS

98. IN the present Chapter we discuss the general theory of an electro-

static field in which there are any number of conductors. The charge on

each conductor will of course influence the distribution of charges on the other

conductors by induction, and the problem is to investigate the distributions

of electricity which are to be expected after allowing for this mutual

induction.

We have seen that in an electrostatic field the potential cannot be a

maximum or a minimum except at points where electric charges occur. It

follows that the highest potential in the field must occur on a conductor, or

else at infinity, the latter case occurring only when the potential of every

conductor is negative. Excluding this case for the moment, there must be

one conductor of which the potential is higher than that anywhere else in

the field. Since lines of force run only from higher to lower potential ( 36),

it follows that no lines of force can enter this conductor, there being no

higher potential from which they can come, so that lines of force must leave

it at every point of its surface. In other words, its electrification must be

positive at every point.

So also, except when the potential of every conductor is positive, there

must be one conductor of which the potential is lower than that anywhere
else in the field, and the electrification at every point of this conductor must

be negative.

If the total charge on a conductor is nil, the total strength of the tubes

of force which enter it must be exactly equal to the total strength of the

tubes which leave it. There must therefore be both tubes which enter and

tubes which leave its surface, so that its potential must be intermediate

between the highest and lowest potentials in the field. For if its potential
were the highest in the field, no tubes could enter it, and vice versa. On

any such conductor the regions of positive electrification are separated from

regions of negative electrification by
"
lines of no electrification," these lines

being loci along which a = 0. In general the resultant intensity at any
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point of a conductor is. hirer. At any point of a line of no electrification,

this intensity vanishes, so that every point of a "
line of no electrification

"

is also a point of equilibrium.

At a point of equilibrium we have already seen that the equipotential

through the point cuts itself. A line of no electrification, however, lies

entirely on a single equipotential, so that this equipotential must cut itself

along the line of no electrification. Moreover, by 69, it must cut itself at

right angles, except when it consists of more than two sheets.

99. We can prove the two following propositions :

I. If the potential of every conductor in the field is given, there is only

one distribution of electric charges which will produce this distribution of

potential.

II. If the total charge of every conductor in the field is given, there is

only one way in which these charges can distribute themselves so as to be in

equilibrium.

If proposition I. is not true, let us suppose that there are two different

distributions of electricity which will produce the required potentials. Let

cr denote the surface density at any point in the first distribution, and a in

the second. Consider an imaginary distribution of electricity such that the

surface density at any point is cr cr'. The potential of this distribution

at any point P is

where the integration extends over the surfaces of all the conductors, and

r is the distance from P to the element dS. If P is a point on the surface

of any conductor,

dS and

are by hypothesis equal, each being equal to the given potential of the

conductor on which P lies. Thus

so that the supposed distribution of density cr a is such that the potential

vanishes over all the surfaces of the conductors. There can therefore be no

lines of force, so that there can be no charges, i.e., <r cr' = everywhere, so

that the two distributions are the same.

And again, if proposition II. is not true, let us suppose that there are

two different distributions cr and <r' such that the total charge on each

conductor has the assigned value. A distribution cr cr' now gives zero

as the total charge on each conductor. It follows, as in 98, that the
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potential of every conductor must be intermediate between the highest and

lowest potentials in the field, a conclusion which is obviously absurd, as

it prevents every conductor from having either the highest or the lowest

potential. It follows that the potentials of all the conductors must be equal,

so that again there can be no lines of force and no charges at any point,

i.e., cr = cr' everywhere.

It is clear from this that the distribution of electricity in the field is fully

specified when we know either

(i) the total charge on each conductor,

or (ii) the potential of each conductor.

SUPERPOSITION OF EFFECTS.

100. Suppose we have two equilibrium distributions :

(i) A distribution of which the surface density is cr at any point,

giving total charges El ,
Ez ,

... on the different conductors, and potentials

(ii) A distribution of surface density a', giving total charges EJ, E y
...

and potentials TJ
7

, T', ....

Consider a distribution of surface density cr -f cr'. Clearly the total

charges on the conductors will be El + E{ t
E2 + E2', . . .

,
and if VP is the

potential at any point P,

VP

where the notation is the same as before. If P is on the first conductor,

however, we know that

r so that VP = Tf + IT ;
and similarly when P is on any other conductor. Thus

the imaginary distribution of surface density is an equilibrium distribution,
since it makes the surface of each conductor an equipotential, and the

potentials are

T?+K', K + TJ', ....

The total charges, as we have seen, are El + E^, E2 + E2

f

, ..., and from
the proposition previously proved, it follows that the distribution of surface-

density cr + a-' is the only distribution corresponding to these charges.

We have accordingly arrived at the following propositiori :

// charges El} Ez , ... give rise to potentials Vl} V2 , ..., and if charges
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EI, E2', . . . gyve rise to potentials ]%, Vz', ..., then charges El + EI, E% + Ez', . . .

will give rise to potentials V + Vf, V2 + V%,

In words: if we superpose two systems of charges, the potentials produced
can be obtained by adding together the potentials corresponding to the two

component systems.

Clearly the proposition can be extended so as to apply to the superposition

of any number of systems.

We can obviously deduce the following :

If charges Ely E3 ,
... give rise to potentials Vl , TJ, ..., then charges

^, KE2 ,
... give rise to potentials KVly KV2 ,

....

101. Suppose now that we have n conductors fixed in position and

uncharged. Let us refer to these conductors as conductor (1), conductor (2),

etc. Suppose that the result of placing unit charge on conductor (1) and

leaving the others uncharged is to produce potentials

Pil, Pi2j Pin,

on the n conductors respectively, then the result of placing E^ on (1) and

leaving the others uncharged is to produce potentials

^11^1, puElt ...pln Ef.

Similarly, if placing unit charge on (2) and leaving the others uncharged

gives potentials

then placing E2 on (2) and leaving the others uncharged gives potentials

TJT ET Tjl

PZI-UZ, P<a&z> -Pzn-C'2'

In the same way we can calculate the result of placing E3 on (3), E4 on

(4), and so on.

If we now superpose the solutions we have obtained, we find that the

effect of simultaneous charges El} E2 ,
... En is to give potentials V1} V9 ,

... Vn ,

where

-pslEs + ... }

\-pS2Es +...[ (32).

etc.
. j

These equations give the potentials in terms of the charges. The

coefficients pn , p2l ,
... do not depend on either the potentials or charges,

being purely geometrical quantities, which depend on the size, shape and

position of the different conductors.
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Greens Reciprocation Theorem.

102. Let us suppose that charges ep , eQ , ... on elements of conducting
surfaces at P, Q, ... produce potentials VP , VQ ,

... at P, Q, ..., and that

similarly charges ep ,
eQ

f

,
... produce potentials VP

'

', VQ', .... Then Green's

Theorem states that

^epVp
1 = ZeP'VP ,

the summation extending in each case over all the charges in the field.

To prove the theorem, we need only notice that

the summation extending over all charges except ep , so that in ^eP VP the

coefficient of
-p^ is eP eQ from the term eP VP) and epe^ from the term

eqVQ . Thus

= 2,ePVP ,
from symmetry.

103. The following theorem follows at once :

If total charges El ,
E2 on the separate conductors of a system produce

potentials Tf, V2 , ..., and if charges E^ EJ, ... produce potentials W,
V2',..., then

^EV'^E'V .............................. (33),

the summation extending in each case over all the conductors.

To see the truth of this, we need only divide up the charges Elt E2 ,
...

into small charges ep , eQ , ... on the different small elements of the surfaces

of the conductors, and the proposition becomes identical with that just

proved.

104. Let us now consider the special case in which

^pn, =p12 , etc.;

and #/ = 0, #2

' = 1, #/ = #/=. ..=0,

S0tha* K'=^a, TJ'=pa, etc.

Then 2EV = p2l and 2E'V=p12 ,
so that the theorem just proved becomes

Pl2=P-2l-

In words : the potential to which (1) is raised by putting unit charge on

(2), all the other conductors being uncharged, is equal to the potential to

which (2) is raised by putting unit charge on (1), all the other conductors

being uncharged.
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As a special case, let us reduce conductor (2) to a point P, and suppose

that the system contains in addition only one other conductor (1). Then

The potential to which the conductor is raised by placing a unit charge

at P, the conductor itself being uncharged, is equal to the potential at P when

unit charge is placed on the conductor.

For instance, let the conductor be a sphere, and let the point P be at a

distance r from its centre. Unit charge on the sphere produces potential

- at P, so that unit charge at P raises the sphere to potential -.

Coefficients of Potential, Capacity and Induction.

105. The relations pl2
= pzl ,

etc. reduce the number of the coefficients

Pn> PIZ, Pnn, which occur in equations (32), to %n(n + l}. These coeffi-

cients are called the coefficients of potential of the n conductors. Knowing
the values of these coefficients, equations (31) give the potentials in terms

of the charges.

If we know the potentials Vl ,
V2) ..., we can obtain the values of the

charges by solving equations (32). We obtain a system of equations of

the form

etc.

(34).

The values of the qs obtained by actual solution of the equations (32), are

p*p**~p**

where

"Pnn

A= pu

Pm .(35),

Pin P%n ' - Pnn

Thus qr8 is the co-factor of prs in A, divided by A.

The relation qr8 = qsr

follows as an algebraical consequence of the relation pr8
=

obvious from the relation

,
or is at once

and equations (34), on taking the same sets of values as in 104.
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There are n coefficients of the type <?n , q^, ... qnn . These are known as

coefficients of capacity. There are ^n(n 1) coefficients of the type qrg ,
and

these are known as coefficients of induction.

From equations (34), it is clear that qu is the value of E^ when

TJ"=1. V2 = V3 =...=0. This leads to an extended definition of the

capacity of a conductor, in which account is taken of the influence of the

other conductors in the field. We define the capacity of the conductor 1,

when in the presence of conductors 2, 3, 4, ..., to be qu , namely, the charge

required to raise conductor 1 to unit potential, all the other conductors being

put to earth.

ENERGY OF A SYSTEM OF CHARGED CONDUCTORS.

106. Suppose we require to find the energy of a system of conductors,

their charges being Elt E2 ,
... En ,

so that their potentials are TJ", TJ, .... J

given by equations (32).

Let W denote the energy when the charges are kE1} kE2 , ...,kEn .

Corresponding to these charges, the potentials will be kVt) kV2 ,
... kVn . If

we bring up an additional small charge dk . E from infinity to conductor 1,

the work to be done will be dkEt . kVl ;
if we bring up dkE2 to conductor 2

the work, will be dkEzkV2 and so on. Let us now bring charges dkE
t
to 1,

dkEz to 2, dkEs to 3, ... dkEn to n. The total work done is

kdk(ElVl + E&+...+EnVn) ..................... (36),

and the final charges are

The energy in this state is the same function of k + dk as W is of k, and may
therefore be expressed as

Expression (36), the increase in energy, is therefore equal to -^- dk, whence
O/C

ciW~
so that on integration

No constant of integration is added, since W must vanish when k = 0.

Taking k = 1, we obtain the energy corresponding to the final charges
Elt EZ) ...En) in the form

. ...................... (37).
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If we substitute for the Vs their values in terms of the charges as given by

equations (31), we obtain

W = l(pnE1

* + 2pE1Et+pa>Ef+...) ............... (38),

and similarly from equations (34),

'W + ...)..... ............. (39).

107. If W is expressed as a function of the E's, we obtain by differ-

entiation of (38),

r) l/F

~pKEi+p*E* + --*+P*E*

Vi by equation (32).

This result is clear from other considerations. If we increase the charge

on conductor 1 by dElf the increase of energy is ^- dElt and is also V1dE1

since this is the work done on bringing up a new charge dE to potential Fj.

Thus on dividing by dElt we get

So also W=^i .................................... (41 )
oVi

as is at once obvious on differentiation of (39).

108. In changing the charges from El} E2) ... to EJ, E9

'

t
... let us suppose

that the potentials change from V1} V2) ... to K', T', .... The work done,

W W, is given by

W- W=
Since, however, by 103, ^EV = ^E'V, this expression for the work done

can either be written in the form

?,{E'V
f

-EV-(EV'-E'V)} t

which leads at once to

W'-W = ^(E'-E}(V'+ V) ..................(42);

or in the form ^ {E'V'-.EV+(EV - E'V)},

which leads to W ' - W = ^(V' - V)(E/ + E) .................. (43).

109. If the changes in the charges are only small, we may replace E' by
E + dE, and find that equation (42) reduces to

from which equation (40) is obvious, while equation (43) reduces to

dW = 2EdV,

leading at once to (41).
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110. It is worth noticing that the coefficients of potential, capacity and

induction can be expressed as differential coefficients of the energy ;
thus

82F

82F

and so on.

The last two equations give independent proofs of the relations

Prs
=

Psr, Qrs
=

Vsr-

\

PROPERTIES OF THE COEFFICIENTS.

, 111. A certain number of properties can be deduced at once from the

fact that the energy must always be positive. For instance since the value

of W given by equation (38) is positive for all values of E1} E2 ,
... En ,

it

follows at once that

Pn,p*,pu, ....
are positive,

that pup& PIZ* is positive, that

Pl2.P22.P23 is positive

and so on. Similarly from equation (39), it follows that

#11, 22, 33, ... are positive,

and there are other relations similar to those above.

112. More valuable properties can, however, be obtained from a con-

sideration of the distribution of the lines of force in the field.

Let us first consider the field when

#! = !, E2
=ES =. .. = 0.

The potentials are K = .Pn , K = Pm etc.

Since conductors 2, 3, ... are uncharged, their potentials must be inter-

mediate between the highest and lowest potentials in the field. Thus the

potential of 1 must be either the highest or the lowest in the field, the other

extreme potential being at infinity. It is impossible for the potential of 1

to be the lowest in the field
;
for if it were, lines of force would enter in at

every point, and its charge would be negative. Thus the highest potential

in the field must be that of conductor 1, and the other potentials must all



110-114] Properties of the Coefficients 97

be intermediate between this potential and the potential at infinity, and

must therefore all be positive. Thus pll} pl2 , p13 ,
... pln are all positive and

the first is the greatest.

Next let us put Jf=l, 1J=TJ=...=0,

so that the charges are qllt ql2 , qls ,
... qln .

The highest potential in the field is that of conductor 1. Thus lines of

force leave but do not enter conductor 1. The lines may either go to the

other conductors or to infinity. No lines can leave the other conductors.

Thus the charge on 1 must be positive, and the charges on 2, 3, ... all negative,

i.e., qu is positive and ql2 , qls ,
... are all negative. Moreover the total strength

of the tubes arriving at infinity is </n + #12 + #13 + ... +</m> so that this must

be positive.

113. To sum up, we have seen that

(i) All the coefficients of potential (pn , pK , ...) are positive,

(ii) All the coefficients of capacity (qn , q^, ...) are positive,

(iii) All the coefficients of induction
(<?12 , qls , ...) are negative,

and we have obtained the relations

(pu pl2) is positive,

(qu + #12 + . . + qm) is positive.

In limiting cases it is of course possible for any of the quantities which

have been described as always positive or always negative, to vanish.

VALUES OF THE COEFFICIENTS IN SPECIAL CASES.

Electric Screening.

114. The first case in which we shall consider the values of the

coefficients is that in which one conductor, say 1, is completely surrounded

by a second conductor 2.

FIG. 38.

If El
= 0, the conductor 2 becomes a closed conductor with no charge

inside, so that the potential in its interior is constant, and therefore Vl = Vi .

Putting E! = 0, the relation T[= V2 gives the equation

( pn -p*) E.2 + (pls -pa) Es + . . . = 0.

J. 7
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This being true for all values of E2 ,
E3> ... we must have

Pu=p&, Pi3 =p% etc.

Next let us put unit charge on 1, leaving the other conductors uncharged.

The energy is %pu . If we join 1 and 2 by a wire, the conductors 1 and 2

form a single conductor, so that the electricity will all -flow to the outer

surface. This wire may now be removed, and the energy in the system is %pK .

Energy must, however, have been lost in the flow of electricity, so that p^
must be less than pu .

Since we have already seen that PW=PW and pn pl2 cannot be negative,

it is clear that p^ cannot be greater than pn . The foregoing argument,

however, goes further and enables us to prove that pu p& is actually

positive.

Let us next suppose that conductor 2 is put to earth, so that T = 0.

Then if -^ = 0, it follows that T[=0. Hence from the equations

Ei = quVi + quV,+ ...+qlnVn (44)

we obtain in this special case that

This is true, whatever the values of TJ, TJ, ... ; so that

Suppose that conductor 1 is raised to unit potential while all the other

conductors are put to earth. The aggregate strength of the tubes of force

which go to infinity, namely <?n + <?i2 + ... +<?m ( 112), is in this case zero, so

that
<7]2
= qn .

The system of equations (44) now reduces, when V2 0, to

^i = ?nK (45),

(46),

....(47).

Equations (47) shew that the relations between charges and potential
outside 2 are quite independent of the electrical conditions which obtain

inside 2. So also the conditions inside 2 are not affected by those outside 2,

as is obvious from equation (45). These results become obvious when we
consider that no lines of force can cross conductor 2, and that there is no way
except by crossing conductor 2 for a line of force to pass from the conductors

outside 2 to those inside 2.

An electric system which is completely surrounded by a conductor at

potential zero is said to be "
electrically screened

"
from all electric systems
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outside this conductor
;
for charges outside this

" screen
"
cannot affect the

screened system. The principle of electric screening is utilised in electro-

static instruments, in order that the instrument may not be affected by
external electric actions other than those which it is required to observe. As
a complete conductor would prevent observation of the working of the

instrument, a cage of wire is frequently used as a screen, this being very

nearly as efficient as a completely closed conductor (see 72). In more
delicate instruments the screening may be complete except for a small

window to admit of observation of the interior.

Spherical Condenser.

115. Let us apply the methods of this Chapter to the spherical con-

denser described in 79. Let the inner sphere of radius a be taken to l?e

conductor 1, and the outer sphere of radius 6 be taken to be conductor 2.

The equations connecting potentials and charges are

A unit charge placed on 2 raises both 1 and 2 to potential 1/6, so that on

putting E! = 0, E2
=

1, we must have T= TJ= l/b. Hence it follows that

1

P* = 2>22
=

.

If we leave 2 uncharged and place unit charge on 1, the field of force is that

investigated in 79, so that Vl
=

I/a, T= 1/6. Hence

1 1

^' = a' P^b'
These results exemplify

(i) the general relation >12 =j?2i>

(ii) the relation peculiar to electric screening, piS
= K .

The equations now become

K = -' + f,a b

El E*
'"T +y

Solving for Ej_ and E.2 in terms of Vl
and V2 ,

we obtain

so that q-i! ft, -<? = -5, .q.-f.
72
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We notice that ^i2
=

</2i>
that the value of each is negative, and that

<?ii
=

-<?i2 ,
in accordance with 113. The value of gu is the capacity of

sphere 1 when 2 is to earth, and is in agreement with the result of 79.

62

The capacity of 2 when 1 is to earth, q^, is seen to be , . This can
~~* QL

also be seen by regarding the system as composed of two condensers, the

inner sphere and the inner surface of the outer sphere form a single spherical

condenser of capacity 7 ,
while the outer surface of the outer sphere has

o a

capacity b. The total capacity accordingly

ab 62

b a b a'

Two spheres at a great distance apart.

116. Suppose we have two spheres, radii a, b, placed with their centres

at a great distance c apart. Let us first place unit charge on the former, the

2

FIG. 39.

charge being placed so that the surface density is constant. This will not

produce uniform potential over 2
;
at a point distant r from the centre of 1

it will produce potential l/r. We can, however, adjust this potential to the

uniform value 1/c by placing on the surface of 2 a distribution of electricity

such that it produces a potential
- - over this surface.

Take B, the centre of the second sphere, as origin, and AB as axis of x.

Then we may write.

1 1 r c x 1= - =
,
as far as .

c r cr c
2

c2

Let o- be the surface density required to produce this potential, then

clearly & is an odd function of x, and therefore the total charge, the value of

a integrated over the sphere, vanishes. Thus the potential of 2 can be

adjusted to the uniform value 1/c without altering the total charge on 2

from zero, neglecting 1/c
3

. The new surface density being of the order of

1/c
2
,
the additional potential produced on 1 by it will be at most of order 1/c

3
,

so that if we neglect 1/c
3 we have found an equilibrium arrangement which

makes
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Substituting these values in the equations

we find at once that pn = -
neglecting

-
,

ct c

=
1 1

and similarly we can see that

1 . . 1

jo.22
=
j neglecting

-
.

Solving the equations

we find that, neglecting ,

c

c2

ab ab

c 1 --

"
c
2

We notice that the capacity of either sphere is greater than it would be if

the other were removed. This, as we shall see later, is a particular case of a

general theorem.

Two conductors in contact.

117. If two conductors are placed in contact, their potentials must be

equal. Let the two conductors be conductors 1 and 2, then the equation

VI = V% becomes

or, say, a^ + /3E2 + y#3 + . . .
= 0.

If we know the total charge E on 1 and 2, we have

E^E,= E,

and on solving these two equations we can obtain E^ and E. We find that

El=
E
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giving the ratio in which the charge E will distribute itself between the

two conductors 1 and 2. If the conductors 3, 4, ... are either absent or

uncharged,

which is independent of E and always positive. It is to be noticed that El

vanishes only ifp&=piz, i.e., if 2 entirely surrounds 1.

MECHANICAL FORCES ON CONDUCTORS.

118. We have already seen that the mechanical force on a conductor is

the resultant of a system of tensions over its surface of amount 27T0-
2

per unit

area. The results of the present Chapter enable us to find the resultant

force on any conductor in terms of the electrical coefficients of the system.

Suppose that the positions of the conductors are specified by any co-

ordinates
, ?2 , ..., so that pn ,pu, ..., qu , q^ ..., and consequently also Tf,

are functions of the f's. If fx is increased to fx + dflt without the charges on

dW
the conductors being altered, the increase in electrical energy is -^-d^, and

this increase must represent mechanical work done in moving the conductors.

The force tending to increase is accordingly

Since the charges on the conductors are to be kept constant, it will of

course be most convenient to use the form of W given by equation (38), and

the force is obtained in the form

Cl/v-, \

(48).

It is however possible, by joining the conductors to the terminals of

electric batteries, to keep their potentials constant. In this case, however,

we must not use the expression (39) for W, and so obtain for the force

for the batteries are now capable of supplying energy, and an increase of

electrical energy does not necessarily mean an equal expenditure of mechanical

energy, for we must not neglect the work done by the batteries. Since the

resultant mechanical force on any conductor may be regarded as the resultant

of tensions 27ro-
2

per unit area acting over its surface, it is clear that this

resultant force in any position depends solely on the charges in this position.

It is therefore the same whether the charges or potentials are kept constant,

and expression (48) will give this force whether the conductors are connected

to batteries or not.
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119. As an illustration, we may consider the force between the two

charged spheres discussed in 116.

dW
The force tending to increase c, namely ,

is

1 o
9c

and substituting the values

pn = - + terms in
,

Cb C

1
T 4
c

it is found that this force is

! 2

h terms in .

c2 c
4

Thus, except for terms in c~4
,
the force is the same as though the charges

were collected at the centres of the spheres. Indeed, it is easy to go a stage

further and prove that the result is true as far as c~4
. We shall, however,

reserve a full discussion of the question for a later Chapter.

120. Let us write

Then We and Wv are each equal to the electrical energy \^EV, so that

We +Wv -2EV = Q ........................... (50).

In whatever way we change the values of

&\, E,, ..., Vt , V,..... ft, f,, ....

equation (50) remains true. We may accordingly differentiate it, treating the

expression on the left as a function of all the ^'s, F's and f's. Denoting the

function on the left-hand of equation (50) by 0, the result of differentiation

will be

Now ||- =^ -
V, = 0, by equation (40),

C/i o&l

90 _3TFF (
.

9K~~9K

so that we are left with 2 = 0,
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and since this equation is true for all displacements and therefore for all

values of Sfj, Sf2 ,
it follows that each coefficient must vanish separately.

Thus
||

=0, or

dWe dWr__e _i_ -L n
^T ~r ~57r~

v
C*?l <7l

r)W
As we have seen, -^ is the mechanical force tending to increase f, ,

and this has now been shewn to be equal to -^ ,
which is expression (49)

with the sign reversed. Thus the mechanical force, whether the charges or

the potentials are kept constant, is

a form which is convenient when we know the potentials, but not the

charges, of the system.

In making a small displacement of the system such that f, is changed
pjTrr

into f, + dgi, the mechanical work done is -^ d^. If the potentials are
0i

r)W
kept constant the increase in electrical energy is -^ d^ . The difference of

^X1

these expressions, namely

(dWy
dWe\~ *"

represents energy supplied by the batteries. From equation (51), it appears

that this expression is equal to 2 -^ d^l} so that the batteries supply energy

equal to twice the increase in the electrical energy of the system, and of this

energy half goes to an increase of the final electrical energy, while half is

expended as mechanical work in the motion of the conductors.

Introduction of a new conductor into the field.

121. When a new conductor is introduced into the field, the coefficients

PU>PU, -> <7n> #12, - are naturally altered.

Let us suppose the new conductor introduced in infinitesimal pieces,

which are brought into the field uncharged and placed in position so that

they are in every way in their final places except that electric communication

is not established between the different pieces. So far no work has been

done and the electrical energy of the field remains unaltered.

Now let electric communication be established between the different

pieces, so that the whole structure becomes a single conductor. The separate



120-122] The Attracted Disc Electrometer 105

pieces, originally at different potentials, are now brought to the same

potential by the flow of electricity over the surface of the conductor.

Electricity can only flow from places of higher to places of lower potential,

so that electrical energy is lost in this flow. Thus the introduction of the

new conductor has diminished the electric energy of the field.

If we now put the new conductor to earth there is in general a further

flow of electricity, so that the energy is still further diminished.

Thus the electric energy of any field is diminished by the introduction of

a new conductor, whether insulated or not.

Consider the case in which the new conductor remains insulated. Let

the energy of the field before the introduction of the new conductor be

HpllEl*+2pnEl E> + ...+pnnEn*) ............. .....(53).

After introduction, the energy may be taken to be

i (p^E? + Zpu'EM + . . . + pnn'En*) ............... (54),

where pn', etc., are the new coefficients of potential. Further coefficients of

the type />i, n+i> Pz,n+i, ,.pn+i,n+i are of course brought into existence, but do

not enter into the expression for the energy, since by hypothesis En+l = 0.

Since expression (54) is less than expression (53), it follows that

is positive for all values of Elt E2 ,
_____ Hence pn pu

'

is positive, and other

relations may be obtained, as in 111.

ELECTROMETERS.

I. The Attracted Disc Electrometer.

FIG. 40.

122. This instrument is, as regards its essential principle, a balance in

which the beam has a weight fixed at one end and a disc suspended from

the other. Under normal conditions the fixed weight is sufficiently heavy
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to outweigh the disc. In using the instrument the disc is made to become

one plate of a parallel plate condenser, of which the second plate is adjusted

until the electric attraction between the two plates of the condenser is just

sufficient to restore the balance.

The inequalities in the distribution of the lines of force which would

otherwise occur at the edges of the disc are avoided by the use of a guard-

ring ( 90), so arranged that when the beam of the balance is horizontal

the guard-ring and disc are exactly in one plane, and fit as closely as is

practicable.

Let us suppose that the disc is of area A and that the disc and guard-

ring are raised to potential V. Let the second plate of the condenser be

placed parallel to the disc at a distance h from it, and put to earth. Then

the intensity between the disc and lower plate is uniform and equal to V/h,

so that the surface density on the lower face of the disc is cr = V/4>7rh. The

mechanical force acting on the disc is therefore a force Zira^A or V*A/87rh*

acting vertically downwards through the centre of the disc. If this just

suffices to keep the beam horizontal, it must be exactly equal to the weight,

say W, which would have to be placed on this disc to maintain equilibrium
if it were uncharged. This weight is a constant of the instrument, so that

the equation
V*A =

enables us to determine V in terms of known quantities by observing h.

The instrument is arranged so that the lower plate can be moved parallel

to itself by a micrometer screw, the reading of which gives h with great

accuracy. We can accordingly determine V in absolute units, from the

equation

If we wish to determine a difference of potential we can raise the upper

plate to one potential VL ,
and the lower plate to the second potential V2 ,

and we then have

A
A more accurate method of determining a difference of potential is to keep

the disc at a constant potential v, and raise the lower plate successively to

potentials K and J. If h^ and h2 are the values of h which bring the disc to

its standard position when the potentials of the lower plate are If and TJ, we

have
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so that

It is now only necessary to measure h^ 7t2 ,
the distance through which

the lower plate is moved forward, and this can be determined with great

accuracy, as it depends solely on the motion of the micrometer screw.

II. The Quadrant Electrometer.

123. Measurement of Potential Difference. This instrument is more

delicate than the disc electrometer just described, but enables us only to

compare two potentials, or potential differ-

ences; we cannot measure a single potential

in terms of known units.

The principal part of the instrument

consists of a metal cylinder of height small

compared with its radius, divided into four

quadrants A, B, C, D by two diameters at

right angles. These quadrants are insulated

separately, and then opposite quadrants
are connected in pairs, two by wires joined
to a point E and two by wires joined to

some other point F.

The inside of the cylinder is hollow and

inside this a- metal disc or
" needle

"
is free

to move, being suspended by a delicate

fibre, so that it can rotate without touching
the quadrants. Before using the instrument

the needle is charged to a high potential,

say v, either by means of the fibre, if this

is a conductor, or by a small conducting
wire hanging from the needle which passes through the bottom of the

cylinder. The fibre is adjusted so that when the quadrants are at the same

potential the needle rests, as shewn in the figure, in a symmetrical position

with respect to the quadrants. In this state either surface of the needle

and the opposite faces of the quadrants may be regarded as forming a parallel

plate condenser.

If, however, the potential of the two quadrants joined to E is different

from that of the two quadrants joined to F, there is an electrical force

tending to drag the needle under that pair of quadrants of which the potential
is more nearly equal to v. The needle accordingly moves in this direction

until the electric forces are in equilibrium with the torsion of the fibre, and

an observation of the angle through which the needle turns will give an

FIG. 41.
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indication of the difference of potential between the two pairs of quadrants.

This angle is most easily observed by attaching a small mirror to the fibre

just above the point at which it emerges from the quadrants.

Let us suppose that when the needle has turned through an angle 6,

the total area A of the needle is placed so that an area S is inside the pair

of quadrants at potential V1} and an area A S inside the pair at potential

T. Let h be the perpendicular distance from either face of the needle to

the faces of the quadrants. Then the system may be regarded as two

parallel plate condensers of area S, distance A, and difference of potential

v Vlt and two parallel plate condensers for which these quantities have the

values A 8, h, v V2 . There are two condensers of each kind because

there are two faces, upper and lower, to the needle. The electrical energy
of this system is accordingly

The energy here appears as a quadratic function of the three potentials

concerned: it is expressed in the same form as the Wv of 120. The

mechanical force tending to increase 6, i.e., the moment of the couple tending
r\W

to turn the needle in the direction of 6 increasing, is therefore -^- . Now
ou

in Wv the only term in the coefficients of the potentials which varies with 6

is S, so that on differentiation we obtain

dWv _(v- TQ
2 - Q - TQ

2 dS

W =

47T/1 W
If r is the radius of the needle measured from its centre, which is under

o rr

the line of division of the quadrants we clearly have ^ = r2
,
so that we can

ou

write the equation just obtained in the form

8FF _(2tt-
W ~

In equilibrium this couple is balanced by the torsion couple of the fibre,

which tends to decrease 6. This couple may be taken to be IcO, where & is a

constant, so that the equation of equilibrium is

For small displacements of the needle, r2

may be replaced by a2
,
the

radius of the needle at its centre line. Also v is generally large compared
with Jf and TJ. The last equation accordingly assumes the simpler form
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shewing that 6 is, for small displacements of the needle, approximately

proportional to the difference of potential of the two pairs of quadrants.

The instrument can be made extraordinarily sensitive owing to the possibility

of obtaining quartz-fibres for which the value of k is very small.

If the difference of potential to be measured is large, we may charge the

needle simply by joining it to one of the pairs of quadrants, say the pair at

potential V2 . We then have v V2 ,
and equation (55) becomes

**-<*: y*.4>7rh

so that 6 is now proportional to the square of the potential difference to be

measured.

fj2

Writing: - =-j
=

(7, so that C is a constant of the instrument, we have,
5 LirhK

when v is large

V,) .............................. (56),

when v = Vz ,

K)' ........................... (57).

124. Measurement of charge. Let us speak of the pairs of quadrants

at potentials Tf, V2 as conductors 1, 2 respectively, and let the needle be

conductor 3. When the quadrants are to earth and the needle is at

potential Vs ,
the charge E induced on the first pair of quadrants by the

charge on the needle will bejjiven by

E=qv&,
where qw is the coefficient of induction. This coefficient is a function of the

angle 6 which defined the position of the needle. If the instrument is

adjusted so that = when both pairs of quadrants are to earth, we must

use the value of ql3 corresponding to 6 = 0, say (qls\, so that

.............................. (58).

Now suppose that the first pair of quadrants is insulated and receives

an additional charge Q, the second pair being still to earth. Let the needle

be deflected through an angle 6 in consequence. Since the charge on the

first pair of quadrants is now E+ Q, we have

On subtracting equation (58) from this we obtain

Q=(qu)eVl +[(q ls )e -(qu\]Vs .

If 6 is small this may be written
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where qu , -^ are supposed calculated for 6 0. Since K = 0, we have from

equation (56),

so that

shewing that for small values of 0, Q is directly proportional to 0.

Let us suppose that we join the first pair of quadrants (conductor 1)

to a condenser of known capacity T which is entirely outside the electro-

meter. Since the needle (3) is entirely screened by the quadrants the value

of
(?i3

remains unaltered, while qn will become qn + T. If 6' is now the

deflection of the needle, we have

so that, by combination with the last equation, we have

l r

If 6" is the deflection obtained by joining the pairs of quadrants to the

terminals of a battery of known potential difference D, we have from

equation (56),
A"nv-'*->

and on substituting this value for (71, our equation becomes

JSL
v~0" 0"'

96
giving Q in terms of the known quantities F, D and the three readings
0, ff and <9".
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EXAMPLES.

J 1. If the algebraic sum of the charges on a system of conductors be positive, then on

one at least the surface density is everywhere positive.

X2. There are a number of insulated conductors in given fixed positions^ The

capacities of any two of them in their given positions are C\ and <72 ,
and their mutual

coefficient of induction is B. Prove that if these conductors be joined by a thin wire, the

capacity of the combined conductor is

* 3. A system of insulated conductors having been charged in any manner, charges are

transferred from one conductor to another till they are all brought to the same potential V.

Shew that
F=

where $! ,
s2 are the algebraic sums of the coefficients of capacity and induction respectively,

and E is the sum of the charges.

vw 4. Prove that the effect of the operation described in the last question is a decrease

of the electrostatic energy equal to what would be the energy of the system if each of the

original potentials were diminished by V.

\5. Two equal similar condensers, each consisting of two spherical shells, radii a, 6,

are insulated and placed at a great distance r apart. Charges e, e' are given to the inner

shells. If the outer surfaces are now joined by a wire, shew that the loss of energy is

approximately

"6. A condenser is formed of two thin concentric spherical shells, radii a, b. A small

hole exists in the outer sheet through which an insulated wire passes connecting the

inner sheet with a third conductor of capacity c, at a great distance r from the condenser.

The outer sheet of the condenser is put to earth, and the charge on the two connected

conductors is E. Prove that approximately the force on the third conductor is

'

7: Two closed equipotentials F1} F are such that Fx contains F
,
and FP is the

potential at any point P between them. If now a charge E be put at P, and both

equipotentials be replaced by conducting shells and earth-connected, then the charges

E\, EQ induced on the two surfaces are given by

EI EQ E
I IT F"

=
^7 _ \r

==
F" _ F '

' P P 1 1

5. A conductor is charged from an electrophorus by repeated contacts with a plate,

which after each contact is recharged with a quantity E of electricity from the electro-

phorus. Prove that if e is the charge of the conductor after the first operation, the

ultimate charge is

Ee
E-e'
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9. Four equal uncharged insulated conductors are placed symmetrically at the corners

of a regular tetrahedron, and are touched in turn by a moving spherical conductor at the

points nearest to the centre of the tetrahedron, receiving charges e,, e2 ,
<?3 ,

et . Shew that

the charges are in geometrical progression.

10. In question 9 replace
" tetrahedron "

by
"
square," and prove that

(el
- e2) fat*

- e
2
2
)
= el

11. Shew that if the distance x between two conductors is so great as compared with

the linear dimensions of either, that the square of the ratio of these linear dimensions to

x may be neglected, then the coefficient of induction between them is - CC'lx, where (7, C'

are the capacities of the conductors when isolated.

12. Two insulated fixed condensers are at given potentials when alone in the electric

field and charged with quantities JSlt E2 of electricity. Their coefficients of potential are

Pn> PIZI Pit- But if they are surrounded by a spherical conductor of very large radius R
at potential zero with its centre near them, the two conductors require charges EI, Ez

'

to

produce the given potentials. Prove, neglecting -^ ,
that

EI - E
l _p22 -p\z

E2'-E2 ~pu -pl2

'

13. Shew that the locus of the positions, in which a unit charge will induce a given

charge on a given uninsulated conductor, is an equipotential surface of that conductor

supposed freely electrified.

14. Prove (i) that if a conductor, insulated in free space and raised to unit potential,

produce at any external point P a potential denoted by (P), then a unit charge placed at

P in the presence of this conductor uninsulated will induce on it a charge
-
(P) ;

(ii) that if the potential at a point Q due to the induced charge be denoted by (PQ),

then (PQ) is a symmetrical function of the positions of P and Q.

15. Two small uninsulated spheres are placed near together between two large

parallel planes, one of which is charged, and the other connected to earth. Shew by

figures the nature of the disturbance so produced in the uniform field, when the line of

centres is (i) perpendicular, (ii) parallel to the planes.

16. A hollow conductor A is at zero potential, and contains in its cavity two other

insulated conductors, B and <?, which are mutually external : B has a positive charge, and

C is uncharged. Analyse the different types of lines of force within the cavity which are

possible, classifying with respect to the conductor from which the line starts, and the

conductor at which it ends, and proving the impossibility of the geometrically possible

types which are rejected.

Hence prove that B and C are at positive potentials, the potential of C being less than

that of B.

17. A portion P of a conductor, the capacity of which is C, can be separated from the

conductor. The capacity of this portion, when at a long distance from other bodies, is c.

The conductor is insulated, and the part P when at a considerable distance from the

remainder is charged with a quantity e and allowed to move under the mutual attraction

up to it
;
describe and explain the changes which take place in the electrical energy of the

system.
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18. A conductor having a charge Q is surrounded by a second conductor with charge

Q'2 - The inner is connected by a wire to a very distant uncharged conductor. It is then

disconnected, and the outer conductor connected. Shew that the charges $/, Q2', are now

l m+n+ mn' 2
"

m+ n

where C, C(\+m) are the coefficients of capacity of the near conductors, and Cn is the

capacity of the distant one.

19. If one conductor contains all the others, and there are n+ l in all, shew that

there are n+ 1 relations between either the coefficients of potential or the coefficients of

induction, and if the potential of the largest be F
,
and that of the others Fj, F2 ,

... Fn ,

then the most general expression for the energy is ^<7F
2 increased by a quadratic function

of V
l

F
,
F2
- F

,
... Fn F

;
where C is a definite constant for all positions of the

inner conductors.

^ 20. The inner sphere of a spherical condenser (radii or, 5) has a constant charge E,

and the outer conductor is at potential zero. Under the internal forces the outer

conductor contracts from radius b to radius V Prove that the work done by the

electric forces is

21. If, in the last question, the inner conductor has a constant potential F, its charge

being variable, shew that the work done is

and investigate the quantity of energy supplied by the battery.

22. With the usual notation, prove that

Pll+P23>Pl2+Pl3

PllP23>Pl2Pl3>

23. Shew that if p^., pr8 , p88 be three coefficients before the introduction of a new

conductor, and >.', pr8 , p88 the same coefficients afterwards, then

24. A system consists of p + q+ 2 conductors, A l ,
A 2 ,

. . . A p ,
B1 , B%, . . . Bq , C, D. Prove

that when the charges on the -4's and on (7, and the potentials of the i?'s and of C are

known, there cannot be more than one possible distribution in equilibrium, unless C is

electrically screened from D.

25. A, B, (7, D are four conductors, of which B surrounds A and D surrounds C.

Given the coefficients of capacity and induction

(i) of A and B when C and D are removed,

(ii) of C and D when A and B are removed,

(iii) of B and D when A and C are removed,

determine those for the complete system of four conductors.

26. Two equal and similar conductors A and B are charged and placed symmetrically
with regard to each other

;
a third moveable conductor C is carried so as to occupy

J. 8
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successively two positions, one practically wholly within A, the other within J3, the

positions being similar and such that the coefficients of potential of C in either position

are p, q, r in ascending order of magnitude. In each position C is in turn connected with

the conductor surrounding it, put to earth, and then insulated. Determine the charges

on the conductors after any number of cycles of such operations, and shew that they

ultimately lead to the ratios

where /3 is the positive root of

roo
1

qx -f-p r= 0.

27. Two conductors are of capacities Ci and (72 ,
when each is alone in the field.

They are both in the field at potentials Fj and F
2 respectively, at a great distance r

apart. Prove that the repulsion between the conductors is

As far as what power of - is this result accurate ?

28. Two equal and similar insulated conductors are placed symmetrically with regard

to each other, one of them being uncharged. Another insulated conductor is made to

touch them alternately in a symmetrical manner, beginning with the one which has a

charge. If e
l9

e2 be their charges when it has touched each once, shew that their charges,

when it has touched each r times, are respectively

and

29. Three conductors A it A 2 and A 3 are such that A 3 is practically inside A 2 . A l is

alternately connected with A 2 and A 3 by means of a fine wire, the first contact being with

A3 . A l has a charge .# initially, A 2
and A 3 being uncharged. Prove that the charge on

AI after it has been connected n times with A 2 is

where a, ft y stand for pn p\^p^pn and p33 -pi2 respectively.

30. Two spheres, radii a, 6, have their centres at a distance c apart. Shew that

neglecting (a/c)
6 and (6/c)

6
,

1 63 l l 3



CHAPTEE V

DIELECTRICS AND INDUCTIVE CAPACITY

125. MENTION has already been made ( 84) of the fact, discovered

originally by Cavendish, and afterwards rediscovered by Faraday, that the

capacity of a conductor depends on the nature of the dielectric substance

between its plates.

Let us imagine that we have two parallel plate condensers, similar in all

respects except that one has nothing but air between its plates while in the

other this space is filled with a dielectric of inductive capacity K. Let us

suppose that the two high-potential plates are connected by a wire, and also

the two low-potential plates. Let the condensers be charged, the potential

of the high-potential plates being Vl} and that of the low-potential plates

being V .

Then it is found that the charges possessed by the two condensers are not

equal. The capacity per unit area of the air-condenser is l/47rc ;
that of the

other condenser is found to be Kj&Trd. Hence

the charges per unit area of the two condensers

are respectively

V.-V,and K

The work done in taking unit charge from the

low-potential plate to the high-potential plate is

the same in either condenser, namely T^ J, so

that the intensity between the plates in either

condenser is the same, namely

FIG. 42.

In the air-condenser this intensity may be regarded as the resultant of the

attraction of the negatively charged plate and the repulsion of the positively

charged plate, the law of attraction or repulsion being Coulomb's law .

82
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It is, however, obvious that if we were to calculate the intensity in the

second condenser from this law, then the value obtained would be K times

F F
that in the first condenser, and would therefore be K ^ . In point of

F F
fact, the actual value of the intensity is known to be ~ .

Thus Faraday's discovery shews that Coulomb's law of force is not of

universal validity : the law has only been proved experimentally for air, and

it is now found not to be true for dielectrics of which the inductive capacity

is different from unity.

This discovery has far-reaching effects on the development of the mathe-

matical theory of electricity. In the present book, Coulomb's law was

introduced in 38, and formed the basis of all subsequent investigations.

Thus every theorem which has been proved in the present book from 38

onwards requires reconsideration.

126. We shall follow Faraday in treating the whole subject from the

point of view of lines of force. The conceptions of potential, of intensity, and

of lines of force are entirely independent of Coulomb's law, and in the present

book have been discussed ( 30 37) before the law was introduced. The

conception of a tube of force follows at once from that of a line of force,

on imagining lines of force drawn through the different points on a small

closed curve. Let us extend to dielectrics one form of the definition of the

strength of a tube of force which has already been used for a tube in air, and

agree that the strength of a tube is to be measured by the charge enclosed

by its positive end, whether in air or dielectric.

In the dielectric condenser, the surface density on the positive plate is

F FK *

,, and this, by definition, is also the aggregate strength of the

tubes per unit area of cross-section. The intensity in the dielectric is

F Fl

-j

-

,
so that in the dielectric the intensity is no longer, as in air, equal

to 47r times the aggregate strength of tubes per unit area, but is equal to

4>7r/K times this amount.

Thus if P is the aggregate strength of the tubes per unit area of cross-

section, the intensity R is related to P by the equation

-R=^P (59)

in the dielectric, instead of by the equation

(60)

which was found to hold in air.
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127. Equation (59) has been proved to be the appropriate generalisation

of equation (60) only in a very special case. Faraday, however, believed the

relation expressed by equation (59) to be universally true, and the results

obtained on this supposition are found to be in complete agreement with

experiment. Hence equation (59), or some equation of the same significance,

is universally taken as the basis of the mathematical theory of dielejptrics.

We accordingly proceed by assuming the universal truth of equation (59),

an assumption for which a justification will be found when we come to study
the molecular constitution of dielectrics.

It is convenient to have a single word to express the aggregate strength
of tubes per unit area of cross-section, the quantity which has been denoted

by P. We shall speak of this quantity as the "
polarisation," a term due to

Faraday. Maxwell's explanation of the meaning of the term "
polarisation

"

is that
" an elementary portion of a body may be said to be polarised when

it acquires equal and opposite properties on two opposite sides.\ Faraday

explained the properties of dielectrics by means of his conception that the

molecules of the dielectric were in a polarised state, and the quantity P
is found to measure the amount of the polarisation at any point in the

dielectric. We shall come to this physical interpretation of the quantity P
at a later stage : for the present we simply use the term "

polarisation
"
as

a name for the mathematical quantity P.

This same quantity is called the "
displacement

"
by Maxwell, and under-

lying the use of this term also, there is a physical interpretation which we

shall come upon later.

128. We now have as the basis of our mathematical theory the

following :

DEFINITION. The strength of a tube of force is defined to be the charge

enclosed by the positive end of the tube.

DEFINITION. The polarisation at any point is defined to be the aggregate

strength of tubes of force per unit area of cross-section.

EXPERIMENTAL LAW. The intensity at any point is 4fjr/K times the

polarisation, where K is the inductive capacity of the dielectric at the point.

In this last relation, we measure the intensity along a line of force, while

the polarisation is measured by considering the flux of tubes of force across

a small area perpendicular to the lines of force. Suppose, however, that we

take some direction 00' making an angle 6 with that of the lines of force.

The aggregate strength of the tubes of force which cross an area dS

perpendicular to 00' will be P cos 6 dS, for these tubes are exactly those

which cross an area dScosO perpendicular to the lines of force. Thus,

consistently with the definition of polarisation, we may say that the polari-

sation in the direction 00' is equal to P cos 6. Since the polarisation in
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any direction is equal to P multiplied by the cosine of the angle between

this direction and that of the lines of force, it is clear that the polarisation

may be regarded as a vector, of which the direction is that of the lines of

force, and of which the magnitude is P.

The polarisation having been seen to be a vector, we may speak of its

components /, g t
h. Clearly / is the number of tubes per unit area which

cross a plane perpendicular to the axis of x, and so on.

The result just obtained may be expressed analytically by the equations

*
4-7T 4?T 4?T

129. The polarisation P being measured by the aggregate strength of

tubes per unit area of cross-section, it follows that if a is the cross-section

at any point of a tube of strength e, we have e = o>P. Now we have defined

the strength of a tube of force as being equal to the charge at its positive

end, so that by definition the strength e of a tube does not vary from point

to point of the tube. Thus the product o>P is constant along a tube, or

(0KR is constant along a tube, replacing the result that coR is constant

in air ( 56).

The value of the product o>P at any point of a tube, being equal to

, depends only on the physical conditions prevailing at the point 0.

It is, however, known to be equal to the charge at the positive end of the

tube. Hence it must also, from symmetry, be equal to minus the charge at

the negative end of the tube. Thus the charges at the two ends of a tube,

whether in the same or in different dielectrics, will be equal and opposite,

and the numerical value of either is the strength of the tube.

GAUSS' THEOREM.

130. Let 8 be any closed surface, and let e be the angle between the

direction of the outward normal to any element of surface dS and the direction

of the lines of force at the element. The aggregate strength of the tubes of

force which cross the element of area dS is P cos e dS, and the integral

P cos e dS,

which may be called the surface integral of normal polarisation, will measure

the aggregate strength of all the tubes which cross the surface S, the strength
of a tube being estimated as positive when it crosses the surface from inside

to outside, and as negative when it crosses in the reverse direction.

A tube which enters the surface from outside, and which, after crossing
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the space enclosed by the surface, leaves it again, will add no contribution to

1 1 P cos edS, its strength being counted negatively where it enters the

surface, and positively where it emerges. A tube which starts from or ends

on a charge e inside the surface 8 will, however, supply a contribution to

II PcosedS on crossing the surface. If e is positive, the strength of the

tube is e
; and, as it crosses from inside to outside, it is counted positively,

and the contribution to the integral is e. Again, if e is negative, the strength

of the tube is e, and this is counted negatively, so that the contribution is

again e.

Thus on summing for all tubes,

where E is the total charge inside the surface. The left-hand member is

simply the algebraical sum of the strengths of the tubes which begin or end

inside the surface
;

the right-hand member is the algebraical sum of the

charges on which these tubes begin or end. Putting

the equation becomes 1 1 KR cos edS

The quantity R cos e is, however, the component of intensity along the

outward normal, the quantity which has been previously denoted by N, so

that we arrive at the equation

...(61).

When the dielectric was air, Gauss' theorem was obtained in the form

//

Equation (61) is therefore the generalised form of Gauss' Theorem which

must be used when the inductive capacity is different from unity. Since

dVN=
,
the equation may be written in the form

JJ
K

fa
d8 = '

131. The form of this equation shews at once that a great many results

which have been shewn to be true for air are true also for dielectrics other

than air.

It is obvious, for instance, that V cannot be a maximum or a minimum
at a point in a dielectric which is not occupied by an electric charge : as
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a consequence all lines of force must begin and end on charged bodies,

a result which was tacitly assumed in defining the strength of a tube of

force.

A number of theorems were obtained in the discussion of the electrostatic

field in air, by taking a Gauss' Surface, partly in air and partly in a con-

ductor. Gauss' Theorem was used in the form

but we now see that if the inductive capacity of the conductor were not

equal to unity, this equation ought to be replaced by equation (61). It is,

however, clear that the difference cannot affect the final result
;
N is zero

inside a conductor, so that it does not matter whether N is multiplied by K
or not.

Thus results obtained for systems of conductors in air upon the assumption
that Coulomb's law of force holds throughout the field are seen to be true

whether the inductive capacity inside the conductors is equal to unity or not.

,

The Equations of Poisson and Laplace.

132. In 49, we applied Gauss' theorem, to,a surface which was formed

by a small rectangular parallelepiped, of edges dx, dy, dz, parallel to the

axes of coordinates. If we apply the theorem expressed by equation (61) to

the same element of volume, we obtain

dz (62),

where p is the volume density of electrification. This, then, is the generalised
form of Poisson's equation: the generalised form of Laplace's equation is

obtained at once on putting p = 0.

In terms of the components of polarisation, equation (62) may be written

df ' da Sh = p ...(63),
dy

while if the dielectric is uncharged,

.(64).

Electric Charges in an infinite homogeneous Dielectric.

133. Consider a charge e placed by itself in an infinite dielectric. If

the dielectric is homogeneous, it follows from considerations of symmetry
that the lines of force must be radial, as they would be in air. By application
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of equation (61) to a sphere of radius r, having the point charge as centre, it

is found that the intensity at a distance r from the charge is

e

The force between two point charges e, e, at distance r apart in a homo-

geneous unbounded dielectric is therefore

and the potential of any number of charges, obtained by integration of this

expression, is

F=-^2- (66).

Coulomb's Equation.

134. The strength of a tube being measured by the charge at its end, it

follows that at a point just outside a conductor, P, the aggregate strength

of the tubes per unit of cross-section, becomes numerically equal to <r, the

surface density. We have also the general relation

= P

and on replacing P by a; we arrive at the generalised form of Coulomb's

equation,

R = ^f (67),

in which K is the inductive capacity at the point under consideration.

CONDITIONS TO BE SATISFIED AT THE BOUNDARY OF A DIELECTRIC.

135. Let us examine the conditions which will obtain at a boundary at

which the inductive capacity changes abruptly from KI to K2 .

The potential must be continuous in crossing the boundary, for if P, Q,

are two infinitely near points on opposite sides of the boundary, the work done

in bringing a small charge to P must be the same as that done in bringing
it to Q. As a consequence of the potential being continuous, it follows that

the tangential components of the intensity must also be continuous. For if

P, Q are two very near points on different sides of the boundary, and P', Q'

a similar pair of points at a small distance away, w^ have VP = VQ> and

Vp =
Vq, so that

VpVp Vn Vn

The expressions on the two sides of this equation are, however, the two

intensities in the direction PP', on the two sides of the boundary, which

establishes the result.
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Also, if there is no charge on the boundary, the aggregate strength of

the tubes which meet the boundary in any small area on this boundary is

the same whether estimated in the one dielectric or the other, for the tubes

do not alter their strength in crossing the boundary, and none can begin or

end in the boundary. Thus the normal component of the polarisation is

continuous.

136. If -Ri is the intensity in the first medium of inductive capacity

measured at a point close to the boundary, and if ex is the angle which the

lines of force make with the normal to the boundary at this point, then the

normal polarisation in the first medium is

zii -p,

R^ COS 6j .

47T

Similarly, that in the second medium is

Sr*'

so that J^iRi cos 6j
=

Since, in the notation already used,

Rl COS 6X
= JVj =

-^p
,

the equation just obtained may be put in either of the forms

(68).

W 8F2

~f\~ *-a "o
on dn

-(69),

.(70).

In these equations, it is a matter of indifference whether the normal is

drawn from the first medium to the second or in the reverse direction
;

it is

only necessary that the same normal should be taken on both sides of the

equation. Relation (70) is obtained at once on applying the generalised
form of Gauss' theorem to a small cylinder having parallel ends at infinitesimal

distance apart, one in each medium.

137. To sum up, we have found that in passing from one dielectric to

another, the surface of separation being uncharged :

(i) the tangential components of intensity have the same values on the

two sides of the boundary,

(ii) the normal components of polarisation have the same values.

Or, in terms of tie potential,

(i) V is continuous,

(ii) K is contiguous,
on



135-138] Boundary Conditions 123

Refraction of the lines of force.

138. From the continuity of the tangential components of intensity, it

follows :

(i) that the directions of Rl and R2 ,
the intensities on the two sides of

the boundary, must lie in a plane containing the normal, and

(ii) that Rl sin e1
= R2 sin e2 .

Combining the last relation with equation (68), we obtain

From this relation, it appears that if K^ is greater than K^ then el is greater

than 62 ,
and vice versa. Thus in passing from a smaller value of K to a

greater value of K, the lines are bent away from the normal. In illustration

of this, fig. 43 shews the arrangement of lines of force when a point charge
is placed in front of an infinite slab of dielectric (K=l).

1
FIG. 43.
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A small charged particle placed at any point of this field will experience
a force of which the direction is along the tangent to the line of force through
the point. The force is produced by the point charge, but its direction will

not in general pass through the point charge. Thus we conclude that in

a field in which the inductive capacity is not uniform the force between two

point charges does not in general act along the line joining them.

139. As an example of the action of a dielectric let us imagine a parallel

plate condenser in which a slab of dielectric of thickness t is placed between

the plates, its two faces being parallel to the plates and

at distances a, b from them, so that a + b -f t = d, where

d is the distance between the plates.

It is obvious from symmetry that the lines of force

are straight throughout their path, equation (71) being
satisfied by j

= e2 = 0.

Let <r be the charge per unit area, so that the polari-

sation is equal to a- everywhere. The intensity, by
equation (67), is

R 47TO- in air,

and R = -~- a- in dielectric.A
FIG. 44.

Hence the difference of potential between the plates, or the work done in

taking unit charge from one plate to the other in opposition to the electric

intensity,

= 4-7TO- . a + -=- a- . t + 4-Tnr . b

and the
capacity per unit area is

Thus the introduction of the slab of dielectric has the same effect as

moving the plates a distance (1 - -=\ t nearer together.

Suppose now that the slab is partly outside the condenser and partly
between the plates. Q.\ the total area A of the condenser, let an area B be

occupied by the slab of didectric, an area A - B having only air between
the plates.
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The lines of force will be straight, except for those which pass near to the

edge of the dielectric slab. Neglecting a small correction required by the

curvature of these lines, the capacity C of the condenser is given by

,

4,-n-d

a quantity which increases as B increases. If V is the potential difference

and E the charge, the electrical energy

If we keep the charge constant, the electrical energy increases as the

slab is withdrawn. There must therefore be a mechanical force tending to

resist withdrawal : the slab of dielectric will be sucked in between the plates

of the condenser. This, as will be seen later, is a particular case of a general
theorem that any piece of dielectric is acted on by forces which tend to

drag it from the weaker to the stronger parts of an electric field of force.

Charge on the Surface of a Dielectric.

140. Let dS be any small area of a surface which separates two media

of inductive capacities Kl} K^, and let this bounding surface have a charge of

electricity, the surface density over dS being <r. If we apply
Gauss' Theorem to a small cylinder circumscribing dS we obtain

(72),

where = in either medium denotes differentiation with respect
dv

to the normal drawn away from dS into the dielectric.

141. As we have seen, the surface of a dielectric may be

charged by friction. A more interesting way is by utilising

the conducting powers of a flame.

Let us place a charge e in front of a slab of dielectric as in fig. 43.

A flame issuing from a metal lamp held in the hand may be regarded as

a conductor at potential zero. On allowing the . flame to play over the

surface of the dielectric, this surface is reduced to potential zero, and the

distribution of the lines of force is now exactly the same as if the face of

the dielectric were replaced by a conducting plane at potential zero. The
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lines of force from the point charge terminate on this plane, so that there

must be a total charge e spread over it. If the plane were actually a

conductor this would be simply an induced charge. If, however, the plane

is the boundary of a dielectric, the charge differs from an induced charge on

a conductor in that it cannot disappear if the original charge e is removed.

For this reason, Faraday described it as a " bound
"
charge. The charge has

of course come to the dielectric through the conducting flame.

MOLECULAR ACTION IN A DIELECTRIC.

142. From the observed influence of the structure of a dielectric upon
the electric phenomena occurring in a field in which it was placed, Faraday
was led to suppose that the particles of the dielectric themselves took part

in this electric action. After describing his researches on the electric

action
" induction

"
to use his own term in a space occupied by dielectric

he says*:

" Thus induction appears to be essentially an action of contiguous parti-

cles, through the intermediation of which the electric force, originating or

appearing at a certain place, is propagated to or sustained at a distance...."

" Induction appears to consist in a certain polarised state of the particles,

into which they are thrown by the electrified body sustaining the action, the

particles assuming positive and negative points or parts...."

"With respect to the term polarity..., I mean at present... a disposition

of force by which the same molecule acquires opposite powers on different

parts."

And again, laterf,

"I do not consider the powers when developed by the polarisation as

limited to two distinct points Or spots on the surface of each particle to be

considered as the poles of an axis, but as resident on large portions of that

surface, as they are upon the surface of a conductor of sensible size when it

is thrown into a polar state."

" In such solid bodies as glass, lac, sulphur, etc., the particles appear to

be able to become polarised in all directions, for a mass when experimented

upon so as to ascertain its inductive capacity in three or more directions,

gives no indication of a difference. Now, as the particles are fixed in the

mass, and as the direction of the induction through them must change with

its charge relative to the mass, the constant effect indicates that they can

be polarised electrically in any direction."

*
Experimental Researches, 1295, 1298, 1304. (Nov. 1837.)

t Experimental Researches, 1686, 1688, 1679. (June, 1838.)
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" The particles of an insulating dielectric whilst under induction may be

compared... to a series of small insulated conductors. If the space round

a charged globe were filled with a mixture of an insulating dielectric and

small globular conductors, the latter being at a little distance from each

other, so as to be insulated, then these would in their condition and action

exactly resemble what I consider to be the condition and action of the

particles of the insulating dielectric itself. If the globe were charged, these

little conductors would all be polar ;
if the globe were discharged, they would

all return to their normal state, to be polarised again upon the recharging
of the globe...."

As regards the question of what actually the particles are which undergo
this polarisation, Faraday says* :

" An important inquiry regarding the electric polarity of the particles of

an insulating dielectric, is, whether it be the molecules of the particular

substance acted on, or the component or ultimate particles, which thus act

the part of insulated conducting polarising portions."

"The conclusion I have arrived at is, that it is the molecules of the

substance which polarise as wholes; and that however complicated the

composition of a body may be, all those particles or atoms which are held

together by chemical affinity to form one molecule of the resulting body
act as one conducting mass or particle when inductive phenomena and

polarisation are produced in the substance of which it is a part."

143. A mathematical discussion of the action of a dielectric constructed

as imagined by Faraday, has been given by Mossotti, who utilised a mathe-

matical method which had been developed by Poisson for the examination of

a similar question in magnetism. For this discussion the molecules are

represented provisionally as conductors of electricity.

To obtain a first idea of the effect of an electric field on a dielectric of

the kind pictured by Faraday, let us consider a parallel plate condenser,

FIG. 46.

*
Experimental Researches, 1699, 1700.
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having a number of insulated uncharged conducting molecules in the space

between the plates. Imagine a tube of strength e meeting a molecule. At

the point where this occurs, the tube terminates by meeting a conductor, so

that there must be a charge e on the surface of the molecule. Since the

total charge on the molecule is nil there must be a corresponding charge on

the opposite surface, and this charge may be regarded as a point of restarting

of the tube. The tube then may be supposed to be continually stopped and

restarted by molecules as it crosses from one plate of the condenser to the

other. At each encounter with a molecule there are induced charges e, +e
on the surface of the molecule. Any such pair of charges, being at only a

small distance apart, may be regarded as forming a small doublet, of the kind

of which the field of force was investigated in 64.

144. We have now replaced the dielectric by a series of conductors, the

medium between which may be supposed to be air or ether. In the space
between these conductors the law- of force will be that of the inverse square.

In calculating the intensity at any point from this law we have to reckon

the forces from the doublets as well as the forces from the original charges
on the condenser-plates. A glance at fig. 46 will shew that the forces from

the doublets act in opposition to the original forces. Thus for given charges
on the condenser-plates the intensity at any point between the plates is

lessened by the presence of conducting molecules.

This general result can be seen at once from the theorem of 121. The

introduction of new conductors (the molecules) lessens the energy cor-

responding to given charges on the plates, i.e. increases the capacity of the

condenser, and so lessens the intensity between the plates.

145. In calculating that part of the intensity which arises from the

doublets, it will be convenient to divide the dielectric into concentric spherical

shells having as centre the point at which the intensity is required. The
volume of the shell of radii r and r + dr is 4?rr2

dr, so that the number of

doublets included in it will contain r2dr as a factor. The potential produced

by any doublet at a point distant r from it is
,
so that the intensity

will contain a factor . Thus the intensity arising from all the doublets in

the shell of radii r, r+dr will depend on r through the factor -^.r
zdr

dr
or .

r

The importance of the different shells is accordingly the same, as regards

comparative orders of magnitude, as that of the corresponding contributions

to the integral I . The value of this integral is log r + a constant, and this
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is infinite when r and when r = oo . Thus the important contributions

come from very small and very large values of r. It can however be seen

that the contributions from large values of r neutralise one another, for the

term cos in the potentials of the different doublets will be just as often

positive as negative.

Hence it is necessary only to consider the contributions from shells for

which r is very small, so that the whole field at any point may be regarded
as arising entirely from the doublets in the immediate neighbourhood of the

point. The force will obviously vary as we move in and out amongst the

molecules, depending largely on the nearness and position of the nearest

molecules. If, however, we average this force throughout a small volume, we

shall obtain an average intensity of the field produced by the doublets, and

this will depend only on the strength and number of the doublets in and

near to this element of volume. Obviously this average intensity near any

point will be exactly proportional to the average strength of the doublets

near the point, and this again will be exactly proportional to the strength of

the inducing field by which the doublets are produced, so that at any point

we may say that the average field of the doublets stands to the total field in

a ratio which depends only on the structure of the medium at the point.

146. Now suppose that our measurements are not sufficiently refined to

enable us to take account of the rapid changes of intensity of the electric

field which must occur within small distances of molecular order of magnitude.
Let us suppose, as we legitimately may, that the forces which we measure

are forces averaged through a distance which contains a great number of

molecules. Then the force which we measure will consist of the sum of the

average force produced by the doublets, and of the force produced by the

external field. The field which we observe may accordingly be regarded as

the superposition of two fields, or what amounts to the same thing, the

observed intensity R may be regarded as the resultant of two intensities

R1} R2 ,
where

R! is the average intensity arising from the neighbouring doublets,

RZ is the intensity due to the charges outside the dielectric, and to

the distant doublets in the dielectric.

These forces, as we have seen, must be proportional to one another, so

that each must be proportional to the polarisation P. It follows that P is

proportional to R, the ratio depending only on the structure of the medium

at the point. If we take the relation to be

(73),

then K is the inductive capacity at the point, and the relation between R
and P is exactly the relation upon which our whole theory has been based.

j. 9
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147. The theory could accordingly be based on Mossotti's theory, instead

of on Faraday's assumption, and from the hypothesis of molecular polarisa-

tion we should be able to deduce all the results of the theory, by first

deducing equation (73) from Mossotti's hypothesis, and then the required

results from equation (73) in the way in which they have been deduced in

the present chapter.

Thus the influence of the conducting molecules produces physically the

same result as if the properties of the medium were altered in the way

suggested by Faraday, and mathematically the properties of the medium are

in either case represented by the presence of the factor K in equation (73).

Relation between Inductive Capacity and Structure of Medium.

148. The electrostatic unit of force was defined in such a way that the

inductive capacity of air was taken as unity. It is now obvious that it would

have been more scientific to have taken ether as standard medium, so that

the inductive capacity of every medium would have been greater than unity.

Unfortunately, the practice of referring all inductive capacities to air as

standard has become too firmly established for this to be possible. The

difference between the two standards is very slight, the inductive capacity

of normal air in terms of ether being 1*000590. Thus the inductive capacity

of a vacuum may be taken to be '99941 referred to air.

So long as the molecules are at distances apart which are great compared
with their linear dimensions, we may neglect the interaction of the charges
induced on the different molecules, and treat their effects as additive. It

follows that in a gas K KQ ,
where KQ is the inductive capacity of free ether,

ought to be proportional to the density of the gas. This law is found to be

in exact agreement with experiment*.

149. It is, however, possible to go further and calculate the actual value

of the ratio of KK^ to the density. We have seen that this will be

a constant for a given substance, so that we shall determine its value in the

simplest case: we shall consider a thin slab of the dielectric placed in a

parallel plate condenser, as described in 139. Let this slab be of thickness e,

and let it coincide with the plane of yz. Let the dielectric contain n mole-

cules per unit volume.

The element dydz will contain nedydz molecules. If each of these is

a doublet of strength /A, the element dydz will have a field which will be

equivalent at all distant points to that of a single doublet of strength

npedydz. This is exactly the field which would be produced if the two

faces of the slab were charged with electricity of surface density np.

*
Boltzmann, Wiener Sitzungsber. 69, p. 812,
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We can accordingly at once find the field produced by these doublets it

is the same as that of a parallel plate condenser, in which the plates are at

distance e apart and are charged to surface density +
nfju. There is no

intensity except between the plates, and here the intensity of the field is

Thus if R is the total intensity outside the slab, that inside will be

R 4>7rnfjb. If K is the inductive capacity of the material of the slab, and

KQ that of the free ether outside the slab, we have

K K ,

so that r-
=

p^- ............................. (74).
K. K

It remains to determine the ratio fji/R. The potential of a doublet is

~ while that of the field R may be taken to be Rx + G. Thus the total
r3

potential of a single doublet and the external field is

and this makes the surface r = a an equipotential if
s
= R. Thus the

surfaces of the molecules will be equipotentials if we imagine the molecules

to be spheres of radius a, and the centres of the doublets to coincide with

the centres of the spheres, the strength of each doublet being Ra?.

Putting IJL
= Ra?, equation (74) becomes*

K-KQ

-^- =4*
Now in unit volume of dielectric, the space occupied by the n molecules

is -
r no?. Calling this quantity 0, we have j^- = 30, or, since our calcu-
o J\_

lations only hold on the hypothesis that is small,

^ = 1 + 30 (75),

If the lines of force went straight across from one plate of the condenser

* Clausius (Mech. Warmetheorie, 2, p. 94) has obtained the relation

K Kn 4?r

by considering the field inside a sphere of dielectric. The value of K must of course be inde-

pendent of the shape of the piece of the dielectric considered. The apparent discrepancy in the

two values of K obtained, is removed as soon as we reflect that both proceed on the assumption
that K-KQ is small, for the results agree as far as first powers of K- KQ. Pagliani (Accad. del

Lincei, 2, p. 48) finds that in point of fact the equation

A
agrees better with experiment than the formula of Clausius.

92
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to the other, the proportion of the length of each which would be inside a

conductor would, on the average, be 6. Since there is no fall of a potential

inside a conductor, the total fall of potential from one plate to the other

would be only 1 times what it would be if the molecules were absent,

and the ratio K/K would be 1/(1
-

0) or, if is small, 1 + 0. Since,

however, the lines of force tend to run through conductors wherever possible,

there is more shortening of lines of force than is shewn by this simple

calculation. Equation (75) shews that when the molecules are spherical the

effect is three times that given by this simple calculation. For other shapes

of molecules the multiplying factor might of course be different.

Equation (75) gives at once a method of determining for substances

for which is small, namely gases, but, owing to the unwarranted assumption

that the molecules are spherical, the results will be true as regards order of

magnitude only. If the dielectric is a gas at atmospheric pressure, the

value of n is known, being roughly 2'75 x 1019
, and this enables us to calcu-

late the value of a.

jr
150. The following table gives series of values of -= for gases at atmo-

, .

A
spheric pressure:

Gas
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The last two columns give respectively the values of a calculated from

equation (75), and the value of a given by the Theory of Gases. The two

sets of values do not agree exactly this could not be expected when we

remember the magnitude of the errors introduced in treating the molecules

as spherical. But what agreement there is supplies very significant evidence

as to the truth of the theory of molecular polarisation.

151. It still remains to explain what physical property of the molecule

justifies us in treating its surface as a perfect conductor. It has already

been explained that all matter has associated with it or perhaps entirely

composing it a number of charged electric particles, or electrons. It is to

the motion of these that the conduction of electricity is due. In a dielectric

there is no conduction, so that each electron must remain permanently
associated with the same molecule. There is, however, plenty of evidence

that the electrons are not rigidly fixed to the molecules but are free to move

within certain limits. The molecule must be regarded as consisting partially

or wholly of a cluster of electrons, normally at rest in positions of equilibrium
under the various attractions and repulsions present, but capable of vibrating

about these positions. Under the influence of an external field of force,

the electrons will move slightly from their equilibrium positions we may
imagine that a kind of tidal motion of electrons takes place in the molecule.

Obviously, by the time that equilibrium is attained, the outer surface of the

molecule must be an equipotential. This, however, is exactly what is required
for Mossotti's hypothesis. The conception of conducting spheres supplies

a convenient picture for the mind, but is only required by the hypothesis in

order to make the surface of the molecule an equipotential. We may now

replace the conception of conducting spheres by that of clustered electrons

by this step the power of Mossotti's hypothesis to explain dielectric phenomena
remains unimpaired, while the modified hypothesis is in agreement with

modern views as to the structure of matter.

On this view, the quantity a tabulated in the sixth column of the table

on p. 132, will measure the radius of the outermost shell of electrons. Even

outside this outermost shell, however, there will be an appreciable field of

force, so that when two molecules of a gas collide there will in general be a

considerable distance between their outermost layers of electrons. Thus if

the collisions of molecules in a gas are to be regarded as the collisions of

elastic spheres, the radius of these spheres must be supposed to be con-

siderably greater than a. Now it is the radius of these imaginary elastic

spheres which we calculate in the Kinetic Theory of Gases : there is therefore

no difficulty in understanding the differences between the two sets of values

for a given in the table of p. 132.

It is known that molecules are not in general spherical in shape, but, as

we shall see below, there is no difficulty in extending Mossotti's theory to

cover the case of non-spherical molecules.
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ANISOTROPIC MEDIA.

152. There are some dielectrics, generally of crystalline structure, in

which Faraday's relation between polarisation and intensity is found not

to be true. The polarisation in such dielectrics is not, in general, in the

same direction as the intensity, and the angle between the polarisation and

intensity and also the ratio of these quantities are found to depend on the

direction of the field relatively to the axes of the crystal. We shall find that

the conception of molecular action accounts for these peculiarities of crystalline

dielectrics.

Let us consider an extreme case in which the spherical molecules of

fig. 46 are replaced by a number of very elongated or needle-shaped bodies.

The lines of force will have their effective lengths shortened by an amount
which depends on whether much or little of them falls within the material of

the needle-shaped molecules, and, as in 149, there will be an equation of

the form

where 6 is the aggregate volume of the number of molecules which occur in

a unit volume of the gas, and s is a numerical multiplier. But it is at once

clear that the value of s will depend not only on the shape but also on the

orientation of the molecules. Clearly the value of s will be greatest when
the needles are placed so that their greatest length lies in the direction of
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This extreme case illustrates the fundamental property of crystalline

dielectrics, but it ought to be understood that in actual substances the values

ofK do not differ so much for different directions as this extreme case might
be supposed to suggest. For instance for quartz, one of the substances in

which the difference is most marked, Curie finds the extreme values of K to

be 4-55 and 4'49.

Before attempting to construct a mathematical theory of the behaviour

of a crystalline dielectric we may examine the case of a dielectric having

needle-shaped molecules placed parallel to one another, but so as to make

any angle 6 with the direction of the lines of force, as in
fig, 46 c.

It is at once clear that not only are the effective lengths of the lines of

force shortened by the presence of the molecules, but also the directions of

the lines of force are twisted. It follows that the polarisation, regarded as a

vector as in 128, must in general have a direction different from that of the

average intensity R of the field.

To analyse such a case we shall, as in 146, regard the field near any

point as the superposition of two fields :

(i) the field which arises from the doublets on the neighbouring

molecules, say a field of components of intensity Xlt Ylt Zl ;

(ii) the field caused by the doublets arising from the distant molecules

and from the charges outside the dielectric, say a field of components of

intensity X 2 ,
Y2 ,

Zz .

Clearly in the case we are now considering, the intensities Rl} R2 of

these fields will not be in the same direction.

The components of intensity of the whole field are given by

X^Xl + XZt etc.

To discuss the first part of the field, let us regard the whole field as

the superposition of three fields, having respectively components (X, 0, 0),

(0, Y, 0) and (0, 0, Z). If the molecules are spherical, or if, not being

spherical, their orientations in space are distributed at random, then clearly

the field of components (X, 0, 0) will induce doublets which will produce

simply a field of components (K'X, 0, 0) where K' is a constant. But if the

molecules are neither spherical in shape nor arranged at random as regards
their orientations in space, it will be necessary to assume that the induced

doublets give rise to a field of components

K 11 X, JK. 12 -A j
& 13 -A
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On superposing the doublets induced by the three fields (X, 0, 0),

(0, F, 0) and (0, 0, Z), we obtain

.(76).

Thus we have relations of the form

expressing the relations between polarisation and intensity.

These are the general equations for crystalline media. If the medium
is non-crystalline, so that the phenomena exhibited by it are the same for all

directions in space, then the two vectors, the intensity and the polarisation,

must have the same direction and stand in a constant ratio to one another.

In this case we must have

K12
= KVL = . . . = 0,

AH = KW = K33 K.

In the more general equations (77), there are not nine, but only six,

independent constants, for, as we shall afterwards prove ( 176), we must

have

K
] 2
= K^i ,

K23
= JHL 32 , K%i = KVA .................. (78).

REFERENCES.
On Inductive Capacity :

FARADAY. Experimental Researches. 12521306.

On Molecular Polarisation :

FARADAY. I.e. 16671748.

On Experimental Determinations of K :

WINKELMANN. Handbuch der Physik (2te Auflage), 4, (1), pp. 92150.



152] Examples 187

EXAMPLES.

1. A spherical condenser, radii a, 6, has air in the space between the spheres. The

inner sphere receives a coat of paint of uniform thickness t and of a material of which

the inductive capacity is K. Find the change produced in the capacity of the condenser.

2. A conductor has a charge e, and Fl5 F2 are the potentials of two equipotential

surfaces completely surrounding it
(
Fx > F

2). The space between these two surfaces is

now filled with a dielectric of inductive capacity K. Shew that the change in the

energy of the system is

3. The surfaces of an air-condenser are concentric spheres. If half the space between

the spheres be filled with solid dielectric of specific inductive capacity K, the dividing

surface between the solid and the air being a plane through the centre of the spheres,

shew that the capacity will be the same as though the whole dielectric were of uniform

specific inductive capacity ^ (1 + A").

4. The radii of the inner and outer shells of two equal spherical condensers, remote

from each other and immersed in an infinite dielectric of inductive capacity K, are

respectively a and 6, and the inductive capacities of the dielectric inside the condensers

are A"l5 A"2 . Both surfaces of the first condenser are insulated and charged, the second

being uncharged. The inner surface of the second condenser is now connected to earth,

and the outer surface is connected to the outer surface of the first condenser by a wire

of negligible capacity. Shew that the loss of energy is

where Q is the quantity of electricity which flows along the wire.

5. The outer coating of a long cylindrical condenser is a thin shell of radius a, and

the dielectric between the cylinders has inductive capacity K on one side of a plane

through the axis, and K' on the other side. Shew that when the inner cylinder is

connected to earth, and the outer has a charge q per unit length, the resultant force on

the outer cylinder is

4q*(K-K')
ira(K+K'}

per unit length.

6. A heterogeneous dielectric is formed of n concentric spherical layers of specific

inductive capacities A
r

1? A^, ... Kn , starting from the innermost dielectric, which forms a

solid sphere ;
also the outermost dielectric extends to infinity. The radii of the spherical

boundary surfaces are al5 a2 ,
... an _ l respectively. Prove that the potential due to a

quantity Q of electricity at the centre of the spheres at a point distant r from the centre

in the dielectric K8 is

K8 \r aj K8 + i\a8 a8 +J
'"

K~n an
*
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7. A condenser is formed by two rectangular parallel conducting plates of breadth

b and area A at distance d from each other. Also a parallel slab of a dielectric of thickness

t and of the same area is between the plates. This slab is pulled along its length from

between the plates, so that only a length x is between the plates. Prove that the electric

force sucking the slab back to its original position is

where t'= t(K- 1)//T, K is the specific inductive capacity of the slab, E is the charge, and

the disturbances produced by the edges are neglected.

8. Three closed surfaces 1, 2, 3 are equipotentials in an electric field. If the space

between 1 and 2 is filled with a dielectric K, and that between 2 and 3 is filled with a

dielectric K', shew that the capacity of a condenser having 1 and 3 for faces is (7, given by

where A, B are the capacities of air-condensers having as faces the surfaces 1, 2 and 2, 3

respectively.

9. The surface separating two dielectrics (K^ K2)
has an actual charge cr per unit

area. The electric forces on the two sides of the boundary are F^ F2 at angles c^ c2 with

the common normal. . Shew how to determine F
2 ,
and prove that

10. The space between two concentric spheres radii a, b which are kept at potentials

A, B, is filled with a heterogeneous dielectric of which the inductive capacity varies as

the nih power of the distance from their common centre. Shew that the potential at any
point between the surfaces is

A-B

11. A condenser is formed of two parallel plates, distant h apart, one of which is

at zero potential. The space between the plates is filled with a dielectric whose inductive

capacity increases uniformly from one plate to the other. Shew that the capacity per unit

area is

where K^ and K2 are the values of the inductive capacity at the surfaces of the plate. The

inequalities of distribution at the edges of the plates are neglected.

12. A spherical conductor of radius a is surrounded by a concentric spherical

conducting shell whose internal radius is 6, and the intervening space is occupied by a

dielectric whose specific inductive capacity at a distance r from the centre is ^ . If the

inner sphere is insulated and has a charge E, the shell being connected with the earth,

prove that the potential in the dielectric at a distance r from the centre is log ,

+
[(

c r (c+ b)
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13. A spherical conductor of radius a is surrounded by a concentric spherical shell of

radius 6, and the space between them is filled with a dielectric of which the inductive

capacity at distance r from the centre is p.e~
p* p~

3 where p=rja. Prove that the capacity

of the condenser so formed is

62

_ ______
14. If the specific inductive capacity varies as e

,
where r is the distance from a

fixed point in the medium, verify that a solution of the differential equation satisfied by
the potential is

and hence determine the potential at any point of a sphere, whose inductive capacity is

the above function of the distance from the centre, when placed in a uniform field of

force.

15. Shew that the capacity of a condenser consisting of the conducting spheres r=a,

r=6, and a heterogeneous dielectric of inductive capacity K=f(6, <), is

16. In an imaginary crystalline medium the molecules are discs placed so as to be

all parallel to the plane of xy. Shew that the components of intensity and polarisation

are connected by equations of the form

KnX+K21 Y ng=K12X+ K22 Y; ^h=K33Z.



CHAPTER VI

THE STATE OF THE MEDIUM IN THE ELECTEOSTATIC FIELD

153. THE whole electrostatic theory has so far been based simply upon
Coulomb's Law of the inverse square of the distance. We have supposed
that one charge of electricity exerts certain forces upon a second distant

charge, but nothing has been said as to the mechanism by which this action

takes place. In handling this question there are two possibilities open. We

may either assume "
action at a distance

"
as an ultimate explanation i.e.

simply assert that two bodies act on one another across the intervening

space, without attempting to go any further towards an explanation of how

such action is brought about or we may tentatively assume that some

medium connects the one body with the other, and examine whether it is

possible to ascribe properties to this medium, such that the observed action

will be transmitted by the medium. Faraday, in company with almost all

other great natural philosophers, definitely refused to admit "action at

a distance
"
as an ultimate explanation of electric phenomena, finding such

action unthinkable unless transmitted by an intervening medium.

154. It is worth enquiring whether there is any valid a priori argument which

compels us to resort to action through a medium. Some writers have attempted to use

the phenomenon of Inductive Capacity to prove that the energy of a condenser must
reside in the space between the charged plates, rather than on the plates themselves for,

they say, change the medium between the plates, keeping the plates in the same condition,
and the energy is changed. A study of Faraday's molecular explanation of the action in

a dielectric will shew that this argument proves nothing as to the real question at issue.

It goes so far as to prove that when there are molecules placed between electric charges,
these molecules themselves acquire charges, and so may be said to be new stores of energy,
but it leaves untouched the question of whether the energy resides in the charges on the

molecules or in the ether between them.

Again, the phenomenon of induction is sometimes quoted against action at a distance
a small conductor placed at a point P in an electrostatic field shews phenomena which

depend on the electric intensity at P. This is taken to shew that the state of the ether
at the point P before the introduction of the conductor was in some way different from
what it would have been if there had not been electric charges in the neighbourhood. But
all that is proved is that the state of the point P after the introduction of the conductor



153, 1 54] The State of the Medium in the Electrostatic Field 141

will be different from what it would have been if there had not been electric charges in

the neighbourhood, and this can be explained equally well either by action at a distance or

action through a medium. The new conductor is a collection of positive and negative

charges : the phenomena under question are produced by these charges being acted upon

by the other charges in the field, but whether this action is action at a distance or action

through a medium cannot be told.

Indeed, it will be seen that, viewed in the light of the electron-theory and of Faraday's

theory of dielectric polarisation, electrical action stands on just the same level as

gravitational action. In each case the system of forces to be explained may be regarded

as a system of forces between indestructible centres, whether of electricity or of matter,

and the law of force is the law of the inverse square, independently of the state of the

space between the centres. And although scientists may be said to be agreed that

gravitational action, as well as electrical action, is in point of fact propagated through

a medium, yet a consideration of the case of gravitational forces will shew that there is

no obvious a priori argument which can be used to disprove action at a distance.

Failing an a priori argument, an attempt may be made to disprove action at a distance,

or rather to make it improbable, by an appeal to experience. It may be argued that as

all the forces of which we have experience in every-day life are forces between substances

in contact, therefore it follows by analogy that forces of gravitation, electricity and

magnetism, must ultimately reduce to forces between substances in contact i.e. must be

transmitted through a medium. Upon analysis, however, it will be seen that this argument
divides all forces into two classes :

(a) Forces of gravitation, electricity and magnetism, which appear to act at a

distance.

(/3) Forces of pressure and impact between solid bodies, hydrostatic pressure, etc.

which appear to act through a medium.

The argument is now seen to be that because class (/3) appear to act through a medium,
therefore class (a) must in reality act through a medium. The argument could, with equal

logical force, be used in the exactly opposite direction : indeed it has been so used by the

followers of Boscovitch. The Newtonian discovery of gravitation, and of apparent action

at a distance, so occupied the attention of scientists at the time of Boscovitch that it

seemed natural to regard action at a distance as the ultimate basis of force, and to

try to interpret action through a medium in terms of action at a distance. The reversion

from this view came, as has been said, with Faraday.

Hertz's subsequent discovery of the finite velocity of propagation of electric action,

which had previously been predicted by Maxwell's theory, came to the support of Faraday's
view. To see exactly what is meant by this finite velocity of propagation, let us imagine
that we place two uncharged conductors A, B at a distance r from one another. By
charging A, and so performing work at A, we can induce charges on conductor B, and
when this has been done, there will be an attraction between conductors A and B. We
can suppose that conductor A is held fast, and that conductor B is allowed to move
towards A, work being performed by the attraction from conductor A. We are now

recovering from B work which was originally performed at A. The experiments of Hertz

shew that a finite time is required before any of the work spent at A becomes available

at B. A natural explanation is to suppose that work spent on A assumes the form of

energy which spreads itself out through the whole of space, and that the finite time
observed before energy becomes available at B is the time required for the first part of

the advancing energy to travel from A to B. This explanation involves regarding energy
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as a definite physical entity, capable of being localised in space. It ought to be noticed

that our senses give us no knowledge of energy as a physical entity : we experience force,

not energy. And the fact that energy appears to be propagated through space with finite

velocity does not justify us in concluding that it has a real physical existence, for, as we

shall see, the potential appears to be propagated in the same way, and the potential can

only be regarded as a convenient mathematical fiction.

155. We accordingly make the tentative hypothesis that all electric

action can be referred to the action of an intervening medium, and we have

to examine what properties must be ascribed to the medium. If it is found

that contradictory properties would have to be ascribed to the medium, then

the hypothesis of action through an intervening medium will have to be

abandoned. If the properties are found to be consistent, then the hypotheses
of action at a distance and action through a medium are still both in the

field, but the latter becomes more or less probable just in proportion as the

properties of the hypothetical medium seem probable or improbable.

Later, we shall have to conduct a similar enquiry with respect to the system of forces

which two currents of electricity are found to exert on one another. It will then be found

that the law of force required for action at a distance is an extremely improbable law,

while the properties of a medium required to explain the action appear to be very natural,

and therefore, in our sense, probable.

156. Since electric action takes place even across the most complete
vacuum obtainable, we conclude that if this action is transmitted by a

medium, this medium must be the ether. Assuming that the action is

transmitted by the ether, we must suppose that at any point in the electro-

static field there will be an action and reaction between the two parts of the

ether at opposite sides of the point. The ether, in other words, is in a state

of stress at every point in the electrostatic field. Before discussing the

particular system of stresses appropriate to an electrostatic field, we shall

investigate the general theory of stresses in a medium at rest.

GENERAL THEORY OF STRESSES IN A MEDIUM AT REST.

157. Let us take a small area dS in the medium perpendicular to the
axis of x. Let us speak of that part of the medium near to dS for which x
is greater than its value over dS as x+ t

and that for which x is less than this

value as #_, so that the area dS separates the two regions x+ and a?_.

Those parts of the medium by which these two regions are occupied exert

forces upon one another across dS, and this system, of forces is spoken of as

the stress across dS. Obviously this stress will consist of an action and

reaction, the two being equal and opposite. Also it is clear that the amount
of this stress will be proportional to dS.

Let us assume that the force exerted by x+ on x_ has components

Pxx dS, PxydS, P^dS,
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then the force exerted by x_ on x+ will have components

PxxdS, fxydS, Pxz dS.

The quantities Pxx ,
Pxy ,

Pxz are spoken of as the components of stress

perpendicular to Ox. Similarly there will be components of stress Pyx ,
Pyy ,

P
yz perpendicular to Oy, and components of stress Pzx ,

Pzy ,
Pzz perpendicular

to Oz.

Let us next take a small parallelepiped in the

medium, bounded by planes

y =

The stress acting upon the parallelepiped o

FIG. 47.

across the face of area dydz in the plane x =
will have components

- (Pxx)x^ dydz,
- (Pxy)x^dydz, - (Pxz\^ dydz,

while the stress acting upon the parallelepiped across the opposite face will

have components

(Pxx)x=+dxdy dz, (Pxy)x=Mxdy dz, (Pxz)x=Mxdy dz.

Compounding these two stresses, we find that the resultant of the stresses

acting upon the parallelepiped across the pair of faces parallel to the plane
of yz, has components

xX 777-
dxdydz,

l xy

"dx

- dxdydz,
- dxdy dz.

Similarly from the other pairs of faces, we get resultant forces of com-

ponents
dP dP dP
-^ dxdydz, -^ dxdydz, ^
dy dy dy

and ^ dxdy dz,
-- dxdy dz, dxdydz.

For generality, let us suppose that in addition to the action of these

stresses the medium is acted upon by forces acting from a distance, of

amount H, H, Z per unit volume. The components of the forces acting on

the parallelepiped of volume dxdydz will be

5 dxdy dz, H dxdy dz, Zdxdy dz.

Compounding all the forces which have been obtained, we obtain as equations
of equilibrium

~ dPxx dP% dPzx
dx dy dz

and two similar equations.
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158. These three equations ensure that the medium shall have no

motion of translation, but for equilibrium it is also necessary that there

should be no rotation. To a first approximation, the stress across any face

may be supposed to act at the centre of the face, and the force H, H, Z at

the centre of the parallelepiped. Taking moments about a line through the

centre parallel to the axis of Ox, we obtain as the equation of equilibrium

Pyz-Pzy = V ................................. (80).

This and the two similar equations obtained by taking moments about

lines parallel to Oy, Oz ensure that there shall be no rotation of the medium.

Thus the necessary and sufficient condition for the equilibrium of the medium
is expressed by three equations of the form of (79), and three equations of the

form of (80).

159. Suppose next that we take a small area dS anywhere in the

medium. Let the direction cosines of the normal

to dS be + I, m, n. Let the parts of the

medium close to dS and on the two sides of it be

spoken of as S+ and $_, these being named so

that a line drawn from dS with direction cosines

+ 1, +m, +n will be drawn into S+) and one

with direction cosines -I, -m, n will be drawn
into &_. Let the force exerted by S+ on /SL

across the area dS have components

FdS, GdS, HdS, FlG . 48 .

then the force exerted by $_ on S+ will have

components
- FdS, - GdS, - HdS.

The quantities F, G, H are spoken of as the components of stress across

a plane of direction cosines I, m, n.

To find the values of F, G, H, let us draw a small tetrahedron having
three faces parallel to the coordinate planes and a fourth having direction

cosines I, m, n. If dS is the area of the last face, the areas of the other

faces are IdS, mdS, ndS and the volume of the parallelepiped is

J ^2lmn (dS)* . Resolving parallel to Ox, we have, since the medium inside

this tetrahedron is in equilibrium,

n (dS)% n - ldSPxx - mdSPyx - ndSPzx + FdS = 0,

giving, since dS is supposed vanishingly small,

F=lPxx + mPyx + nPzx ........................... (81)

and there are two similar equations to determine G and H.
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160. Assuming that equation (80) and the two similar equations are

satisfied, the normal component of stress across the plane of which the

direction cosines are I, m, n is

IF + mG + nH=l*Pxx + m?Pyy + n*Pzz + 2mnPyz + 2nlPzx + 2lmPxy .

The quadric

a?Pxx + fPyy + z2Pzz + 2yzPyz + 2zxPzx + 2xyPxy = l ......... (82)

is called the stress-quadric. If r is the length of its radius vector drawn in

the direction I, m, n, we have

r2

(l*Pxx + wa

,Jd- n*Pzz + 2mnPyz + ZnlP^ + ZlmP^) = 1.

It is now clear that the normal stress across any plane I, m, n is measured

by the reciprocal of the square of the radius vector of which the direction

cosines are I, m, n. Moreover the direction of the stress across any plane

I, m, n is that of the normal to the stress-quadric at the extremity of this

radius vector. For r being the length of this radius vector, the coordinates

of its extremity will be rl, rm, rn. The direction cosines of the normal at

this point are in the ratio

rlPxx + rmPxy + rnPzx : rlPxy + rmPyy + rnPyz : rlPzx + rmPyz + rnPzz
or F : G : H, which proves the result.

The stress-quadric has three principal axes, and the directions of these

are spoken of as the axes of the stress. Thus the stress at any point has

three axes, and these are always at right angles to one another. If a small

area be taken perpendicular to a stress axis at any point, the stress across

this area will be normal to the area. If the amounts of these stresses are

??> ^2, P^ then the equation of the stress-quadric referred to its principal

axes will be

Clearly a positive principal stress is a simple tension, and a negative

principal stress is a simple pressure.

As simple illustrations of this theory, it may be noticed that

(i) For a simple hydrostatic pressure P, the stress-quadric becomes an imaginary

sphere

The pressure is the same in all directions, and the pressure across any plane is at right

angles to the plane (for the tangent plane to a sphere is at right angles to the radius

vector).

(ii) For a simple pull, as in a rope, the stress-quadric degenerates into two parallel

planes

P^2= L

j. 10
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THE STRESSES IN AN ELECTROSTATIC FIELD.

161. If an infinitesimal charged particle is introduced into the electric

field at any point, the phenomena exhibited by it must, on the present view

of electric action, depend solely on the state of stress at the point. The

phenomena must therefore be deducible from a knowledge of the stress-

quadric at the point. The only phenomenon observed is a mechanical force

tending to drag the particle in a certain direction namely, in the direction

of the line of force through the point. Thus from inspection of the stress-

quadric, it must be possible to single out this one direction. We conclude

that the stress-quadric must be a surface of revolution, having this direction

for its axis. The equation of the stress-quadric at any point, referred to

its principal axes, must accordingly be

where the axis of f coincides with the line of force through the point. Thus

the system of stresses must consist of a tension /? along the lines of force,

and a tension ^ perpendicular to the lines of force and if either of the

quantities ^ or ^ is found to be negative, the tension must be interpreted
as a pressure.

Since the electrical phenomena at any point depend only on the stress-

quadric, it follows that R must be deducible from a knowledge of P
l
and P^.

Moreover, the only phenomena known are those which depend on the

magnitude of R, so that it is reasonable to suppose that the only quantity
which can be deduced from a knowledge of P^ and P2 is the quantity R
in other words, that P^ and P2 are functions of R only. We shall for the

present assume this as a provisional hypothesis, to be rejected if it is found

to be incapable of explaining the facts. /

162. The expression of P^ as a function of R can be obtained at once

by considering the forces acting on a charged conductor. Any element dS
7?2

of surface experiences a force
^-

dS urging it normally away from the con-

ductor. On the present view of the origin of the forces in the electric field,

we must interpret this force as the resultant of the ether-stresses on its two
sides. Thus, resolving normally to the conductor, we must have

where (/?Xs, (7?) denote the values of 7? when the intensity is R and

respectively. Inside the , conductor there is no intensity, so that the

stress-quadrics become spheres, for there is nothing to differentiate one

direction from another. Any value which (7J)Q may have accordingly arises
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simply from a hydrostatic pressure or tension throughout the medium, and

this cannot influence the forces on conductors. Leaving any such hydrostatic

pressure out of account, we may take (7?)
=

0, and so obtain (fyR in the

form

163. We can most easily arrive at the function of R which must be

taken to express the value of P^ by considering a special case.

Consider a spherical condenser formed of spheres of radii a, b. If this

condenser is cut into two equal halves by a plane through its centre, the

two halves will repel one another. This action must now be ascribed to the

stresses in the medium across the plane of section. Since the lines of force

are radial these stresses are perpendicular to the lines of force, and we see

at once that the stress perpendicular to the lines of force is a pressure. To
calculate the function of R which expresses this pressure, we may suppose
b a equal to some very small quantity c, so that R may be regarded as

constant along the length of a line of force. The area over which this

pressure acts is ?r (6
2 a2

),
and since the pressure per unit area in the

medium perpendicular to a line of force is 7?, the total repulsion
between the two halves of the condenser will be ^7r(6

2 a2
).

The whole force on either half of the condenser is however a force 2?ro-
2

per unit area over each hemisphere, normal to its surface. The resultant of

all the forces acting on the inner hemisphere is ?ra2 x 27rcr2
, or putting

27raV = E, so that E is the charge on either hemisphere, this force is E2

/*2a?.

Similarly, the force on the hemisphere of radius b is E*/2b
2
. Thus the re-

sultant repulsion on the complete half of the condenser is %E'
2

(

j-
\ . Since

this has been seen to be also equal to P27r(bz a2

), we have

on taking a = b in the limit.

Thus in order that the observed actions may be accounted for, it is

necessary that we have

Moreover, if these stresses exist, they will account for all the observed

mechanical action on conductors, for the stresses result in a mechanical force

27rcr2

per unit area on the surface of every conductor.

164. It remains to examine whether these stresses are such as can be

transmitted by an ether at rest,

102
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As a preliminary we must find the values of the stress-components Pxx ,

fxy, ... referred to fixed axes Ox, Oy, Oz.

The stress-quadric at any point in the ether, referred to its principal axes,

is seen on comparison with equation (83) to be

Here the axis of % is in the direction of the line of force at the point.

Let the direction-cosines of this direction be llt m1) n-^. Then on transforming

to axes Ox, Oy, Oz we may replace by l& + m^y + n^z.

Equation (85) may be replaced by

and on transforming axes f
2 + rf + f

2 transforms into a? + 1/
2 + z2

. Thus the

transformed equation of the stress-quadric is

{2 (1& + my + n^zf
-

(tf + y* + z*)}
= 1.

Comparing with equation (82), we obtain

7?2

JJ.|~W-I) ........................... (86),

7?2

^-Jj^lfa) ..............................(87),

and similar values for the remaining components of stress.

Or again, since X = ^R, Y = m^R, Z =

these equations may be expressed in the form

_XY* 47T
'

'

In this system of stress-components, the relations Pxy = Pyx are satisfied,

as of course they must be since the system of stresses has been derived by
assuming the existence of a stress-quadric. Thus the stresses do not set up
rotations in the ether (cf. equation (80)).

In order that there may be also no tendency to translation, the stress-

components must satisfy equations of the type

expressing that no forces beyond these stresses are required to keep the

ether at rest (cf. equation (79)).
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On substituting the values of the stress-components, we have

a. a& ae,

dx dy dz

dX SY dZ\ dX 3FN /3Z _ dZ

On putting

T __8F F=_^ * = _?!
dx

}

dy' dz
'

we find at once that

dX 9F= 92F
[

92F ^ Q
dy dx dxdy dxdy

dX dZ 92F 92F
dx~ *-*- ' *-*-- -

8F

shewing that equation (88) is satisfied.

165. Thus, to recapitulate, we have found that a system of stresses

consisting of

DS

(i) a tension -
per unit area in the direction of the lines of force,

oTT

(ii) a pressure per unit area perpendicular to the lines of force,

is one which can be transmitted by the medium, in that it does not tend to

set up motions in the ether, and is one which will explain the observed

forces in the electrostatic field. Moreover it is the only system of stresses

capable of doing this, which is such that the stress at a point depends only

on the electric intensity at that point.

Examples of Stress.

166. Assuming this system of stresses to exist, it is of value to try to

picture the actual stresses in the field in a few simple cases.

Consider first the field surrounding a point charge. The tubes of force

are cones. Let us consider the equilibrium of the ether enclosed by a

frustum of one of these cones which is bounded by two ends p, q. If

(DP ,
a)

q are the areas of these ends, we find that there are tensions of

-
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amounts Since the former is the greater,
RI

STT
' l^r

so that the forces on the two ends have as

resultant a force tending to move the ether

inwards towards the charge. This tendency

is of course balanced by the pressures acting

on the curved surface, each of which has a

component tending to press the ether inside

the frustum away from the charge.
\

167. A more complex example is afforded FlG - 49>

by two equal point charges, of which the lines of force are shewn in

fig. 50.

FIG. 50.

The lines of force on either charge fall thickest on the side furthest

removed from the other charge, so that their resultant action on the charges

amounts to a traction on the surface of each tending to drag it away from

the other, and this traction appears to us as a repulsion between the bodies.

We1

can examine the matter in a different way by considering the action

and reaction across the two sides of the plane which bisects the line joining
the two charges. No lines of force cross this plane, which is accordingly
made up entirely of the side walls of tubes of force. Thus there is a pressure

per unit area acting across this plane at every point. The resultant of

all these pressures, after transmission by the ether from the plane to the

charges immersed in the ether, appears as a force of repulsion exerted by
the charges on one another.
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ENERGY IN THE MEDIUM.

168. In setting up the system of stresses in a medium originally un-

stressed, work must be done, analogous to the work done in compressing
a gas. This work must represent the energy of the stressed medium, and

this in turn must represent the energy of the electrostatic field. Clearly,

from the form of the stresses, the energy per unit volume of the medium

at any point must be a function of R only. To determine the form of this

function, we may examine the simple case of a parallel plate condenser,

R*
and we find at once that the function must be ^ .

O7T

We have now to examine whether the energy of any electrostatic field

R2

can be regarded as made up of a contribution of amount
^ per "unit volume

from every part of the field.

In fig. 51, let PQ be a tube of force of strength e, passing from P at

potential VP to Q at potential VQ . The ether inside this tube of force

R2

being supposed to possess energy ^ per unit volume,

the total energy enclosed by the tube will be

where o> is the cross section at any point, and the

integration is along the tube. Since Ray = 4>7re,
., . . FIG. 51.
this expression

r

I

JP
Rds

p

ds

This, however, is exactly the contribution made by the charges + e at

P, Q to the expression J %eV. Thus on summing over all tubes of force, we

find that the total energy of the field ^eV may be obtained exactly, by
R2

assigning energy to the ether at the rate of ^ per unit volume.

Energy in a Dielectric.

169. By imagining the parallel plate condenser of 168 filled with

dielectric of inductive capacity K, and calculating the energy when charged,

we find that the energy, if spread through the dielectric, must be

per unit volume.



152 The State of the Medium in the Electrostatic Field [en. vi

Let us now examine whether the total energy of any field can be regarded

as arising from a contribution of this amount per unit volume. The energy
contained in a single tube of force, with the notation already used, will be

, 8*
mds

'

KR
or, since .

= P, where P is the polarisation, this energy

Rds

so that the total energy is J2eF, as before. Thus a distribution of energy of

amount -= per unit volume will account for the energy of any field.

Crystalline dielectrics.

170. We have seen ( 152) that in a crystalline dielectric, the com-

ponents of polarisation and of electric intensity will be connected by equations
of the form

4>7rf=KnX + K2lY+K2lZ\

^ .................. (89).

The energy of any distribution of electricity, no matter what the dielectric

may be, will be
-J
2#F. If Tf, V2 are the potentials at the two ends of

a unit tube, the part of this sum which is contributed by the charges at the

ends of this tube will be J (Fx
-

TJ). If d/ds denote differentiation along the

tube, this may be written - \ I ds, or again
-

I Pco ds, where P is the
J US J OS

polarisation, and co the cross section of the tube. Thus the energy may be

supposed to be distributed at the rate of - ^ -=- P per unit volume. If e is the
ds

angle between the direction of the polarisation and that of the electric

intensity, we have -
-^-

= R cos e, so that the energy per unit volume

(90).

In a slight increase to the electric charges, the change in the energy of

the system is, by 109, equal to 2VSE, so that the change in the energy per
unit volume of the medium is

Thu
dW-X dW-Y dW~- x ~ Y
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From formulae (89) and (90), we must have

= ~
from which

We must also have

- {KUX + i (tf,, + KJ Y + { (K13 + K31) Z\.

__
ax

==

8/ az 8# 8X a/A ax

*^\Kjt t:XmT.+-XJty

Comparing these expressions, we see that we must have

KYI = KZI > -^13 -^31 > -^23 = -^32-

The energy per unit volume is now

W = (KUX* + 2Z19XY+...) .................. (92).

MAXWELL'S DISPLACEMENT THEORY.

171. Maxwell attempted to construct a picture of the phenomena

occurring in the electric field by means of his conception of
"
electric dis-

placement." Electric intensity, according to Maxwell, acting in any medium
whether this medium be a conductor, an insulator, or free ether produces
a motion of electricity through the medium. It is clear that Maxwell's

conception of electricity, as here used, must be wider than that which we
have up to the present been using, for electricity, as we have so far under-

stood it, is incapable of moving through insulators or free ether. Maxwell's

motion of electricity in conductors is that with which we are already familiar.

As we have seen, the motion will continue so long as the electric intensity

continues to exist. According to Maxwell, there is also a motion in an

insulator or in free ether, but with the difference that the electricity cannot

travel indefinitely through these media, but is simply displaced a small

distance within the medium in the direction of the electric intensity, the

extent of the displacement in isotropic media being exactly proportional
to the intensity, and in the same direction.

The conception will perhaps be understood more clearly on comparing a conductor to

a liquid and an insulator to an elastic solid. A small particle immersed in a liquid will

continue to move through the liquid so long as there is a force acting on it, but a particle

immersed in an elastic solid will be merely "displaced" by a force acting on it. The
amount of this displacement will be proportional to the force acting, and when the force

is removed, the particle will return to its original position.
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Thus at any point in any medium the displacement has magnitude and

direction. The displacement, then, is a vector, and its component in any
direction may be measured by the total quantity of electricity per unit area

which has crossed a small area perpendicular to this direction, the quantity

being measured from a time at which no electric intensity was acting.

172. Suppose, now, that an electric field is gradually brought into

existence, the field at any instant being exactly similar to the final field

except that the intensity at each point is less than the final intensity in

some definite ratio K. Let the displacement be c times the intensity, so

that when the intensity at any point is /cR, the displacement is c/cR. The

direction of this displacement is along the ^nes of force, so that the

electricity may be regarded as moving through the tubes of force : the lines

of force become identical now with the current-lines of a stream, to which

they have already been compared.

Let us consider a small element of volume cut off by two adjacent

equipotentials and a tube of force. Let the cross section of the tube of

force be co, and the normal distance between the equipotentials where they
meet the tube of force be ds, so that the element under

consideration is of volume co ds. On increasing the intensity

from icR to (K + die) R, there is an increase of displacement
from crcR to c (K + d/c) R, and therefore an additional dis-

placement of electricity of amount cRdtc per unit area.

Thus of the electricity originally inside the small element

of volume, a quantity cRcod/c flows out across one of the

bounding equipotentials, whilst an equal quantity flows in

across the other. Let K, T be the potentials of these

surfaces, then the whole work done in displacing the electricity originally

inside the element of volume cods, is exactly the work of transferring a

quantity cRdic of electricity from potential J^ to potential V2 . It is

therefore cRco(V2 V^dic and, since V2 V1
= icRds, this may be written as

cR^codsicdtc. Thus as the intensity is increased from to R, the total work

spent in displacing the electricity in the element of volume cods

f
1

= I cR2

(cods) /cdtc = %cR
2

. cods.
Jo

This work, on Maxwell's theory, is simply the energy stored up in the

element of volume cods of the medium, and is therefore equal to -cods.
O7T

Thus c must be taken equal to j ,
and the displacement at any point is

measured by

E_
47T'

-ds-
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If the element of volume is taken in a dielectric of inductive capacity K,

the energy is
-^ ,

so that c = r- ,
and the displacement is

KR
4-7T

'

173. It is now evident that Maxwell's "displacement" is identical in

magnitude and direction with Faraday's "polarisation" introduced in

Chap. V.

Denoting either quantity by P, we had the relation

E.. .-(93),

expressing that the normal component of P integrated over any closed

surface is equal to the total charge inside. On Maxwell's interpretation of

the quantity P, the surface integral 1 1 P cos e dS simply measures the total

quantity of electricity which has crossed the surface from inside to outside.

Thus equation (93) expresses that the total outward displacement across any
closed surface is equal to the total charge inside.

It follows that if a new conductor with a charge e is introduced at any

point in space, then a quantity of electricity equal to e flows outwards across

every surface surrounding the point. In other words, the total quantity of

electricity inside the surface remains unaltered. This total quantity consists

of two kinds of electricity (i) the kind of electricity which appears as a

charge on an electrified body, and (ii) the kind which Maxwell imagines to

occupy the whole of space, and to undergo displacement under the action of

electric forces. On introducing a new positively charged conductor into any

space, the total amount of electricity of the first kind inside the space is

increased, but that of the second kind experiences an exactly equal decrease,

so that the total of the two kinds is left unaltered.

174. This result at once suggests the analogy between electricity and

an incompressible fluid. We can picture the motion of electric, charges

through free ether as causing a displacement of the electricity in the ether,

in just the same way as the motion of solid bodies through an incompressible

liquid would cause a displacement of the liquid.
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CHAPTER VII

GENERAL ANALYTICAL THEOREMS

GREEN'S THEOREM.

175. A THEOREM, first given by Green, and commonly called after him,

enables us to express an integral taken over the surfaces of a number of

bodies as an integral taken through the space between them. This theorem

naturally has many applications to Electrostatic Theory. It supplies a means

of handling analytically the problems which Faraday treated geometrically
with the help of his conception of tubes of force.

176. THEOREM, If u, v, w are continuous functions of the Cartesian

coordinates x, y, z, then

nw) dS=-
[[((jfc

+ ~ +
^\dxdydz (94).

Here 2 denotes that the surface integrals are summed over any number of

closed surfaces, which may include as special cases either

(i) one of finite size which encloses all the others, or

(ii) an imaginary sphere of infinite radius,

and I, m, n are the direction-cosines of the normal drawn in every case from

the element dS into the space between the surfaces. The volume integral is

taken throughout the space between the surfaces.

Consider first the value of II ^ dxdydz. Take any small prism with its

axis parallel to that of x, and of cross section dydz. Let it meet the surfaces

at P, Q, R, S, T, U, ...
(fig. 53), cutting off areas dSP ,

dSQ , dSR ,
....

The contribution of this prism to 1 1 1 ^ dxdydz is dydz I ^ dx, where the

integral is taken over those parts of the prism which are between the surfaces.
'

UP + UQ
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where up ,
U
Q)
UR ,... are the values of u at P, Q, R,.... Also, since the pro-

jection of each of the areas dSP , dS^,... on the plane of yz is dydz, we have

dydz = lPdSp = l
QdSg lRdSR = ...,

where 1P ,
1
Q ,

1R> ... are the values of I at P, Q, R,.... The signs in front of

lp> 1Q ,
1R ,... are alternately positive and negative, because, as we proceed

along PQR ...
,
the normal drawn into the space between the surfaces makes

angles which are alternately acute and obtuse with the positive axis of x.

FIG. 53.

Thus

[du
}&**=

R -.. ..........(95),

and on adding the similar equations obtained for all the prisms we obtain

(96),

the terms on the right-hand sides of equations of the type (95) combining so

as exactly to give the term on the right-hand side of (96).

We can treat the functions v and w similarly, and so obtain altogether

proving the theorem.

177. If u, v, w are the three components of any vector F, then the

du dv dw
expression

is denoted, for reasons which will become clear later, by div F. If ^V is the

component of the vector in the direction of the normal (I, m, n) to dS, then

= u + mv + nw.
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Thus Green's Theorem assumes the form

.................. (97).

A vector F which is such that divF = at every point within a certain

region is said to be "
solenoidal

"
within that region. If F is solenoidal

within any region, Green's Theorem shews that

where the integral is taken over any closed surface inside the region within

which F is solenoidal. Two instances of a solenoidal vector have so far

occurred in this book the electric intensity in free space, and the polarisa-

tion in an uncharged dielectric.

178. Integration through space external to closed surfaces. Let the

outer surface be a sphere at infinity, say a sphere of radius r, where r is

to be made infinite in the limit. The value of

(lu -f mv + nw) dS

taken over this sphere will vanish if u, v, and w vanish more rapidly at

infinity than . Thus, if this condition is satisfied, we have that

///(E
+ +

)
Axdydz = - ^l!(iu +mv + nw} ds>

where the volume integration is taken through all space external to certain

closed surfaces, and the surface integration is taken over these surfaces,

I, m, n being the direction-cosines of the outward normal.

179. Integration through the interior of a closed surface. Let the inner

surfaces in fig. 53 all disappear, then we have

fffidu dv dw\ [f
1 1 5 1~ s V -~- \dxdydz= \\ (Lu + mv + nw) ao,

JJ J \vx oy oz J JJ

where the volume integration is throughout the space inside a closed surface,

and the surface integration is over this area, I, m, n being the direction-

cosines of the inward normal to the surface.

180. Integration through a region in which u, v, w are discontinuous.

The only case of discontinuity of u, v, w which possesses any physical import-
ance is that in which u, v, w change discontinuously in value in crossing
certain surfaces, these being finite in number. To treat this case, we enclose

each surface of discontinuity inside a surface drawn so as to fit it closely on
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both sides. In the space left, after the interiors of such closed surfaces have

been excluded, the functions u, v, w are continuous. We may accordingly

apply Green's Theorem, and obtain

- 2' (fo + mv + nw)dS ...... - .(98),

where 2 denotes summation over the closed surfaces by which the original

space was limited, and 2' denotes summation over the new closed surfaces

which surround surfaces of discontinuity of u, v, w. Now

corresponding to any element of area dS on a surface of dis-

continuity there will be two elements of area of the enclosing

surface. Let the direction-cosines of the two normals to dS be

llt nh, Wj and 12 ,
m2 ,

n2 ,
so that /i

=
2 ,
m1 m2 ,

and

U-L
= n2 . Let these direction-cosines be those of normals

Wl

drawn from dS to the two sides of the surface, which we shall

denote by 1 and 2, and let the values of u, v, w on the two

sides of the surface of discontinuity at the element dS be

ult vlf wl
and u2) va ,

w2 . Then clearly the two elements of

the enclosing surface, which fit against the element dS of pIG 54

the original surface of discontinuity, will contribute to

i

'

I \(lu + mv + nw) dS

an amount dS [(l^ + m^ -f n^) + (/2^2 +

or (^ (Wj
- u.2) + rax (Vi vz ) + % (w^ w^)} dS.

Thus the whole value of 2' 1 1 (lu + mv + nw) dS may be expressed in

the form

2" fe (wj
-O + wj (^

- v9) + n, (wl
- w2)} dS,

where the integration is now over the actual surfaces of discontinuity. Thus

Green's Theorem becomes

Mdu
ov dw\ -. -. ..

?r + ^- + ^- dxdudz
dx dy dzj

= 2 I \(lu + mv + nw) dS

(wi
-

Wa) + wj (wj
- v2) + w, (w:

- wa)}
dflf ........(99).
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Special Form of Greens Theorem.

181. An important case of the theorem occurs when u, v, w have the

special values

where <3> and ^ are any functions of x, y and #. The value of (lu 4- mv +
is now

where
^-

denotes differentiation along the normal, of which the direction-

cosines are Z, m, n.

We also have

du dv dw 8
(/T

8Mi'
r

) 8 f 8^) 8 f 8^
dx dy dz dx \ dx } dy \ dy ) dz\ dz

80 8^ 80 8^P 80 dty /82XF
^-
__

1

.

1_ ^>
| ^_

^

dx dx by dy dz dz \ dx
2

dy
2

tiz* )

Thus the theorem becomes

fff( 808^ 80 r)^ 80 7Nr\ CT dW
0V2^ +~ ~ + V^^ + x- f *dy^ = - S ~

dfif...(100).
JJj [

9 ox dy dy dz dz \ JJ dn

This theorem is true for all values of and M*, so that we may inter-

change and "*&, and the equation remains true. Subtracting the equation
so obtained from equation (100), we get

(101).

APPLICATIONS OF GREEN'S THEOREM.

182. In equation (101), put = 1 and M* = F, where F denotes the

electrostatic potential. We obtain

(102).
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Let us divide the sum on the right into Ilt the integral over a single

closed surface enclosing any number of conductors, and /2 ,
the integrals over

the surfaces of the conductors. Thus

/i = -

where
^-

denotes differentiation along the normal drawn into the~ surface.

Thus
-^

is equal to the component of intensity along this normal, and

therefore to N, where N is the component along the outward normal.

Hence

/, =
-fJNdS.

dV
At the surface of a conductor -^

=
^TTOT, so that

on

/2
= 47r2 llo-dS over conductors

= 4?r x total charge on conductors.

If there is any volume electrification, V2 V= 4t7rp, so that

{{[vtVdxdydz = - 4?r lllpdxdydz,

and the integral on the right represents the total volume electrification.

Thus equation (102) becomes

I \NdS= 4-7T x (total charge on conductors + total volume electrification),

so that the theorem reduces to Gauss' Theorem.

183. Next put <I> and M* each equal to F. Then equation (100) becomes

Take the surfaces now to be the surfaces of conductors, and a sphere of

radius r at infinity. At infinity V is of order -, so that
^

is of order

,
and hence V -~-

, integrated over the sphere at infinity, vanishes ( 178).
* (jYb

The equation becomes

- 4-7T \\lpVdxdydz + (fflfdady'd*
- 4?r [fVvdS = 0.

JJj J JJ J J

j. 11
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The first and last terms together give 4?r x 2eF, where e is any

element of charge, either of volume-electrification or surface-electrification.

Thus the whole equation becomes

shewing that the energy may be regarded as distributed through the space

outside the conductors, to the amount
<

-
per unit volume the result

O7T

already obtained in 168.

184. In Green's Theorem, take

-M.-

Here K is ultimately to be taken to be the inductive capacity, which

may vary discontinuously on crossing the boundary between two dielectrics.

We accordingly suppose u,. v, w to be discontinuous, and use Green's Theorem

in the form given in 180. We have then

dxdydz

30 das dy dy dz dz

f*. d (v
3* ia~ (^

Jjj \d*\

= - 2

a a
where

^ , ^
have the meanings assigned to them in 140.

If we put 4> = 1, W = V, in this equation, it reduces, as in 130, to

1 1K -=- dS = 4-7T x total charge inside surface,

so that the result is that of the extension of Gauss' Theorem. Again, if we

put <I> = "^ = F, the equation becomes

and the result is that of 169.
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Greens Reciprocation Theorem.

185. In equation (101), put 4> = F, M* = F', where F is the potential

of one distribution of electricity, and V is that of a second and independent
distribution. The equation becomes

ff[(
(py _

p
'

F) (fa%<fe + 2 (<r F'
- a' F) d = 0,

which is simply the theorem of 102, namely

2e'F .............................. (104).

If we assign the same values to <l>, M* in equation (103), we again obtain

equation (104), which is now seen to be applicable when dielectrics are

present.

UNIQUENESS OF SOLUTION.

186. We can use Green's Theorem to obtain analytical proofs of the

theorems already given in 99.

THEOKEM. If the value of the potential V is known at every point on

a number of closed surfaces by which a space is bounded internally and

externally, there is only one value for V at every point of this intervening

space, which satisfies the condition that V2F either vanishes or has an assigned

value, at every point of this space.

For, if possible, let F, V denote two values of the potential, both of which

satisfy the requisite conditions. Then V F= at every point of the

surfaces, and V 2

(F'
- F) = at every point of the space. Putting <E> and "9

each equal to V V in equation (100), we obtain

and this integral, being a sum of squares, can only vanish through the

vanishing of each term. We must therefore have

^V- F) =
|(F'-

F) = 1(F'- F) = ............(105),

or F' F equal to a constant. And since V V vanishes at the surfaces,

this constant must be zero, so that F - V everywhere, i.e. the two solutions

F and V are identical : there is only one solution.

187. THEOREM. Given the value of --- at every point of a number of

closed surfaces, there is only one possible value for V (except for additive

constants), at each point of the intervening space, subject to the condition that

V 2F= throughout this space, or has an assigned value at each point.

112
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The proof is almost identical with that of the last theorem, the only

difference being that at every point of the surfaces we have

instead of the former condition V V = 0. We still have

so that equation (105) is true, and the result follows as before, except that

V and V may now differ by a constant.

188. Theorems exactly similar to these last two theorems are easily

n to be true when the dielectric is diffe

For, let V, V be two solutions, such that

seen to be true when the dielectric is different from air.

dy\ dy^ '] dz

at all points of the space, and at the surface either V V = 0, or

on

By Green's Theorem

ff/V WF- F'))' P(F- F'))
2

III* [r^sr^i
+rSrl +

_
f[f(F

_ n [|. jjr

3
(F _ nj +

l
\
K

JJJ
X

\fx (
dx

'} dy (

= by hypothesis.

Equation (105) now follows as before, so that the result is proved.

COMPARISONS OF DIFFERENT FIELDS.

189. THEOREM. // any number of surfaces are fixed in position, and

given charge is placed on each surface, then the energy is a minimum when
the charges are placed so that every surface is an ecfuipotential.

Let V be the actual potential at any point of the field, and V
the potential when the electricity is arranged so that each surface is
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an equipotential. Calling the corresponding energies W and W, we

have

' 8F\ 2

If we put < = F, = V -
V, in equation (100), we find that the last

integral becomes

or, since F is by hypothesis constant over each conductor,

and this vanishes since each total charge 1 1 o-'dS is the same as the corre-

sponding total charge 1 1 adS. Thus

This integral is essentially positive, so that W is greater than W, which

proves the theorem.

If any distribution is suddenly set free and allowed to flow so that the

surface of each conductor becomes an equipotential, the loss of energy
W ' - W is seen to be equal to the energy of a field of potential V - V at

any point.

190. THEOREM. The introduction of a new conductor lessens the energy

of the field.

Let accented symbols refer to the field after a new conductor 8 has been

introduced, insulated and uncharged. Then

W-W'= / / 1 R*dxdydz through the field before S is introduced

g- jjl R'*dxdydz through the field after 8 is introduced

= Q~ HI R?dxdydz through the space ultimately occupied by S

+ Q- 1 1 1 (R
2 R'2

) through the field after S is introduced.
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The last integral

and this, as in the last theorem, is equal to

where 2 denotes summation over all conductors, including S.

This last sum of surface integrals vanishes, so that

W- W = ~
Hl&dxdydz through 8

mm through the field after
OTTjJJ (\V<K OX / J

$ has been introduced.

Thus W W is essentially positive, which proves the theorem.

.On putting the new conductor to the earth, it follows from the preceding
theorem that the energy is still further lessened.

191. THEOREM. Any increase in the inductive capacity of the dielectric

between conductors lessens the energy of the field.

Let the conductors of the field be supposed fixed in position and in-

sulated, so that their total charge remains unaltered. Let the inductive

capacity at any point change from K to K 4- K, and as a consequence let

the potential change from V to V+SV, and the total energy of the field

from W to

If Elt EZ,... denote the total charges of the conductors, Vl} V2) ... their

potentials, and p the volume density at any point,

so that, since the ^'s and p remain unaltered by changes in K, we have

........ , ......(106).

We also have

w=
87T

so that

STF=^
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By Green's Theorem, the last line

o
das \ dec) dy \ dy J dz\ dz

dy

the summation of surface integrals being over the surfaces of all the

conductors,
rrr

+ 2

by equation (106). Thus equation (107) becomes

so that 3W = - -

Thus 8W is necessarily negative if K is positive, proving the theorem.

It is worth noticing that, on the molecular theory of dielectrics, the increase in*lhe

inductive capacity of the dielectric at any point will be most readily accomplished by

introducing new molecules. If, as in Chap, v, these molecules are regarded as uncharged

conductors, the theorem just proved becomes identical with that of 190.

EAENSHAW'S THEOEEM.

192. THEOREM. A charged body placed in an electric field of force
cannot rest in stable equilibrium under the influence of the electric forces

alone.

Let us suppose the charged body A to be in any position, in the field

of force produced by other bodies B, B', ____ First suppose all the elec-

tricity on A, B, B ', ... to be fixed in position on these conductors. Let

V denote the potential, at any point of the field, of the electricity on

B, B', Let x, y, z be the coordinates of any definite point in A, say its

centre of gravity, and let x + a
t y + b,z + c be the coordinates of any other

point. The potential energy of any element of charge e at x + a, y + b, z + c

is eV
t
where V is evaluated at x + a, y + 6, z + c. Denoting eV by w, we

clearly have

d2w d*w dzw _
dtf

+
df+fa?'

since V is a solution of Laplace's equation.



168 General Analytical Theorems [CH. VII

Let W be the total energy of the body A in the field of force

B, B f

,
.... Then W=2w, and therefore

from

=
dx* df dz2

=

i.e. the sum W = 2w satisfies Laplace's equation, because this equation is

satisfied by the terms of the sum separately. It follows from this equation,

as in 52, that W cannot be a true maximum or a true minimum for any
values of x, y, z. Thus, whatever the position of the body A, it will always

be possible to find a displacement i.e. a change in the values of x, y, z for

which W decreases. If, after this displacement, the electricity on the con-

ductors A, B, B', ... is set free, so that each surface becomes an equipotential,

it follows from 189 that the energy of the field is still further lessened.

Thus a displacement of the body A has been found which lessens the energy
of the field, and therefore the body A cannot rest in stable equilibrium.

One physical application of Earnshaw's Theorem is of extreme importance. The

theorem shews that an electron cannot rest in stable equilibrium under the forces of

attraction and repulsion from other charges, so long as these forces are supposed to obey
the law of the inverse square of the distance. Thus, if a molecule is to be regarded as a

cluster of electrons and positive charges, as in 151, then the law of force must be some-

thing different from that of the inverse square.

There seems to be no difficulty about the supposition that at very small distances the

law of force is different from the inverse square. On the contrary, there would be a very
real difficulty in supposing that the law 1/r

2 held down to zero values of r. For the force

between two charges at zero distance would be infinite
;
we should have charges of oppo-

site sign continually rushing together and, when once together, no force would be adequate
to separate them. Thus the universe would in time consist only of doublets, each

consisting of permanently interlocked positive and negative charges. If the law 1/r
2

held down to zero values of r, the distance apart of the charges would be zero, so that

the strength of each doublet would be nil, and there would be no way of detecting its

presence. Thus the matter in the universe would tend to shrink into nothing or to

diminish indefinitely in size. The observed permanence of matter precludes any such

hypothesis.

We may of course be wrong in regarding a molecule as a cluster of electrons and

positive charges. An alternative suggestion, put forward by Larmor and others, is that

the molecule may consist, in part at least, of rings of electrons in rapid orbital motion.

The molecule is in fact regarded as a sort of "
perpetual motion "

machine, but there is a

difficulty in understanding how its energy can be continually replenished. Mossotti's

theory of dielectric action
( 143) is inconsistent with this view of the structure of the

molecule, and no way has yet been found of reconciling this conception of the structure

of the molecule with the known facts of dielectric action. On this hypothesis also, there

is a want of definiteness in the size of the molecules of matter, so long as the electrons

are supposed to obey the law 1/r
2 down to infinitesimal distances (cf. Larmor, Aether

and Matter, 122).

Thus either hypothesis as to the structure of matter requires us to suppose that the

electron is something more complex than a point charge exerting a simple force e/r
2 at all

distances.
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STRESSES IN THE MEDIUM.

193. Let us take any surface S in the medium, enclosing any number
of charges at points and on surfaces Si, S2 , ____

Let I, m, n be the direction-cosines of the normal at any point of

Si, $2 , ... or S, the normal being supposed drawn, as in Green's Theorem,
into the space between the surfaces.

The total mechanical force acting on all the matter inside this surface

is compounded of a force eR in the direction of the intensity acting on every

point charge or element of volume-charge e, and a force 2-Tro-
2 or %<rR per

unit area on each element of conducting surface. If X, Y, Z are the com-

ponents parallel to the axes of the total mechanical force,

=
fjfpXda;dyd

where the surface integral is taken over all conductors Si, $2 ,
... inside the

surface S, and the volume integral throughout the space between S and these

surfaces. Substituting for p and cr,

x=

i V/M/7 i i \ J Gf /I r\Q\

^S/lilZ^ +m^ +n-^l^S (108).

By Green's Theorem,

///***- *///()'***

--**// (-//'*
(([&VdV , ([[dV 9 fdV
JJJ w to ***** = -

JJJ *j s~y (

Now

rrrsv a (W\, rrr a /ar
JJJ ^ sy (} dxdydz -

JJJ* z-x (d-
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so that the last equation becomes

/Y/*9
2F9F , , S/Tli//^FY 8F9

J J J oy
2 dx J j ( \ oy / ox c

/TW9Fy 9F8
+

I M4M ~^~
~~m o~ ?

i//r V9y/ dx c

and there is a similar value for

ff/*r)2F 3F
j

l
|

C/ V U V i i i

dxdydz
JJJ dz* dx

Substituting these values, equation (108) becomes

v__ Sll-li/i i ! I 1 I ^-vn i ti

(ttu r^
8Fy - (}* - ( Y~I w

Since we have at every point of the surface of a conductor

9F 9F 9F

-f = -2 =JL
(109),

I m n

it follows that the integral over each conductor vanishes, leaving only the

integral with respect to cS, which gives

X = -
jj(lP

xx + mPxy + nPxz) dS,

where Pxx = - (X
2 - F2 -

Z*),
O7T

XZ
47T

If we write also

wn

the resultant force parallel to the axis of F will be

Y = -
jj(lPxy

+ mPyy + nPyz) dS,

and there is a similar value for Z. The action is therefore the same (cf.

159) as if there was a system of stresses of components

fxx, Pyy, PZZ, fi/z, PZX, fiy>

given by the above equations : i.e. these may be regarded as the stresses of

the medium.
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194. It remains to investigate the couples on the system inside S. If

L, M, N are the moments of the resultant couple about the axes of x, y, z,

we have

dx

dV dV , , ,

Now y d y

CffdV 9 / 9F 8F\ , , ,= - l^r- ^-(y^-- -z^- dxdydz
jjj das a*v.a* dyj

8F/ ar aF\, [fjd^-h/^ z ^-\d>&-\\ l

dx \
y dz dy J JJ dx V dz dy

so that

9F
fa" dyj

'

dy dyV dz
~

dy
. ^ _ .~ ~~ Z +

(
y dz

*
dy

dV d ( dV dv , , ,

f -5-5^ y -5 * "5T ) f dxdydz
dz dz V 3^

9F
^-
8?r

1 /Y/ 7
9F 9F 9FW 9F 9F\ ,eU^- + m^- +n^-h/^-- ^^~ ^S ...............(HO).

4?r JJ\ 9a? dy dz J \
y dz dy Jdy dz J \
y dz dy

The first term in this expression

9F92F 9F92F
dydz

V 9
2F 9F92F 9F92F , , ,

+ y

= 2 ^2 - ^-R2

)^ + O 2 - ^mE2

) c28 .........(HI).

The second term in expression (110) for L may, in virtue of the relations

(109), be expressed in the form

O7T J

which is exactly cancelled by the first term in expression (111).
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We are accordingly left with

1
L = -

- s (lPxy + mPyy + nft,z)} dS,

verifying that the couples are also accounted for by the supposed system of

ether-stresses.

195. Thus the stresses in the ether are identical with those already

found in Chapter VI, and these, as we have seen, may be supposed to

consist of a tension : -

per unit area across the lines of force, and a
O7T

752

pressure ^
-
per unit area in directions perpendicular to the lines of force

O7T

MECHANICAL FORCES ON DIELECTRICS IN THE FIELD.

196. Let us begin by considering a field in which there are no surface

charges, and no discontinuities in the structure of the dielectrics. We shal

afterwards be able to treat surface-charges and discontinuities as limiting

cases.

Let us suppose that the mechanical forces on material bodies are H, H, Z

per unit volume at any typical point x, y, z of this field.

Let us displace the material bodies in the field in such a way that the

point x, y, z comes to the point x + Bx, y + Sy, z + Sz. The work done in

the whole field will be
f f f

(112),

and this must shew itself in an equal increase in the electric energy. The

electric energy W can be put in either of the forms

p Vdxdydz,

When the displacement takes place, there will be a slight variation in

the distribution of electricity and a slight alteration of the potential.

There is also a slight change in the value of K at any point owing to

the motion of the dielectrics in the field. Thus we can put

BW = 8F2
=

where (SP^)P denotes the change produced in the function W^ by the varia-
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tion of electrical density alone, (SWL ) V that produced by the variation of

potential alone, and so on.

We have

i /Yf r,/aFaSF ,

dvdsv
,

aram , , ,=
^JJr fe i^ +

^--^TZw dxdydz -

By Green's Theorem, the last expression transforms into

so that

We accordingly have

STF= 2S1V;
- BW, = 2

the variation produced by alterations in V no longer appearing.

Now (SH^p = i fffa/3Vdxdydz,

so that
STf=[jJ|78/3-^^1^%^ ..................(113).

The change in p is due to two causes. In the first place, the electrifica-

tion at #, y, z was originally at x &*?, y %, ^ 8^, so that
fy)

has as part

of its value

_|?g 9_fy_|^ ........................(114).
dx dy

L dz

Again, the element of volume dxdydz becomes changed by displacement

into an element

+ i (8*) d*

d^l + + + ..................(115),

so that, even if there were no motion of translation, an original charge

pdxdydz would after displacement occupy the volume given by expression

(115), and this would give an increase in p of amount

...(116).
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Combining the two parts of 8p given by expressions (114) and (115),

we find

The change in K is also due to two causes. In the first place the point
which in the displaced position is at x, y, z was originally at x 8x,y Sy.

z - 82. Hence as part of the value in SK we have

-
-3- 8x -

-5 By
- Sz.

ox dy dz

Also, with the displacement, the density of the medium is changed, so

that its molecular structure is changed, and there is a corresponding change
in K. If we denote the density of the medium by T, and the increase in r

produced by the displacement by ST, the increase in K due to this cause

will be

37
ST'

and we know, as in equation (116), that

fdSx dSy dSz\
or = T (

1

* H 1 .

We now have, as the total value of 8K,

8K = ^8x--^-Sy--^-8zox dy dz

dKfdSx 8% d8z\
T

dr (dx
+

dy
+

dz )
'

dy

and hence, on substituting in equation (113) for Sp and SK,

, rrfj?
2 a^ /a&B asy 3&+

JJJ S?
T
37 (ar

+
-^

+ ^r

Integrating by parts, this becomes

//re
a /* 8.sr~

1^, o"~ T "5~JJJ (dx\87r Or

a /^ dK
o- o- T -3-
dy \8-7r dr

j j

T- ^~ T ^- ^ r dxdydz,
dz \S-jr 8r
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or, rearranging the terms,

fffff dT R* fdK\ a /jR2

a^r\~| r I f 1 )

JJJ(L da? 87r\a#/ a#V87r dr J J |_ J |_ J j

Comparing with expression (112), we obtain

% = p 1
( T

J (H7)>

etc., giving the body forces acting on the matter of the dielectric.

197. This may be written in the form

E>2 3V '

-,,, -K CM. . (

Thus in addition to the force of components (pX, pY, pZ) acting on the

charges of the dielectric, there is an additional force of components

_^m _B?dK _^2

<^
8?r dx

'

STT 'by

'

8?r dz

arising from variations in K, and also a force of components

which occurs when either the intensity of the field or the structure of the

dielectric varies from point to point.

STRESSES IN DIELECTRIC MEDIA.

198. Replacing p by its value, as given by Laplace's equation, we obtain

equation (117) in the form

H _ i \*wrd (
dv\ d

(
dv\ s

(
d

B -

ar a /
7,aF\ ^ a /ar

^-^- (K ^-}+Kir -5-cx dy \ dy ) ox \ dy )

a E- R2 r --
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=
f-

If we put

dy
T .(118),

.(119),

this becomes
dx dy

V-LXZ

dz

Let us suppose that a medium is subjected to a system of internal

stresses Pix ,
Pxy ,

etc.
;
and let it be found that a system of body forces

of components H', H x

,
Z' is just sufficient to keep the medium at rest

when under the action of these stresses. Then from equation (79) we
must have

x dy dz

Thus if Pxx,Pxy) etc. have the values given by equations (118) and (119),

we have

B' = B, etc.

This shews that the mechanical force H, H, Z reversed would just be

in equilibrium with the system of stresses Pxx ,
Pxy ,

etc. given by equations

(118) and (119). In other words, the mechanical forces which have been

found to act on a dielectric can exactly be accounted for by a system of

stresses in the medium, these stresses being given by equations (118) and

(119).

199. The system of stresses given by equations (118) and (119) can be

jgarded as the superposition of two systems :

I. A system in which

II. A system in which

re

47T
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The first system is exactly K times the system which has been found to

occur in free ether, while the second system represents a hydrostatic pressure

of amount

(In general -^
will be positive, so that this pressure will be negative, and

must be interpreted as a tension.)

Hence, as in 165, the system of stresses may be supposed to consist of:

KB?
(i) a tension -5 per unit area in the direction of the lines of force

;

07T

(ii) a pressure -= per unit area perpendicular to the lines of force
;

(iii) a hydrostatic pressure of amount ^ T ^- in all directions.
O7T OT

The system of stresses we have obtained was first given by Helmholtz. The system
/?2 rt K~

differs from that given by Maxwell by including the pressure - T -=- . The neglect of
OTT or

this pressure by Maxwell, and by other writers who have followed him, does not appear to

be defensible. Helmholtz has shewn that still further terms are required if the dielectric

is such that the value of K changes when the medium is subjected to distortion without

change of volume.

200. This system of stresses has not been proved to be the only system
of stresses by which the mechanical forces can be replaced, and, as we have

seen, it is not certain that the mechanical forces must be regarded as arising

from a system of stresses at all, rather than from action at a distance.

It may be noticed, however, that whether or not these stresses actually

exist, the resultant force on any piece of dielectric must be exactly the

same as it would be if the stresses actually existed. For the resultant

force on any piece of dielectric has a component X parallel to the axis

of x, given by

I \\adxdyd

f mPxy + nPxz)dS

by Green's Theorem, and this shews that the actual force is identical with

what it would be if these stresses existed (cf. 193).

J. 12
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Force on a charged conductor.

201. The mechanical force on the surface of a charged conductor

immersed in a dielectric can be obtained at once by regarding it as

produced by the stresses in the ether. There will be no stresses in the

interior of the conductor, so that the force on its surface may be regarded
as due to the tensions of the tubes of force in the dielectric. The tension

is accordingly of amount

KR? J^ T^
O7T OTT C/T

per unit area, an expression which can be written in the simpler form

Force at boundary of a dielectric.

202. Let us consider the equilibrium of a dielectric at a surface of

discontinuity, at which the lines of force undergo refraction on passing

from one medium of inductive capacity K1 to a second of inductive

capacity Kz .

Let axes be taken so that the boundary is the plane of xy, while the

lines of force at the point under consideration lie

in the plane of xz. Let the components of

intensity in the first medium be (Xlt 0, ^), while

the corresponding quantities in the second medium
are (Xz , 0, Z^). The boundary conditions ob-

tained in 137 require that

X

FIG. 55.

where h is the normal component of polarisation.

In view of a later physical interpretation of

the forces, it will be convenient to regard these forces as divided up into

the two systems mentioned in 199, and to consider the contributions from

these systems separately.

As regards the contribution from the first system, the force per unit area

acting on the dielectric from the first medium has components

while that from the second medium has components

-T .AgZ/gi 0, Q \^z"
~" -A- 2

T*7T O7T
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Since K^X1Z1
= K2X2Z2 ,

it follows that the resultant force on the

boundary is parallel to Oz i.e. is normal to the surface. Its amount,
measured as a tension dragging the surface in the direction from medium 1

to medium 2
TT Tf

2 (7 2 - X 2\ (7* X 2}- (Za A 2 ) (^ *fl

which after simplification can be shewn to be equal to

X,*

This is always positive if Kl > K2 . Thus this force invariably tends to

drag the surface from the medium in which K is greater, to that in which

K is less i.e. to increase the region in Avhich K is large at the expense of

the region in which K is small. This normal force is exactly similar to the

normal force on the surface of a conductor, which tends to increase the

volume of the region enclosed by the conducting surface.

On Maxwell's Theory, the forces which have now been considered are the only ones in

existence, so that according to this theory the total mechanical force is that just found,

and the boundary forces ought always to tend to increase the region in which K is large.

This theory, as we have said, is incomplete, so that it is not surprising that the result just

stated is not confirmed by experiment.

We now proceed to consider the action of the second system of forces

the system of negative hydrostatic pressures. There are pressures per unit

area of amounts

_^L
2 ^ _^H_

2 ^
Sir

Tl
dr,

'

STT
^

dr2

acting respectively on the two sides of the boundary. There is accordingly
a resultant tension of amount

per unit area, tending to drag the boundary surface from region 1 to region 2.

Thus the total tension per unit area, dragging the surface into region 1, is

In 139, in considering a parallel plate condenser with a movable

dielectric slab, we discovered the existence of a mechanical force tending
to drag the dielectric in between the plates. This force is identical with the

mechanical force just discussed. But we have now arrived at a mechanical

interpretation of this force, for we can regard the- pull on the dielectric as

the resultant of the pulls of the tubes of force at the different parts of the

surface of the dielectric.

122
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Let us attempt to assign physical interpretations to the terms of ex-

pression (120) by considering their significance in this particular instance.

Consider first a region in the condenser so far removed from the edges of

the condenser and of the slab of dielectric, that the field may be treated

as absolutely uniform (cf. fig. 44, p. 124). We put Kz =l, -3^ = 0, Rl
=

-gr-

in expression (120) and obtain

as the force per unit area on either face of the dielectric, acting normally

outwards.

The forces will of course act in such a direction that they tend to

decrease the electrostatic energy of the field. Now this energy is made up

of contributions 2?r/i
2

per unit volume from air, and rr- per unit volume
-"-i

from the dielectric. From the conditions of the problem h must remain

unaltered. Thus the total energy can be decreased in either of two ways

by increasing the volume occupied by dielectric and decreasing that occupied

by air, or by increasing the value ofK in the dielectric. There will therefore

be a tendency for the boundary of the dielectric to move in such a direction

as to increase the volume occupied by dielectric, and also a tendency for this

boundary to move so that K will be increased by the consequent change
of density. These two tendencies are represented by the two terms of

expression (121).

If -~ is negative, an expansion of the dielectric will both increase the

volume occupied by the dielectric, and will also increase the value of K
inside the dielectric. In this case, then, both tendencies act towards an

expansion of the dielectric, and we accordingly find that both terms in

expression (121) are positive.

7\T

If
-^

is positive, the tendency to expansion, represented by the first

(positive) term of expression (121) is checked by a tendency to contraction

(to increase r, and therefore K) represented by the second (now negative)

term of expression (121). If is not only positive, but is numerically

large, expression (121) may be negative and the dielectric will contract. In

this case the decrease in energy resulting on the increase of K produced by
contraction will more than outweigh the gain resulting from the diminution
of the volume occupied by dielectric,
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These considerations enable us to see the physical significance of all the

X z

terms in expression (120), except the first term
-^- (K^ 1). To interpret

this term we must examine the conditions near the edge of the dielectric

slab, for it is>. only here that Xl has a value different from zero. We see at

once that this term represents a pull at and near the edge of the dielectric,

tending to suck the dielectric further between the plates in fact this force

alone gives rise to the tendency to motion of the slab as a whole, which was

discovered in 139.

Returning to the general systems of forces of 199, we may say that

the first system (which as we have seen always tends to drag the surface

of the dielectric into the region in which K has the greater value) represents

the tendency for the system to decrease its energy by increasing the volume

occupied by dielectrics of large inductive capacity, whilst the second system

(which tends to compress or expand the dielectric in such a way as to increase

its inductive capacity) represents the tendency of the system to decrease its

energy by increasing the inductive capacity of its dielectrics. That any
increase in the inductive capacity is invariably accompanied by a decrease

of energy has already been proved in 191.

Electrostriction.

203. It will now be clear that the action of the various tractions on the

surface of a dielectric must always be accompanied not only by a tendency
for the dielectric to move as a whole, but also by a slight change in shape
and dimensions of the dielectric as this yields to the forces acting on it.

This latter phenomenon is known as electrostriction. It has been observed

experimentally by Quincke and others. A convenient way of shewing its

existence is to fill the bulb of a thermometer-tube with liquid, and place

the whole in an electric field. The pulls on the surface of the glass result

in an increase in the volume of the bulb, and the liquid is observed to

fall in the tube. From what has already been said it will be clear that

a dielectric may either expand or contract under the influence of electric

forces.

The stresses in the interior of a dielectric, as given in 199, may also

be accompanied by mechanical deformation. Thus it has been observed by
Kerr and others, that a piece of non-crystalline glass acquires crystalline

properties .when placed in an electric field. Such a piece of glass reflects

light like a uniaxal crystal of which the optic axis is in the direction of the

lines of force.
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GREEN'S EQUIVALENT STRATUM.

204. Let 8 be any closed surface enclosing a number of electric charges,

and let P be any point outside it. The potential at P due to the charges

inside S is

FIG. 56.

where r is the distance from P to the element dxdydz, and the integration

extends throughout 8. By Green's Theorem (equation (101))

where the normal is now drawn outwards from the surface S.

In this equation, put U = -> then, since V-F = -47rp, we have as the

value of the first term,

ffJUV*V dxdydz
= -

And since V2 7 = 0, the second term vanishes. The equation accordingly

becomes

205. Suppose, first, that the surface 8 is an equipotential. Then

0,

so that equation (122) becomes

(123).
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Thus the potential of any system of charges is the same at every point

outside any selected equipotential which surrounds all the charges, as that

of a charge of electricity spread over this equipotential, and having surface

density j -x . Obviously, in fact, if the equipotential is replaced by a

conductor, this will be the density on its outer surface.

206. If the surface is not an equipotential, the term M V
^- (-)

dS

will not vanish. Since, however, /A
-

(

-
)

is the potential of a doublet of
dn \r

strength //,
and direction that of the outward normal, it follows that

// Fx- (-) dS is the potential of a system of doublets arranged over the

surface 8, the direction at every point being that of the outward normal, and

the total strength of doublets per unit area at any point being F.

Thus the potential Vp may be regarded as due to the presence on the

surface S of

(i) a surface density of electricity j =
;

y
(ii) a distribution of electric doublets, of strength per unit area,

and direction that of the outward normal.

207. Equation (122) expresses the potential at any point in the space

outside 8 in terms of the values of F and
y- over the boundary of this space.

We have seen, however, that the value of the potential is uniquely determined

9F
by the values either of F or of y over the boundary of the space. In actual

electrostatic problems, the boundaries are generally conductors, and therefore

equipotentials. In this case equation (123) expresses the values of the

potential in terms of --
only, amounting in fact simply to

Ym-ll-da.

What is generally required is a knowledge of the value of Vp in terms of the

values of F over the boundaries, and this the present method is unable to

give. For special shapes of boundary, solutions have been obtained by
various special methods, and these it is proposed to discuss in the next

chapter.
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EXAMPLES.

1. If the electricity in the field is confined to a given system of conductors at given

potentials, and the inductive capacity of the dielectric is slightly altered according to any
law such that at no point is it diminished, and such that the differential coefficients of the

increment are also small at all points, prove that the energy of the field is increased.

2. A slab of dielectric of inductive capacity K and of thickness x is placed inside a

parallel plate condenser so as to be parallel to the plates. Shew that the surface of the

slab experiences a tension

3. For a gas K=\ + 6p, where p is the density and 6 is small. A conductor is

immersed in the gas : shew that if 2 is neglected the mechanical force on the conductor

is 27T0-2 per unit area. Give a physical interpretation of this result.



CHAPTER VIII

METHODS FOR THE SOLUTION OF SPECIAL PROBLEMS

THE METHOD OF IMAGES.

Charge induced on an infinite uninsulated plane.

208. THE potential at P of charges e at a point A and e at another

point A is

v=
~Ap"Afp .(124),

and this vanishes if P is on 'the plane which bisects AA' at right angles.

Call this plane the plane S. Then the above value of V gives F=0 over

the plane S, F= at infinity, and satisfies Laplace's equation in the region
to the right of S, except at the point A, at which it gives a point charge e.

FIG. 57.

These conditions, however, are exactly those which would have to be satisfied

by the potential on the right of 8 if S were a conducting plane at zero

potential under the influence of a charge e at A. These conditions amount
to a knowledge of the value of the potential at every point on the boundary
of a certain region namely, that to the right of the plane S and of the

charges inside this region. There is, as we know, only one value of the
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potential inside this region which satisfies these conditions (cf. 186), so that

this value must be that given by equation (124).

To the right of S the potential is the same, whether we have the

charge e at A' or the charge on the conducting plane S. To the left of S
in the latter case there is no electric field. Hence the lines of force, when

the plane $ is a conductor, are entirely to the right of S, and are the same

as in the original field in which the two point-charges were present. The

lines end on the plane S, terminating of course on the charge induced on S.

We can find the amount of this induced charge at any part of the plane

by Coulomb's Law. Taking the plane to be the plane of yz, and the point A
to be the point (a, 0, 0) on the axis of x, we have

-
a)

2 + y* + z* \/(x + a)
2 + y* +

where the last line has to be calculated at the point on the plane S at which

we require the density. We must therefore put x = after differentiation,

and so obtain for the density at the point 0, y, z on the plane S,

4-Trcr =
(a

2
4- f + *2

)
2

or, if a2 + ?/
2 + z* = r2

,
so that r is the distance of the point on the plane S

from the point A,
ae

(7 =
27TT3

'

Thus the surface density falls off inversely as the cube of the distance

from the point A. The distribution of electricity on the

plane is represented graphically in fig. 58, in which the

thickness of the shaded part is proportional to the surface

density of electricity. The negative electricity is, so to

speak, heaped up near the point A under the influence

of the attraction of the charge at A. The field produced

by this distribution of electricity on the plane 8 at any

point to the right of S is, as we know, exactly the same as

would be produced by the point charge
- e at A'.

209. This problem affords the simplest illustration of a

general method for the solution of electrostatic problems,
"fcvhich is known as the " method of images." The principle

underlying this method is that of finding a system of electric

charges such that a certain surface, ultimately to be made

into a conductor, is caused to coincide with the equipotential F = 0. We
then replace the charges inside this equipotential by the Green's equivalent

125

099

044

021

012

'007

FIG. 58.
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stratum on its surface (cf. 204). As this surface is an equipotential, we

can imagine it to be replaced by a conductor and the charges on it will be

in equilibrium. These charges now become charges induced on a conductor

at potential zero by charges outside this conductor.

From the analogy with optical images in a mirror, the system of point

charges which have to be combined with the original charges to produce zero

potential over a conductor are spoken of as the "
electrical images

"
of the

original charges. For instance, in the example already discussed, the field is

produced partly by the charge at A, partly by the charge induced on the

infinite plane : the method of images enables us to replace the whole charge
induced on the plane by a single point charge at A'. So also, if A were a

candle placed in front of an infinite plane mirror, the illumination in front of

the mirror would be produced partly by the candle at A, partly by the light

reflected from the infinite mirror
;
the method of optical images enables us to

replace the whole of this reflected light by the light from a single source at A'.

210. In an electrostatic field produced by any number of point charges,

we can, as we have seen, select any equipotential and replace it by a con-

ductor. The charges on either side of this equipotential are then the

"images" of those on the other side.

Thus if we can write the equation of any surface in the form

r (125),

where r is the distance from a point outside the surface, and r', r", . . . are the

distances from points inside the surface, then we may say that charges

e', e", ... at these latter points are the images of a charge e at the former

point.

The method of images may be applied in a similar way to two-dimensional

problems. Suppose that the equation of a cylindrical surface can be expressed
in the form

c - 2e log r - 2e' log r - 2e" log r" - ... = 0,

where r is the perpendicular distance from a fixed line on one side of the

surface, and r', r", . . . are perpendicular distances from fixed lines on the other

side. Then line-charges of line-densities e', e", ... at these latter lines may be

taken to be the image of a line-charge of line-density e at the former line.

Illustrations of the use of images in three dimensions are given in

211 219. An illustration of the use of a two-dimensional image will

be found in 220.
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Charges induced on Intersecting planes.

211. It will be found that charges

e at x, y, 0,

- e at -
x, y, 0,

-e at x, y, 0,

e at x, y,

give zero potential over the planes x 0, y = 0.

The potential of these charges is therefore the

same, in the quadrant in which x, y are both

positive, as if the boundary of this quadrant
were a conductor put to earth under the in-

fluence of a charge e at the point x, y, 0.

It will be found that a conductor consisting

of three planes intersecting at right angles can

be treated in the same way.

212. The method of images also supplies a solution when the conduct

77"

consists of two planes intersecting at any angle of the form
,
where n ii

Fia -

any positive integer. If we take polar coordinates, so that the two plan<
7T

are 6 0, 6 = -
,
and suppose the charge to be a charge e at the point r,

we shall find that charges

e at (r, 8),
(r,

+
2

Z)
,

give zero potential over the planes
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Charge induced on a sphere.

213. The most obvious case, other than the infinite plane, of a surface

whose equation can be expressed in the form (125), is a sphere.

FIG. 61.

If R, Q are any two inverse points in the sphere, and P any point on the

surface, wo have

RP:PQ = OC: OQ,

SO
OQ 00_'-"'

00

PQ PR

T-tns the image of a charge e at Q is a charge e^ at R, or the

imago of any point at a distance / from the centre of a sphere of radius a

Pfl

charge -7- at the inverse point, i.e. at a point on the same radius

distant -? from the centre.

Let us take polar coordinates, having the centre of the sphere for origin

and the line OQ as 6 = 0. Our result is that at any point S outside the

sphere, the potential due to a charge e at Q and the charge induced on the

surface of the sphere, supposed put to earth, is

-..
QS RS

ea

A/r
2 +/2 -

2/r cos

where r, are the coordinates of S.

/ ,
a4 _ a2

V ^ + ^-2
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214. We can now find the surface-density of the induced charge. F

at any point on the sphere

R 1 dV
a- -r = -T - -=

,

47T 4-7T OT

in which we have to put r = a after differentiation. Clearly

_8F; e(r-/cos0)
_ 2/r cos 0)3 / a4 a2 \

/ f r2 + ^ 2 ^ r cos (9
j

r

Putting r a we obtain

a fcos 6
<7=

4^

47T

cos

_

4?r a.SQs
'

Thus the surface-density varies inversely as SQ*, so that it is greatest at

G and falls off continually as we recede from the radius OC. The total

PCI

charge on the sphere is
-^

,
as can be seen at once by considering that the

total strength of the tubes of force which end on it is just the same as would

Fio. 62.
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be the total strength of the tubes ending on the image at R if the conductor

were not present.

Figure 62 shews the lines of force when the strength of the image is a

quarter of that of the original charge, so that /= 4ci. It is obtained from

fig.
19 by replacing the spherical equipotential by a conductor, and annihi-

lating the field inside.

Superposition of Fields.

215. We have seen that by adding the potentials of two separate fields

at every point, we obtain the potential produced by charges equal to the total

charges in the two fields. In this way we can arrive at the field produced

by any number of point charges and uninsulated conductors of the kind we

have described. The potential of each conductor is zero in the final solution

because it is zero for each separate field.

There is also another type of field which may be added to that

obtained by the method of images, namely the field produced by raising the

conductor or conductors to given potentials, without other charges being

present. By superposing a field of this kind we can find the effect of point

charges when the conductors are at any potential.

216. For instance, suppose that, as in fig. 62, we have a point charge e

and the conductor at potential 0. Let us superpose on to the field of force

already found, the field which is obtained by raising the conductor to potential
V when the point charge is absent. The charge on the sphere in the second

field is aV, so that the total charge is

TT- e
aV -

-j.

By giving different values to V, we can obtain the total field, when the

sphere has any given charge or potential.

If the sphere is to be uncharged, we must have V^.^ so that a point

charge placed at a distance/ from the centre of an uncharged sphere raises

a
it to potential j ,

a result which is also obvious from the theorem of 104.
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Sphere in a uniform field of force.

217. A uniform field of force of which the lines are parallel to the axis

of x may be regarded as due to an infinite charge E at x = R, and a charge
E at X R, when in the limit E and R both become infinite. The

intensity at any point is

parallel to the axis of x, so that to produce a uniform field in which the

intensity is F parallel to the axis of x, we must suppose E and R to

become infinite in such a way that

v (A **

dV
Since, in this case, F

^ / the potential of such a field will clearly

be - Fx + C.

Suppose that a sphere is placed in a uniform field of force of this kind,

its centre being at the origin. We can suppose the charge E at x = R to

have an image of strength

Ea a?

while the other charge has an image

Ea

These two images may be regarded as a doublet (cf. 64) of strengtl

-=- x -^ ,
and of direction parallel to the negative axis of x. The strength

= = -a.

Thus we may say that the image of a uniform field of force of strength F
is a doublet of strength Fa

3 and of direction parallel to that of the intensity

of the uniform field.

The potential of this doublet is

Fa? cos 6

^ >

and that of the field of original field of force is

- Fx + (7,

or, in polar coordinates, Fr cos + (7,
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so that the potential of the whole field

193

.(126).

FIG. 63.

As it ought, this gives a constant potential C over the surface of the

sphere.

FIG. 64.

The lines of force of the uniform field F disturbed by the presence of a

doublet of strength Fa? are shewn in fig. 63. On obliterating all the lines

of force inside a sphere of radius a, we obtain fig. 64, which accordingly

shews the lines of force when a sphere of radius a is placed in a field of

intensity F. These figures are taken from Thomson's Reprint of Papers on

Electrostatics and Magnetism (pp. 488, 489)*.

*
I am indebted to Lord Kelvin for permission to use these figures.

J. 13



194 Methodsfor the Solution of Special Problems [OH. vm

218. Line of no electrification. The theory of lines of no electrification

has already been briefly given in 98. We have seen that on any conductor

on which the total charge is zero, and which is not entirely screened from

an electric field, there must be some points at which the surface-density <r

is positive, and some points at which it is negative. The regions in which <r

is positive and those in which cr is negative must be separated by a line or

system of lines on the conductor, at every point of which <r = 0. These lines

are known as lines of no electrification.

If R is the resultant intensity, we have at any point on a line of no

electrification,

so that every point of a line of no electrification is a point of equilibrium.

At such a point the equipotential intersects itself, and there are two or more

lines of force.

If the conductor possesses a single tangent plane at a point on a line of

no electrification, then one sheet of the equipotential through this point will

be the conductor itself: by the theorem of 69, the second sheet must

intersect the conductor at right angles.

These results are illustrated in the field of fig. 64. Clearly the line of no

electrification on the sphere is the great circle in a plane perpendicular to

the direction of the field. The equipotential which intersects itself along

the line of no electrification (V G) consists of the sphere itself and the

plane containing the line of no electrification. Indeed, from formula (126),

it is obvious that the potential is equal to C, either when -=
,
or

when r = a.

The intersection of the lines of force along the line of no electrification

is shewn clearly in fig. 64.

Plane face with hemispherical boss.

219. If we regard the whole equipotential V= C as a conductor, we
obtain the distribution of electricity on a plane conductor on which there

is a hemispherical boss of radius a. If we take the plane to be x = 0, we

have, by fora^ula (126),

.

r3

At a point on the plane,

-

4
and on the hemisphere

o- = j- ( ^- )
=

. 3 cos 0.
4>7r\drj = 4-rr
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The whole charge on the hemisphere is found on integration to be

[

2

(^- 3 cos 0} 27ra2 sin 6 dd = fFa
2
,

J0= \47T /

while, if the hemisphere were not present, the charge on the part of the

plane now covered by the base of the hemisphere would be

Thus the presence of the boss results in there being three times as much

electricity on this part of the plane as there would otherwise be : this is

compensated by the diminution of surface-density on those parts of the plane
which immediately surround the boss.

Capacity of a telegraph-wire.

220. An important practical application of the method of images is the

determination of the capacity of a long straight wire placed parallel to an

infinite plane at potential zero, at a distance h from the plane. This may be

supposed to represent a telegraph-wire at height h above the surface of the

earth.

Let us suppose that the wire has a charge e per unit length. To find

the field of force we imagine an image charged with a charge e per unit

length at a distance h below the earth's surface. The potential at a point at

distances r, r' from the wire and image respectively is, by 75 and 100,

and for this to vanish at the earth's surface we must take (7=0. Thus the

potential is

At a small distance a from the line-charge which represents the telegraph-

wire, we may put r' = Zh, so^that the potential is

2elog^,

from which it appears that a cylinder of small radius a surrounding the

wire is an equipotential. We may now suppose the wire to have a finite

radius a, and to coincide with this equipotential. Thus the capacity of the

wire per unit length is

1

2h'

a

132
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Infinite series of Images.

221. Suppose we have two spheres, centres A, B and radii a, 6, of which

the centres are at distance c apart, and that we require to find the field when

FIG. 65.

both are charged. We can obtain this field by superposing an infinite series

of separate fields (cf. 116).

Suppose first that A is at potential V while B is at potential zero. As a

first field we can take that of a charge Va at A. This gives a uniform

potential V over A, but does not give zero potential over B. We can reduce

the potential over B to zero by superposing a second field arising from

the image of the original charge in sphere B, namely a charge
*- at B',

bz

where BB' = . This new field has, however, disturbed the potential over
c

A. To reduce this to its original value we superpose a new field arising

from the image of the charge at B' in A, namely a charge
- -

. 7- at A,
c

c
c

where AA' = n . This field in turn disturbs the potential over B, and so

y* _^_

C

we superpose another field, and so on indefinitely. The strengths of the

various fields, however, continually diminish, so that although we get an

infinite series to express the potential, this series is convergent. As we shall

see, this series can be summed as a definite integral, or it may be that a good

approximation will be obtained by taking only a finite number of terms.

The total charge on A is clearly the sum of the original charge Va plus

the strengths of the images A', A", ... etc., for this sum measures the

aggregate strength of the tubes of force which end on A. Similarly the

charge on B is the sum of the strengths of the images at B', B", ....

To obtain the field corresponding to given potentials of both A and B we

superpose on to the field already found, the similar field obtained by raising

B to the required potential while that of A remains zero.



221, 222] Images 197

11 > #22, 12 are the coefficients of capacity and induction, the total charge
on A when E is to earth and V 1 is qu ; similarly that on B is q12 . In this

way we can find the coefficients qu , ql2 from the series of images already
obtained. The result is found to be

= _ab
c

and from symmetry

Qm = b + -

As far as -, these results clearly agree with those of 116.

222. The series for qn , q12 , q22 have been put in a more manageable form by Poisson

and Kirchhoff.

Let A 8 denote the position of the sth of the series of points A', A", ..., and B9 the sth

of the series B', B'\ ... ;
then A 8 is the image of B8 in the sphere of radius a, and similarly

Ba is the image of A 8 _ l in the sphere of radius b. Let a8=AA 8 ,
bt= BBt ,

and let the

charges at A t ,
B8 be e8 ,

e'8 respectively.

Then a8 (c b8)
= a2 since A 8 is the image of Bt ,

68 (c-ag _ 1 )
= 62 Bs J 8 _!.

Further, by comparing the strengths of a charge and its image,

a b

so that e8 =- ^-L 6g _ 1 (127),
(<r-6,)(c-fl-i)

and similarly e\= 7
=- - e'8 _ , .

(c-a8 _ 1)(c-b8 _ 1 )

We have therefore A. -__

and _e8_ = (c-b8 + l)(c-a8 ) =: c(c-a8)_b
e8 + i ab ab a

By addition we eliminate ag ,
and obtain

68 es _ 6'2 2 -
"~

or, if we put = us ,

(128),

and from symmetry it is obvious that the same difference equation must be satisfied by a

quantity u'8= .

The solution of the difference equation (128) may be taken to be

ut-Aa>+Bp,
where a, Q are the roots of

*-*-
ab
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The product of these roots is unity, so that if a is the root which is less than unity, we

can suppose

,

that e

and similarly e'8
=

We now have qu

To determine A, B, we have

a?b

A B 1
sothat

i a+ ba
where =

c

and -2 ' I_2a2

To determine A', B', we have

a ab

from which, in the same way,

The value of g^ can of course be written down by symmetry from that of qu .

The coefficients each depend on a sum of the type

This series cannot be summed algebraically, but has been expressed as a definite integral

by Poisson. From the known formula

sin /*

we obtain at once

_j__i_i
l_ ep~r p

so that on putting p=log ^
2a28 we have

_o*_ _ a- r a- Bin (log fa") ^

1 - fa28
log |

2a28
Jo e2^-!
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From this follows

a8

Images 199

1 2 a8 sin (2 log g+ 2s log a)

Both the series on the right can be summed. We have

2
2 log^>2*loga

=
J o l-ae2 s

* =
J fl^* + 1 '

- 2a cos (2Hog a)+ a2

so that 2
a8 1

_ r sin(2;logg)-asin(2nog /a)

Jo (e
2jr
<-l)(l-2acos(2*loga) + a2

)

'

and on replacing by unity, we obtain

2
a' l

+2l-a28 ~2(l-a)
+

These are the series which occur in qn and

Jo (e-
a sin (2t log a)

l)(l-2acos(2*loga) + a2

223. Having calculated the coefficients, either by this or some other

method, we can at once obtain the relations between the charges and

potentials, and can find also the mechanical force between the spheres. If

this force is a force of repulsion F, we have

F = -

or again

The following table, applicable to two spheres of equal radius, taken to be unity, is

compiled from materials given by Lord Kelvin*
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Images in dielectrics.

224. The method of images can also be applied to find the field

produced by point charges when half of the field is occupied by dielectric,

the boundary of the dielectric being an infinite plane.

We begin by considering the field produced by a single charge e at P, it

being possible to obtain the most general field by the superposition of simple

fields of this kind.

We shall shew that the field in air is the same as that due to a charge

e at P and a certain charge e' at P', the image of P, while the field in the

dielectric is the same as that due to a certain charge e" at P, if the whole

field were occupied by air.

Fm. 66.

Let PP' be taken for axis of x, the origin being in the boundary
of the dielectric, and let OP = a. Then we have to shew that the potential

VA in air is

N(x + of -

while that in the dielectric is

a? a)
2

VD

These potentials, we notice, satisfy Laplace's equation in each medium,

everywhere except at the point P, and they arise from a distribution of

charges which consists of a single point charge e at P The potential in air

at the point 0, y, z on the boundary is

V - e + e/

Va2 + i/
2Tz2

'
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while that in the dielectric at the same point is

ft-- =
Va2 + t/

2 + 22

Thus the condition that the potential shall be continuous at each point

of the boundary can be satisfied by taking

.............................. (129).

The remaining condition to be satisfied is that at every point of the

boundary, ^-
in air shall be equal to K -*- in the dielectric ;

i.e. that

Now, when x = 0,

Ke"aK-^ = -

dVA __ ea_^
e'a

so that this last condition is satisfied by taking

Ke" = e-e' (130).

Thus the conditions of the problem are completely satisfied by giving

e, e" values such as will satisfy relations (129) and (130); i.e. by taking

f- 2
c ]l + K

I (131).

e' =-

225. The pull on the dielectric is that due to the tensions of the lines

of force which cross its boundary. In air these lines of force are the same

as if we had charges e, e' at P, P' entirely in air, so that the whole tension

in the direction P'P of the lines of force in air is

ee

e* (K-l)
iT2 (# + !)*

This system of tensions shews itself as an attraction between the

dielectric and the point charge. If the dielectric is free to move and

the point charge fixed, the dielectric will be drawn towards the point

charge by this force, and conversely if the dielectric is fixed the point

charge will be attracted towards the dielectric by this force.
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INVERSION.

226. The geometrical method of inversion may sometimes be used to

deduce the solution of one problem from that of another problem of which

the solution is already known.

Geometrical Theory.

227. Let be any point which we shall call the centre of inversion, and

FIG. 67.

let AB be a sphere drawn about with a radius K which we shall call the

radius of inversion.

Corresponding to any point P we can find a second point P', the inverse

to P in the sphere. These two points are on the same radius at distances

from such that OP . OP' = K*.

As P describes any surface PQ ..., P' will describe some other surface

P'Q'..., each point Q' on the second surface being the inverse of some point

Q on the original surface. This second surface is said to be the inverse

of the original surface, and the process of deducing the second surface from

the first is described as inverting the first surface.

It is clear that if P'Q'... is the inverse of PQ..., then the inverse of

P'Q'... will bePQ....

If the polar equation of a surface referred to the centre of inversion

as origin be / (r, 6, </>)
= 0, then the equation of its inverse will be

(K* \f ( , 0, </>)
= 0. For the polar equation of the inverse surface is by

definition f(r, 0, 0)
=

0, where rr' =K2 for all values of 6 and
</>.
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Inverse of a sphere. Let chords PP', QQ', ... of a sphere meet in

(fig. 68). Then

where t is the length of the tangent from to the sphere. Thus, if t is the

radius of inversion, the surface PQ... is the inverse of P'Q'..., i.e. the sphere

FIG. 68.

is its own inverse. With some other radius of inversion K, let P"Q". . . be

the inverse of PQ . . .
,
then

so that
OP"
OP' OQ' t

z

and the locus of P", Q", ... is seen to be a sphere. Thus the inverse of a

sphere is always another sphere.

A special investigation is needed

when the sphere passes through 0. Let

OS be the diameter through 0, and let

S' be the point inverse to S. Then, if

P' is the inverse of any point P on the

circle,

OP. OP' = OS. OS',

OP OS'
or

~OS
==

OIr"

so that POS, S'OP' are similar triangles

Since OPS is a right angle, it folio

that OS'P' is a right angle, so that

locus of P' is a plane through S' p
dicular to OS'. Thus the inve'

Fio 69

sphere which passes through
'

.e

of inversion is a plane, and, c
,
the inverse of any plane is a sphere

which passes through the ce .version.
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228. If P, Q are adjacent points on a surface, and P', Q' are the corre-

sponding points on its inverse, then OPQ,

OQ'F are similar triangles, so that PQ,

P'Q' make equal angles with OPP'. By
making PQ coincide, we find that the

tangent plane at P to the surface PQ
and the tangent plane at P' to the sur-

face P'Q' make equal angles with OPP'.

Hence, if we invert two surfaces which JPIG< 70.

intersect in P, we find that the angle
between the two inverse surfaces at P' is equal to the angle between the

original surfaces at P, i.e. an angle of intersection is not altered by inversion.

Also, if a small cone through cuts off areas dS, dS' from the surface

PQ. . . and its inverse P'Q'. . .
,
it follows that

dS _ OP2

dS'~OP'*'

Electrical Applications.

229. Let PP', QQ' be two pairs of inverse points (fig. 70). Let a charge
e at Q produce potential Vp at P, and let a charge e at Q' produce potential

Vp at P', so that

PQ' P'Q"

-rr - rw s~\/
==

f\f\f '

Take
e/ K - Q/

*
=
OQ-1T

VP
' OP K=

Now let Q be a point of a conducting surface, and replace e by ardS,

the charge on the element of surface dS at Q. Let Vf denote the potential

of the whole surface at P, and let VP
f

denote the potential at P' due to a

charge e' on each element dS' of the inverse surface, such that

e' OQ'
<rdS~ K '

K
Then, since Vp VP ,

for each element of charge, we have by addition

Thus charges e' on d$', etc. produce c potentialM * ,,
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Now suppose that P is a point on the conducting surface Q, so that

Vp becomes simply the potential of this surface, say V. The charges e on

dS', etc. now produce a potential

-,
VK^ Op at p

>

so that if with these charges we combine a charge VK at 0, the potential

produced at P' is zero. Thus the given system of charges spread over the

surface P'Q' ..., together with a charge VK at the origin, make the

surface P'Q' ... an equipotential of potential zero. In other words, from a

knowledge of the distribution which raises PQ ... to potential F, we can

find the distribution on the inverse surface P'Q' . . . when it is put to earth

under the influence of a charge VK at the centre of inversion.

If e, e
f

are the charges on corresponding elements dS, dS' at Q, Q', we

have seen that

e' _ <r'dS'
__ K^ _ 0<2' _ /OQ'

~e

"
^dS

~
OQ

~~ K "V OQ
'

while
*

dS
~
OQ2

'

~
f

........................(132X

giving the ratio of the surface densities on the two conductors.

Conversely, if we know the distribution induced on a conductor PQ ... at

potential zero by a unit charge at a point 0, then by inversion about we

obtain the distribution on the inverse conductor P'Q'... when raised to

potential -^.
As before, the ratio of the densities is given by equation (132).

Examples of Inversion.

230. Sphere. The simplest electrical problem of which we know the

solution is that of a sphere raised to a given potential. Let us examine

what this solution becomes on inversion.

If we invert with respect to a point P outside the sphere, we obtain the

distribution on another sphere when put to earth under the influence of a

point charge P. This distribution has already been obtained in 214 by
the method of images. The result there obtained, that the surface-density

varies inversely as the cube of the distance from P, can now be seen at once

from equation (132).

So also, if P is inside the sphere, we obtain the distribution on an

uninsulated sphere produced by a point charge inside it, a result which can

again be obtained by the method of images.

wu i P is on the sphere, we obtain the distribution on an uninsulated

p -eady obtained in 208.
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231. Intersecting Planes. As a more complicated example of inversion,

let us invert the results obtained in 212. We there shewed how to find

FIG. 71.

7T

the distribution on two planes cutting at an angle ,
when put to earth

it

under the influence of a point charge anywhere in the acute angle between

them. If we invert the solution we obtain the distribution on two spheres,

cutting at an angle ir/n, raised to a given potential. By a suitable choice

of the radius and origin of inversion, we can give any radii we like to the

two spheres.

If we take the radius of one to be infinite, we get the distribution on a

plane with an excrescence in the form of a piece of a sphere : in the par-

ticular case of n = 2, this excrescence is hemispherical, and we obtain the

distribution of electricity on a plane face with a hemispherical boss. This

can, however, be obtained more directly by the method of 219.

SPHERICAL HARMONICS.

232. The problem of finding the solution of any electrostatic problem is

equivalent to that of finding a solution of Laplace's equation

V*F =

throughout the space not occupied by conductors, such as shall satisfy certain

conditions at the boundaries of this space i.e. at infinity and on the surfaces

of conductors. The theory of spherical harmonics attempts to provide a

general solution of the equation V2F = 0.

This is no convenient general solution in finite terms: we therefore

examine solutions expressed as an infinite series. If each term of such

a series is a solution of the equation, the sum of the series is necessarily

a solution.
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233. Let us take spherical polar coordinates r
t 0, </>,

and search for

solutions of the form
V = RS,

where R is a function of r only, and 8 is a function of 6 and < only.

Laplace's equation, expressed in spherical polars, can be obtained analyti-

cally from the equation

=0
df dz*

by changing variables from x, y, z to r, 6, </>,
but is most easily obtained by

applying Gauss' Theorem to the small element of volume bounded by the

spheres r and r + dr
y
the cones and 6 + dO, and the diametral planes c/>

and

< + d(f>.
The equation is found to be

ilf 2

8r ; r* sin (9 W T 90 r2 sin2

Substituting the value V= RS, we obtain

8 d ( 2
dR\ R 9 / . .a/Sf

r2 sin2

or, simplifying,

9r / S sin 6^ 36> r 8 8 sin2
6> 9<#)

2

The first term is a function of r only, while the last two terms are inde-

pendent of r. Thus the equation can only be satisfied by taking

S sin 6 c

where K is a constant. Equation (133), regarded as a 'differential equation
for R, can be solved, the solution being

R = Arn
+j!L (135)>

where A, B are arbitrary constants, and n (n + 1)
= K. After simplification

equation (134) becomes

sn

Any solution of this equation will be denoted by Sn ,
the solution being a

function of n as well as of 6 and
<f>.

The solution of Laplace's equation we
have obtained is now

a le addition of such solutions, the most general solution of Laplace's
e may be reached.
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234. DEFINITIONS. Any solution of Laplace's equation is said to be a

spherical harmonic.

A solution which is homogeneous in x, y, z of dimensions n is said to be a

spherical harmonic of degree n.

A spherical harmonic of degree n must be of the form rn multiplied by
a function of and $, it must therefore be of the form ArnSn , where Sn
is a solution of equation (136).

Any solution Sn of equation (136) is said to be a surface-harmonic of

degree n.

235. THEOKEM. If V is any spherical harmonic of degree n, then

yjr
vn+i jg a spherical harmonic of degree (n + 1).

For V must be of the form ArnSn ,
so that

which is known to be a solution of Laplace's equation, and is of dimensions

(n + 1) in r. Conversely if V is a spherical harmonic of degree (n + 1),

then r2n+1V is a spherical harmonic of degree n.

236. THEOREM. If V is any spherical harmonic of degree n, then

where s, t, and u are any integers, is a spherical harmonic ofdegree n s t u.

82F 92F
F r &*&*&-*

so that on differentiation s times with respect to x, t times with respect to y,

and u times with respect to z,

or V :

which proves the theorem.

237. THEOREM. If Sm , Sn are two surface harmonics of different degrees

m, n, then

jJ8
nSm da> = 0,

where the integration is over the surface of a unit sphere.

In Green's Theorem ( 181),

-
^V*d>) dxdydz = - & -

dS,

put <J> = rnSn ,
V = rmSm ,

and take the surface to be the unit sphere.
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Then V 23> = 0, V2^ = 0, 5~~
= ~

2~ = ~ nrn
~lSn ,

and ~ = - mrm~*Sm .

Thus the volume integral vanishes, and the equation becomes

//<

r, since n is, by hypothesis, not equal to m
t

'

nSm da) = 0.

Harmonics of Integral Degree.

238. The following table of examples of harmonics of integral degrees 7i=0,
-

1, 2,

+ 1, is taken from Thomson and Tait's Natural Philosophy.

-^y^^ r+ z rz(xi-y^, ,

= 0. 1, tan- 1
^, log# ' & r-2 x

Also if F is any one of these harmonics, -~-^, -~-^
, -^ are harmonics of degree

-
1, so

that r -~-^ . r-^ ,
r~ are harmonics of degree zero. As examples of harmonics derived

tix cy cz

in this way may be given

rx ry zx zy x x
^2

-f
2 '

By differentiating any harmonic F any number s of times, multiplying by r28
" 1 and

differentiating again s - 1 times, we obtain more harmonics of degree zero.

n= 1. Any harmonic of degree zero divided by r or differentiated with respect to

x, y or 0, e.g.

r> r x 1 rr-z> x*+if> r(r+z)'

n= - 2. By differentiating harmonics of degree
- 1 with respect to #, y or z we obtain

harmonics of degree
-

2, e.g.

x y z z , ,y z , r+z z

?> '
}i. i3

tan
-!' ^~z

, ^
n=l. Multiplying harmonics of degree 2 by r3

,
we obtain harmonics of degree 1, e.g.

x,y,z, 0tan -1 -, z log
--- 2r.

X T Z

Rational Integral Harmonics.

239. An important class of harmonic consists of rational integral algebraic

functions of x, y, z. In the most general homogeneous function of x, y, z of

degree n there are J (n + 1) (n + 2) coefficients. If we operate with V2 we
are left with a homogeneous function of x, y, z of degree n 2, and therefore

possessing \n (n 1) coefficients. For the original function to be a spherical

harmonic, these \n(n 1) coefficients must all vanish, so that we must

have \n(n 1) relations between the original %(n + l)(n + 2) coefficients.

J. U
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Thus the number of coefficients which may be regarded as independent in

the original function, subject to the condition of its being a harmonic, is

%(n+l)(n + 2)-n(n-I),
or 2?i + 1. This, then, is the number of independent rational harmonics of

degree n.

For instance, when n = 1 the most general harmonic is

Ax + By + Gz
y

possessing three independent arbitrary constants, and so representing three

independent harmonics which may conveniently be taken to be #, y and z.

When n = 2, the most general harmonic is

ax* + by* + cz2 + dyz + ezx +fay,

where a, b, c are subject to a + b +c = 0. The five independent harmonics

may conveniently be taken to be

yz, zoc, xy, x2 -
f, x* - z2

.

When n = 0, 2n + 1 = 1. Thus there is only one harmonic of degree zero,

and this may be taken to be V= 1.

Corresponding to a rational integral harmonic Vn of positive degree n,

y
there is the harmonic -^^ of degree (n + 1). These harmonics of degree

(n + 1) are accordingly 2n -f 1 in number. Thus the only harmonic of

this kind and of degree 1 is

Consider now the various expressions of the type

fis+t+u

where s + t + u = n.

These, as we know, are harmonics of degree (n + 1), and from 235

it is obvious that they must be of the form ^ ,
where Vn is a rational

integral harmonic of degree n. Since - is harmonic, V 2

(-J
= 0, so that

.=-(-!)(') <->

The most general harmonic obtained by combining the harmonics of

type (137) is

fis+t+u

but by equation (138) this can be reduced at once to the form
'

+9
'

(
l
\

'd* (r)
'
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where p + q
= n 1 and p' 4- q

= ft. This again may be replaced by

IN
,

p
y> * /*

so that there are 2n + 1 arbitrary constants in all, and it is obvious

on examination that the harmonics, multiplied by all the coefficients

i ____
Bp, ... Bp', ... are independent. Thus, by differentiating

- n times, we have

arrived at 2n + 1 independent rational integral harmonics, and it is known

that this is as many as there are.

Expansion in Rational Integral Harmonics.

240. THEOREM*. The value of any finite single-valued function of

position on a spherical surface can be expressed, at every point of the

surface at which the function is continuous, as a series of rational integral

harmonics, provided the function has only a finite number of lines and points

of discontinuity and of maxima and minima on the surface.

Let F be the. arbitrary function of position on the sphere, and let the

sphere be supposed of radius a. Let P be any point outside the sphere at a

distance / from its centre 0, and let Q be any point on the surface of

the sphere.

FIG. 72.

Let PQ be equal to R, so that

E2 =/2 + a2 -
2a/cos POQ.

We have the identity

([dS 'a

JJ R*=
where the integration is taken over the surface of the sphere, a result

which it is easy to prove by integration.

A point charge e placed at P induces surface density -- HS on the surface of

the sphere ( 214), and the total induced charge is -^. The identity is therefore

obvious from electrostatic principles.

The proof of this theorem is stated in the form which seems best suited to the requirements
of the student of electricity and makes no pretence at absolute mathematical rigour.

142
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Now introduce a quantity u defined by

_/
2 -a2

so that w is a function of the position of P. If P is very close to the

sphere, /* a2 is small, and the important contributions to the integral arise

from those terms for which R is very small: i.e. from elements near to P.

If the value of F does not change abruptly near to the point P, or

oscillate with infinite frequency, we can suppose that as P approaches the

sphere, all elements on the sphere from which the contribution to the

integral (141) are of importance, have the same F. This value of F will of

course be the value at the point at which P ultimately touches the sphere,

say FP . Thus in the limit we have

(f*-a?)FP ffdS
4?ra //f

=
Fp-f, by equation (140),

= FP ,

when in the limit f becomes equal to a.

If the value of F oscillates with infinite frequency near to the point P, we obviously

may not take F outside the sign of integration in passing from equation (141) to

equation (142).

If the value of F is discontinuous at the point P of the sphere with which P
ultimately coincides, we again cannot take F outside the sign of integration. Suppose,

however, that we take coordinates p, $ to express the position of a point P' on the surface

of the sphere very near to P, the coordinate p being the distance P'P', and $ being the

angle which PP' makes with any line through P in the tangent plane at P. Then F
may be regarded as a function of p, 3, and the fact that Pis discontinuous atP is expressed

by saying that as we approach the limit p = 0, the limiting value of F (assuming such a

limit to exist) is a function of 3 i.e. depends on the path by which P is approached.
Let F (5) denote this limit. Then

= ~ (P(3) (~)i dB, by equation (140).
27r J V/

On passing to the limit and putting =/, we find that

...(143),
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I
i.e. u is the average value of F taken on a small circle of infinitesimal radius surrounding

P. In particular, if F changes abruptly on crossing a certain line through P, having a

value F1 on one side, and a value F2 on the other, then the limiting value of u is

I=(/2

-2a/cos0 + a2

If we take to denote the angle POQ,

I

a2

-2a/cosfl\-iI/

"7V
1 "

/2

If. - a2 - 2a/ cos /a2 -
2a/ cos (9\

2 1

*7L 2
~

~7^
~ +H~ rr/~ "T

or, arranging in descending powers of/,

in which #, ^, ... are functions of 6, being obviously rational integral

functions of cos 6. When 6 - 0,

and when =
?r,

I
^

so that when 6 = 0,

ft-4~..t-i,
and when B = ir

)

P P P 1Ji ^2
~

-i ... i.

It is clear, therefore, that the series (144) is convergent for = and

=
TT, and a consideration of the geometrical interpretation of this series

will shew that it must be convergent for all intermediate values*.

Differentiating equation (144) with respect to /, we get

If we multiply this equation by 2/j and add corresponding sides to

equation (144), we obtain

F
Multiplying this equation by 7 ,

and integrating over the surface of the

sphere, we obtain

f*-a*[fFdS 2n + l

*
Being a power series in cos it can only have a single radius of convergence, and this

cannot be between cos = 1 and cos0= - 1.
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or, by equation (141),

If the function F is continuous and non-oscillatory at the point P, then

on passing to the limit and putting / = a, we obtain

If F is discontinuous and non-oscillatory, then the value of the series on the right is

not F, but is the function denned in equation (143).

Now it is known that 1/r is a spherical harmonic, so that we have

where the differentiation is with respect to the coordinates of Q. Hence l/R
must be of the form (cf. 233) ., , ,

.....................(147),

where 8n is a surface harmonic of order n. Comparing with equation (144),

and remembering that a in this equation is the same as the r of equation

(147), we see that Pn , regarded as a function of the position of Q, is a surface

harmonic of order n, and we have already seen that it is a series of powers

of cos 6, or of -
,
the highest power being the nth, so that rnPn is a rational

integral harmonic of order n. It follows that

being the sum of a number of terms each of the form rnP^, is also a rational

integral harmonic of order n, say Vn . On the surface of the sphere

7* = a-
fJFP

nd8,

so that equation (146) becomes

which establishes the result in question.

241. THEOREM. The expansion of an arbitrary function of position on the

surface of a sphere as a series of rational integral harmonics is unique.

For if possible let the same function F be expanded in two ways, say

F=2Wn .. ..... . ...................... (149),

F=2Wn'

..... ..... . ................... (150),

where Wn ,
Wn'

are rational integral harmonics of order n. Then the function



240-243] Spherical Harmonics 215

is a spherical harmonic, which vanishes at every point of the sphere. Since

V 2w = at every point inside the sphere it is impossible for u to have either

a maximum or a minimum value inside the sphere (cf. 52), so that u

at every point inside the sphere. Since Wn Wn'

is a harmonic of order n,

it must be of the form rnSn , where Sn is a surface harmonic, so that

Thus u is a power series in r which vanishes for all values of r from r =

to r = a. Thus Sn = for all values of n. Hence Wn =Wn', and the two

expansions (149) and (150) are seen to be identical.

242. It is clear that in electrostatics we shall in general only be

concerned with functions which are finite and single-valued at every point,

and of which the discontinuities are finite in number. Thus the only classes

of harmonics which are of importance are rational integral harmonics, and in

future we confine our attention to these. We have found that

(i) The rational integral harmonics of degree n are (2n + 1) in number,

and may all be derived from the harmonic -
by differentiation.

(ii) Any function of position on a spherical surface, which satisfies the

conditions which obtain in a physical problem, can be

expanded as a series of rational integral harmonics, p
"
p

and this can be done only in one way.

243. Before considering these harmonics in detail,

we may try to form some idea of the physical concep-
tions which lead to them most directly.

The function is the potential of a unit charge

at the origin. If, as in 64, we consider two charges
e at points 0', 0" at equal small distances a, a O"O O'

from the origin along the axis of x, we obtain as the
FlG* 73-

potential at P,

v _ e e e e~ ~
OP'

If we take - e . PP'\ 1, we have a doublet of strength 1 parallel to the

axis of a?, and the potential at P is
^-

(-
J

. In fact this potential is exactly

the same as already found in 64.
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Thus the three harmonics of order 1 obtained by dividing the rational

integral harmonics of order 1 by r3
, namely ^-(-], ^-(-), (- ) , are

7 dx \rj dy \rj dz \rj

simply the potentials of three doublets each of unit strength, parallel to

the negative axes of x
t y> z respectively.

If in fig. 73 we replace the charge e at 0' by a doublet of strength e

parallel to the negative axis of oc, and the charge e at 0" by a doublet

of strength e parallel to the negative axis of x, we obtain a potential

If instead of the doublets being parallel to the axis of x, we take them

parallel to the axis of y, we obtain a potential

dxdy\r

So we can go on indefinitely, for on differentiating the potential of

a system with respect to x we get the potential of a system obtained

by replacing each unit charge of the original system by a doublet of unit

strength parallel to the axis of x. Thus all harmonics of type

(cf. 236) can be regarded as potentials of systems of doublets at the origin,

and, as we have seen ( 239), it is these potentials which give rise to the

rational integral harmonics.

244. For instance in finding a system to give potential -^ f-1, we may replace the

''. 1 1

charge in fig. 73 by a charge at distance 2a from and - at 0. The charge at 0'
2iGL (JL

may be similarly treated, so that the whole system is seen to consist of charges

E, -2E, E,

at the points x= -
6, 0, b where 6 = 2a, and E2=

j-2
.

A system of this kind placed along each axis gives a charge
- 6E at the origin and

a charge E at each corner of a regular octahedron having the origin as centre. The

potential

=
0,

so that such a system sends out no lines of force.

245. The most important class of rational integral harmonics is formed

by harmonics which are symmetrical about an axis, say that of x. There is

one harmonic of each degree n, namely that derived from the function

These harmonics we proceed to investigate.
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LEGENDRE'S COEFFICIENTS.

246. The function

= ...........................(151)
va2 2ar cos + r2

can, as we have already seen (cf. equation (144)), be expanded in a convergent
series in the form

\/a2 -

if a is greater than r. Here the coefficients /J, 7J, . . . are functions of cos #,

and are known as Legendre's coefficients. When we wish to specify the

particular value of cos 0, we write Pn as Pn (cos 0).

Interchanging r and a in equation (152) we find that, if r > a,

1

Va2 - 2ar cos 6 + r2 r V2 V
We have already seen that the functions J?, /?,... are surface harmonics,

each term of the equations (152) and (153) separately satisfying Laplace's

equation. The equation satisfied by the general surface harmonic Sn of

degree n, namely equation (136), is

d

sin 080

In the present case Pn is independent of
</>,

so that the differential equation

satisfied by Pn is

or, if we write
/-t

for cos 0,

This equation is known as Legendre's equation.

247. By actual expansion of expression (151)

so that on picking out the coefficient of rn
,
we obtain

1.3...2n-l 1.8...2n-8 1.8...2n-S
n! ^

2.(w-2)!
M f

2.4.(n-4)i\*
......(155).

Thus Pn is an even or odd function of /A according as n is even or odd. It

will
readily be verified that expression (155) is a solution in series of

equation (154).
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Let us take axes Ox, Oy, Oz, the axis Ox to coincide with the line 6 = 0,

then fjir r cos 6 = x. Then it appears that Pnrn is a rational integral function

of x, y, and z of degree n, and, being a solution of Laplace's equation, it must

be a rational integral harmonic of degree n. We have seen that there can

only be one harmonic of this type which is also symmetrical about an axis
;

this, then, must be Pnrn.

248. If we write

(a
2 -

we have, by Maclaurin's Theorem,

'*=/<)

oa i oa

If P is the point whose polar coordinates are a, and

Q is the point r, 6, then f(a) = --
. The Cartesian co-

ordinates of P may be taken to be et, 0, ; let those of Q be

x, y, z. Then /(a) = . _________=r-
,
so that as regards

v(
-

a)
2 + y

2 + 2

differentiation of /(a),

(156).

FIG. 74.

a-o

so that equation (156) becomes

and on comparison with expansion (153), we see that

giving the form for P^ which we have already found to exist in 245.

249. A more convenient form for 7J can be obtained as follows.

Let

so that

_ 2V
f-\

2

.(157),

.(158).
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From this relation we can expand y by Lagrange's Theorem (cf. Edwards,

Differential Calculus, 517) in the form

Differentiating with respect to /z,

From equation (157), however, we find

d/i.

Equating the coefficients of /^ in the two expansions, we find

250. This last formula supplies the easiest way of calculating actual

values of Pn . The values of 7?, P%, ... 7? are found to be

00 =

105/.
2 -

5),

251. The equation (yu,

2
l)

n = has 2n real roots, of which n may be

regarded as coinciding at
//,
= 1, and n at

//,
= 1. By a well-known theorem,

the first derived equation,

will have 2?i 1 real roots separating those of the original equation.

Passing to the nth derived equation, we find that the equation

has n real roots, and that these must all lie between //,
= 1 and /*

= + !.

The roots are all separate, for two roots could only be coincident if the

original equation (tf l)
n = had n + 1 coincident roots.

Thus the n roots of the equation Pn (&) = are all real and separate and
lie between

yu,
= 1 and A = + 1.
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252. Putting /*=!, we obtain

so

Vl - 2fc +

that 7J = /?= ... = 1. Similarly, when /*
= !, we find (cf. 240) that

We can now shew that throughout the range from /i
= 1 to /&

=

the numerical value of ft is never greater than unity. We have

(1
- 2h cos + A2

)"* = (1
-

fo**)-* (1
-

so that on picking out coefficients of hn
,

1.3...2n-3
2.4...2n

Every coefficient is positive, so that Pn is numerically greatest when each

cosine is equal to unity, i.e. when 6 = 0. Thus T^ is never greater than

unity.

Fig. 75 shews the graphs of JFJ, 7J, 7?, /J, from ^ = - 1 to p = + 1, the

value of being taken as abscissa.

y
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Relations between coefficients of different orders.

253. We have

(l-^V + ^T^l+i^J .....................(160).
i

Differentiating with regard to h,

*Pn ...............(161),
i

so that (ji
-

h) (1 + 2hnPn) = (1
- 2V + ^2

i i

Equating coefficients of hn
,
we obtain

(w+l)/i+1 + w/3U 1
= (2n+l)/K/J..................(162).

This is the difference equation satisfied by three successive coefficients.

Again, if we differentiate equation (160) with respect to /*,

so that, by combining with (161),

Equating coefficients of hn
,

p - ..*

Differentiating (162), we obtain

Eliminating /*
~ from this and (163),

!- ........ . ............(164).

By integration of this we obtain

*' 00
..................(165),

whilst by the addition of successive equations of the type of (164), we
obtain

+ ............... (166).
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254. We have had the general theorem ( 237)

from which the theorem

follows as a special case. Or since

da = sin

(

1

Pn (p)Pm (p)dp = Q (167).
.' -i

r+i

To find I Pn (p) dp, let us square the equation
J -i

o

multiply by dp, and integrate from p = 1 to p = -f 1.

The result is

_i o

/+!

oo

2 hPR'dp,
-i o

all products of the form P^Pm vanishing on integration, by equation (167).

r+i

Thus I PdJL is the coefficient of h2n in
r+i

I PndfJL is
J i

+1

_! 1 - 2hp + ,

1, l-h
i.e. in - r log

-

^ ,

9
and this coefficient is easily seen to be

All T J.

We accordingly have

^=5-^-1 (168).

255. We can obtain this theorem in another way, and in a more general form, by

using the expansion of 240, namely

where 6 is the angle between the point P and the element dS on the sphere. This

expansion is true for any function F subject to certain restrictions. Taking F to be a

surface harmonic Sn of order T?, we obtain

=4^V (2s + 1)
JJS,P,

(cos 6) dS
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all other integrals vanishing by the theorem of 237. Thus

or sn Pn (^d(o = -(Sn)^ l ................ .......... .(169).

This is the general theorem, of which equation (168) expresses a particular case. To

pass to this particular case, we replace Sn by Pn (/*) and obtain, instead of equation (169),

{Pn (,*)} sin edBd* = Pn (1),

or, after integrating with respect to <,

agreeing with equation (168).

Expansions in Legendres Coefficients.

256. THEOREM. The value of any function of 0, which is finite and

single-valued from 6 = to 6 = IT, and which has only a finite number of
discontinuities and of maxima and minima within this range, can be

expressed, for every value of 6 within this range for which the function is

continuous, as a series of Legendre's Coefficients.

This is simply a particular case of the theorem of 240. It is therefore

unnecessary to give a separate proof of the theorem.

The expansion is easily found. Assume it to be

f(fJL)
= a + a1P1 + a2P,+ ...+a8P8 + ............... (170),

then on multiplying by Pn (^)dfjb, and integrating from /JL- 1 to /*
= + !,

we obtain

+l

Pn (,0/Oa) d/t =T a, f

+1

P, 0.) Pn (,.) dp
-i s=0 J -i

every integral vanishing, except that for which s = n. Thus

2n +
an ST"

/
*n

& J _t

giving the coefficients in the expansion.

If f(/Ji) has a discontinuity when
/JL
=

/AO ,
the value assumed by the

series (168) on putting /JL
=

/JLQ is, as in 240, equal to

where /I(/AO), /2 (/-t ) are the values of /(/^) on the two sides of the discon-

tinuity.
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HARMONIC POTENTIALS.

257. We are now in a position to apply the results obtained to problems

of electrostatics.

Consider first a sphere having a surface density of electricity 8n . The

potential at any internal point P is

[[
JJ

=
PQ J./\/a2 -2arcos<9 + r2

4?r
tt

2 _L
(Sn)cos<,=lj by the theorems of 237 and 255,

(v

irra^l :

(m) '

this expression being evaluated at P.

Similarly the potential at any external point P is

These potentials are obviously solutions of Laplace's equation, and it is

easy to verify that they correspond to the given surface density, for

outside \v7 /inside

This gives us the fundamental property of harmonics, on which their

application to potential-problems depends : A distribution of surface density

Sn on a sphere gives rise to a potential which at every point is proportional

tO 8n .

\

258. The density of the most general surface distribution can, by the

theorem of 240, be expressed as a sum of surface harmonics, say

in which $ is of course simply a constant. The potential, by the results of

the last section, is

... at an internal point ...(174),

- at an external P int -
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EXAMPLES OF THE USE OF HARMONIC POTENTIALS.

I. Potential of spherical cap and circular ring.

259. As a first example, let us find the potential of a spherical cap
of angle a. i.e. the surface cut from a sphere by
a right circular cone of semivertical angle a

electrified to a uniform surface density CTO .

We can regard this as a complete sphere

electrified to surface density cr, where

cr = <7 from 6 = to =
a,

a- = from = a to Q = TT.

The value of a- being symmetrical about the

axis 6 = 0, let us assume for the value of or

expanded in harmonics

a = aQ + al% (cos 0)-\-a^Pz (cos

then, by equation (171),

FIG. 76.

an = = I crPn (cos 0) d (cos 0)

J <r

/*0
=

^ (cos (9) d (cos 0)
J0= a

(cos a)
- 7J+1 (cos a)}

by equation (165), except when n = 0. For this case we have

&o = i ^"0 I
^ (cos $) = ^ <TO (1 cos a).

Thus

=
| <TO

I (1
- cos a) + 2 -j^-i (cos a)

- Pn+l (cos a)l 7^ (cos 0) .

n=i

It is of interest to notice that when a, the value of a- given by
this series is <r=|-o- ,

as it ought to be (cf. expression (172)).

The potential at an external point may now be written down in the

form

V= 27TO<7 [(1
- cos a) (-} +^

\r/ =i

and that at an internal point is

(176),

(1
- \

cos ) + 2
n =i

i-i (COS a )
~" R+i (cos a

.(177).

15
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On differentiating with respect to a, we obtain the potential of a ring of

line density a-Qada. At a point at which r > a, we differentiate expression

(176), and obtain

V = 27ra<7 da sin a
f-J

-{- ^ Pn (cos a) sin a (-
J

7J (cos 0) ,

or, putting a<r da. = T and simplifying,

(cosa)sina^Y

1

'^(costf) (178).

Obviously the potential at a point at which r < a can be obtained on

/a \n+i ,r
'

replacing
-

) by I
-

\rj \a.

F = 2-7TTV
n=0

260. These last results can be obtained more directly by considering

that at any point on the axis 6 = the potential is

27rar sin a

or, if r > a,

TrV=

Vr2 + a2 2a?- cos a
'

D ,

TJ(cosa)
-

and expression (178) is the only expansion in Lagrange's coefficients which

satisfies Laplace's equation and agrees with this expression when 0-0.

II. Uninsulated sphere in field of force.

261. The method of harmonics enables us to find the field of force

produced when a conducting sphere is introduced into any permanent field

of force. Let us suppose first that the sphere is uninsulated.

FIG. 77.
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Let the sphere be of radius a. Round the centre of the field describe

a slightly larger sphere of radius a, so small as not to enclose any of the

fixed charges by which the permanent field of force is produced. Between

these two spheres the potential of the field will be capable of expression in

a series of rational integral harmonics, say

+ K+ ........................... (179).

The problem is to superpose on this a potential, produced by the

induced electrification on the sphere, which shall give a total potential

equal to zero over the sphere r = a. Clearly the only form possible for

this new potential is S5
..................(180).

Thus the total potential between the spheres r = a and r = a' is

Putting Vn = rnSn ,
the surface density of electrification on the sphere is,

by Coulomb's Law,

JL V"
47T

* *

This result is indeed obvious from 258, on considering that the

surface electrification must give rise to the potential (180).

If n is different from zero,

where the integration is over any sphere, so that

and
(jV

ndS=Q

Thus the total charge on the sphere

= [(<rdS

.(181).

and V was the pote

faa '

>f the original field at the centre of the sphere.

152
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262. Incidentally we may notice, as a consequence of (181), that the

mean value of a potential averaged over the surface of any sphere which

does not include any electric charge is equal to the potential at the

centre (cf. 50).

If the sphere is introduced insulated, we superpose on to the field

already given, the field of a charge E spread uniformly over the surface of

-p

the sphere, and the potential of this field is . We obtain the particular

case of an uncharged sphere by taking E =
TJa, and the potential of this

field, namely Jo(-)> just annihilates the first term in expression (180), to

which it has to be added.

It will easily be verified that, on taking the potential of the original
field to be V^ Fx, we arrive at the results already obtained in 217.

III. Dielectric sphere in a field of force.

263. An analogous treatment will give the solution when a homo-

geneous dielectric sphere is placed in a permanent field of force. The
treatment will, perhaps, be sufficiently exemplified by considering the case

of the simple field of potential

Let us assume for the potential VQ outside the sphere

FIG. 78.

and for the potential J inside the sphere

a
no term of the form ~ being included in Vi} as it would give infinite
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potential at the origin. The constants a, /3 are to be determined from

the conditions

V V
"i "o

These give

whence

so that

dr
~

8r

K-l
K

1 fa

c/*

Thus the lines of force inside the dielectric are all parallel to those of

3
the original field, but the intensity is diminished in the ratio r,

-
. TheK + 2

field is shewn in
fig. 78.

IV. Nearly spherical surfaces.

264. If r = a, the surface r a 4- ^, where % is a function of 9 and
</>,

will

represent a surface which is nearly spherical if ^ is small. In this case ^
may be regarded as a function of position on the surface of the sphere r = a,

and expanded in a series of rational integral harmonics in the form

in which 8lt S2 ,
... are all small.

The volume enclosed by this surface is

4-Tra
3

If $ =
0, the volume is that of the original sphere
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The following special cases are of importance :

r = a + ePj. To obtain the form of this surface, we pass a distance e cos 6

along the radius at each point of the sphere r = a. It is easily seen that

when e is small the locus of the points so obtained is a sphere of radius a,

of which the centre is at a distance e from the origin.

The most general form for a1S1 is lx + my-\-nz> and this

may be expressed as ae cos 6, where 6 is now measured from the line of

which the direction cosines are in the ratio l:m:n. Thus the surface is

the same as before.

r = a + S2
. Since r is nearly equal to a, this may be written

2

a
2>

or x* + y
z
-f

2 = a2 + an expression of the second degree.

Thus the surface is an ellipsoid of which the centre is at the origin. It will

easily be found that r = a + e# represents a spheroid of semi-axes a + e, a -
,

and therefore of ellipticity -~- .

265. We can treat these nearly spherical surfaces in the same way in

which spherical surfaces have been treated, neglecting the squares of the

small harmonics as they occur.

266. As an example, suppose the surface r = a + Sn to be a conductor,

raised to unit potential. We assume an external potential

A

where A and B have to be found from the condition that V= 1 when

r = a + Sn . Neglecting squares of Sn ,
this gives

4/, &

so that A a, B = -
,

a

a a

By applying Gauss' Theorem to a sphere of radius greater than a we

readily find that the total charge is a, the coefficient of -. Thus the
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capacity of the conductor is different from that of the sphere only by
terms in $n2

,
but the surface distribution is different, for

dv dv
47TO- = - - = - -

,
if we neglect #n

2
,

a* \ a

1 Ti-1 .

the surface density becoming uniform, as it ought, when n = I, i.e. when the

conductor is still spherical.

267. As a second example, let us examine the field inside a spherical

condenser when the two spheres are not quite concentric. Taking the centre

of the inner as origin, let the equations of the two spheres be

We have to find a potential which shall have, say, unit value over r = a,

and shall vanish over r = b + e/?. Assume

when B and D are small, then we must have

These equations must be true all over the spheres, so that the coefficients

of J? and the terms which do not involve 7? must vanish separately. Thus

- + (7-1 = 0;
a

'

From the first two equations
b a

and this being the coefficient of - in the potential, is the capacity of the

condenser. Thus to a first approximation, the capacity of the condenser

remains unaltered, but since B and D do not vanish, the surface distribution

is altered.
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V. Collection of Electric Charges.

267 a. If a collection of electric charges are arranged in any way
whatever subject only to the condition that none of them lie outside the

sphere r = a, then the potential at any point outside the sphere must be

where e is the total charge inside the sphere (cf. 266) and Slf Sz ,
... are

surface harmonics which depend on the arrangement of the charges inside

the sphere.

If the total charge is not zero, the potential can also be treated as in

67, and on comparing the two expressions obtained for the potential, we
can identify the harmonics 8lf S2 ,

.... We find that

and it will be easily verified by differentiation that the expressions on the

right are harmonics.

This example is of some interest in connection with the electron-theory of matter, for

a collection of positive and negative charges all collected within a distance a of a centre

may give some representation of the structure of a molecule. The total charge on a

molecule is zero, so that we must take e= 0, and the potential becomes

CY o

The most general form for S1 is (cf. 239) -(Ax+ By+ Cz), or
/u
cos 0, where 6 is the

angle between the lines from the origin to the point x, y, z and that to the point A,B,C
arid . is

Thus the term which is important in the potential when r is large is
^ , shewing

that at a sufficient distance the molecule has the same field of force as a certain doublet of

strength p,. Clearly when p.
has any value different from zero, the molecule is "polarised"

(cf. 142) in Faraday's sense. If
/n
=

0, the potential becomes

shewing that the force now falls off as the inverse fourth power of the distance.

It is worth noticing that the average force at any distance r is always zero, so that to

obtain forces which are, on the average, repulsive, we have to assume the presence of

terms in the potential which do not satisfy Laplace's equation, and which accordingly
are not derivable from forces obeying the simple law e/r

2
(cf. 192).
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FURTHER ANALYTICAL THEORY OF HARMONICS.

General Theory of Zonal Harmonics.

268. The general .equation satisfied by a surface harmonic of order n,

which is symmetrical about an axis, has already been seen to be-

=
. ...(182).

One solution is known to be Pn ,
so that we can find the other by

a known method. Assume 8n = Pnu as a solution, where u is a function

of
fji.

The equation becomes

and, since 7J is itself a solution,

Multiplying this by u and subtracting from (183), we are left with

n LL^k dPndu +P d

~^M ^^ w

or, multiplying by Pn and rearranging,

or,e,m Id
- (O #! S

+ Kl -CSS') -0-

On integration this becomes

(1 /i,

2

) J^
2
s = constant.

We may therefore take

in which the limits may be any we please. If we write

the complete solution of equation (182) is

269. The two solutions Pn and Qn can be obtained directly by solving
the original equation (182) in a series of powers of

/A.

Assume a solution
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substitute in equation (182), and equate to zero the coefficients of the

different powers of p. The first coefficient is found to be b r(r 1), so

that if this is to vanish we must have r = or r = 1. The value r = leads

to the solution

_ n(n + l) 2 (n- 2)n(n + I)(n + 3)

1.2 ^ 1.2.3.4

while the value r = 1 leads to the solution

,4 _

Ul ~'4 " ,

1.2.3 1.2.3.4.5

The complete solution of the equation is therefore

If n is integral one of the two series terminates, while the other does

not. If n is even the series u terminates, while if n is odd the terminating
series is ult But we have already found one terminating series which is

a solution of the original equation, namely ^. Hence in either case the

terminating series must be proportional to Pn ,
and therefore the infinite

series must be proportional to Qn .

270. We can obtain a more useful form for Qn from expression (184).

The roots of Pn (//,)
= are, as we have seen, n in number, all real and

separate, and lying between - 1 and + 1. Let us take these roots to be

!, 2 ,
... QLn . Then

1 1

-
1) [Pn -

1) 0* + 1) 0*
-

*,)
2

0* - 2)
2

. .. 0* -

a b

(185),

on resolving into partial fractions. Putting //,
= + 1 and - 1, we find at once

that a = J, 6 = i.

In the general fraction

let us suppose all the factors in the denominator to be distinct, so that w(

may write

5
=^^ +^r2

+ '"-

On putting x = a1} we obtain at once

1

(a,
- a2) (a,

- a3) (a,
- a4) ...

'

c.

(a2 af) (a2
- a3) (a2

- a4) . . .

,
etc.
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Now let a 1 and a2 become very nearly equal, say 2
= ax + dalf then

1

while c2

] (ctj
as) (! a4) . . .

'

1

h (tit
-

The fractions - -

i . .
, (GI + ca) a? (GJ a.2 c2 ai)now combine into

(x
- aO

2

and on putting this equal to

d
/v L^,, /j

it is clear that the value of c/ must be taken to be GI -f c2 . Now1(1 1

2
-

03) (02
-

4 ) Oi - <*)

= J_j^/__l__ \
d

da, \dx {(x
-

a,) (x
- a4) .../*.,

and this remains true however many of the roots a,, a4 ..., coincide among
themselves, so long as they do not coincide with the root a,. Thus, in

expression (185), the value of c, is

_

Putting ~
we find that

i
i _ar j^ )

(- /.
2

) (^ (/x)}
2

}, =ag a, la -
,
2
) (&(*.)$

'

a

a/*

Since (/* as) R (p) is a solution of equation (182), we find that

~
[(i

-
^){-R

0*) + 0"
-

s )

||}]
+ * ( + 1) 0*

-
) * =

On putting /*
=

g ,
this reduces to

{(1
-

a,
2

) R (ce,)) + (1
-

a.
1

)

" = 0,

giving, on multiplication by R (a,),

Hence c, = 0.
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Equation (185) now becomes

so that, on integration,

fda 1
, a 4- 1 _ dK

(
2 _ i) |p (

\la
=

2 lo
ITT

+ * '

_

On multiplying by ft (/A), we obtain from equation (184),

where Wn^ is a rational integral function of
//,

of degree n - 1.

It is now clear that Qn (//) is finite and continuous from ^ = 1 to /i
= + 1,

but becomes infinite at the actual values /*= + !.

To find the value of T^_a we substitute expression (186) in Legendre's

equation, of which it is known to be a solution, and obtain

+ (2n-5)ft_3 + ...} (187).

Since Wn_l is a rational integral algebraic function of
/JL

of degree n 1, it

can be expanded in the form

so that

a

Comparing with (187), we find that as
= when s is odd, and is equal

when s is even.

Thus

W _

r\ in/\i M + l 2n 1 2?^ 5
and 0, = |PM (tf log

j
+ -P^ + g
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271. When we are dealing with complete spheres it is impossible for

the solution Qn to occur. If the space is limited in such a way that the

infinities of the Qn harmonic are excluded, it may be necessary to take

into account both the 7J and Qn harmonics. An instance of such a case

occurs in considering the potential at points outside a conductor of which

the shape is that of a complete cone.

Tesseral Harmonics.

272. The equation satisfied by the general surface harmonic Sn is

sin 6 d& \ W ) sin2 6
8(/>

2

As a solution, let us examine

where is a function of 6 only, and <l> is a function of
</> only. On

substituting this value in the equation, and dividing by <I>/sin
2
6, we obtain

sin 6 9 / . n 9\ 1 32<

We must therefore have

sin 6 8 / . 8

The solution of the former equation is single valued only when K is of the

form m2
,
where m is an integer. In this case

<l> = Gm cos m<j) -f- Dm sin m<,
and is given by

1 9 /' . - d\ m2

9^7 sm

or, in terms of /A,

an equation which reduces to Legendre's equation when m 0.

273. To obtain the general solution of equation (188), consider the

differential equation

........................(189),

of which the solution is readily seen to be

z=G(l-^)n
.............................. (190).

If we differentiate equation (189) s times we obtain
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If in this we put s n, and again differentiate with respect to
//,,

we

obtain

Cl 2
which is Legendre's equation with ^

- as variable. Thus a solution of this
VLL

equation is seen to be

or O(l}\l-p*r,
d/ju

n
\a/4/

giving at once the form for Pn already obtained in 249. The general

solution of equation (192) we know to be

g.
-AS + !>.

If we now differentiate (192) m times, the result is the same as that of

differentiating (189) m+n + \ times, and is therefore obtained by putting
s=m + n + l'm (191). This gives

-z

,m++2

or, multiplying by (1

r*

Let

Then

a/,'
m+n

and ^

(193).

3

f m2
/*.

2
)- v

j(m
+ n + 1) (n

- m) + m -
-,

~
2
[

> by equation (193),

Thus v satisfies

and this is the same as equation (188), which is satisfied by O.
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274. The solution of equation (188) has now been seen to be

where -? = APn + BQn .

Hence = A (1
-

)
- + B (1

- M

The functions

are known as the associated Legendrian functions of the first and second

kinds, and are generally denoted by P (/A), Q (//,).
As regards the former

we may replace Pn ,
from equation (159), by

1 8"

and obtain the function in the form

It is clear from this form that the function vanishes if m + n > %n, i.e. if

m > n. It is also clear that it is a rational integral function of sin and

cos 0. From the form of Qn (ft), which is not a rational integral function of
//,,

it is clear that Q (p) cannot be a rational integral function of sin 6 and

cos 6.

Thus of the solution we have obtained for Sn , only the part

m cos m<j) + Dm sin

gives rise to rational integral harmonics. The terms P
(fjJ) cos m<j) and

Pn (ft) sin m<j) are known as tesseral harmonics.

Clearly there are (2n + 1) tesseral harmonics of degree n, namely

Pn (p), cos < Pi OK), sin
(/> P\ (IL\ ... cos n<^ Pi (p), sin n^ Pj (/.).

These may be regarded as the (2/i + 1) independent rational integral har-

monics of degree n of which the existence has already been proved in 239.

Using the formula

and substituting the value obtained in 247 for ^(/*) (cf. equation (155)),

we obtain P (u,} in the form

SM = (2 )!sin0 L
os n-m _ (n-rnHn-

2n nl (n-m)l{ 2(2^-
-

) (n-m-I)(n-m-2) (n-m -3) m_4
ff _

1)
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The values of the tesseral harmonics of the first four orders are given in

the following table.

Order 1 7 cos 0, sin cos 0, sin 6 sin 0.

Order 2.''

""

i (3 cos2 # - 1), 3 sin (9 cos cos 0, 3 sin cos (9 sin 0,

3 sin2 6 cos 20, 3 sin2 sin 20.

Order 3.'-
r

i (5 cos3 d - 3 cos 0), f sin (5 cos2 6 - 1) cos 0,

fsin 6 (5 cos2

1) sin 0, 15 sin2 6 cos cos 20,

15 sin2 cos 6 sin 20, 15 sin3 6 cos 30, 15 sin3 sin 30.

Order 4. J (35 cos4 - 30 cos2
4- 3), f sin (7 cos3 - 3 cos 0) cos 0,

| sin (7 cos3 - 3 cos 0) sin 0, -^ sin2

(7 cos2 -
1) cos 20,

-V
5- sin2

(7 cos2 -
1) sin 20, 105 sin3 cos cos 30,

105 sin3 cos sin 30, 105 sin4 cos 40, 105 sin4 sin 40.

275. We have now found that the most general rational integral surface

harmonic is of the form

.m cos ra0 + Bm sin m0),
o

in which P(//,) is to be interpreted to mean ^(/m), when m = 0.

Let us denote any tesseral harmonics of the type

Then by 237,
jj S% S$

da> =

if n
=(= n'. If n n', then

1 1 &% S' = 1 1 P^ (IJL)
P'

(//,) (Am cos m0 + Bm sin m0)

(.4 m' cos m + 5OT
' sin m 7

0) eta,

and this vanishes except when m = m'.

When n = ri and m = m the value of 1 1 S S%' dw clearly depends on

r+i

that of I [P% (/^)}
2
d/ji, and this we now proceed to obtain.

We have

a/.
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dnz
Since -

n
= ft is a solution of equation (191), we obtain, on taking s '= m + n

OfJ>

in this equation, and multiplying throughout by (1 /i
2
)"

1"1
,

which, again, may be written

In equation (195) the first term on the right-hand vanishes, so that

+i f+i /dm-l P\ z

(P' (^J}' d^ = (n + m) (
- m + 1)

J^ (1
- ft?"(^f )

^

= (n + m) (
- m + 1)

a reduction formula from which we readily obtain

2 (n + m) !

~
2w + l(w-m)!'

These results enable us to find any integral of the type

Biaxal Harmonics.

276. It is often convenient to be able to express zonal harmonics

referred to one axis in terms of harmonics referred to other axes i.e. to be

able to change the axes of reference of zonal harmonics.

Let Pn be a harmonic having OP as axis. At Q the value of this

is ^(0037), where 7 is the angle PQ, and our problem is to express
this harmonic of order n as a sum of zonal and tesseral harmonics referred to

other axes. With reference to these axes, let the coordinates of Q be 6, 0,

let those of P be
, <J>, and let us assume a series of the type

s=n
Pn (cos 7) = S Ps

n (cos 6) (A 8 cos s(f) + Bs sin s<).
s=

Let us multiply by Ps

n (cos 6) cos s$ and integrate over the surface of a unit

sphere. We obtain

n (cos 7) {Pj; (cos 0) cos
s<f>]

da) = A s
jj {P

s
n (cos 0)}

2
cos

2^ *,

16
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By equation (169),

jj
Pn (cos 7) [I* (cos 6) cos

s<j>\
dco = ^^3 [

Pn (cos 0) cos s
</>}y=o

= ^
P* (cos @) cos s<E>,

and
jj{P

s

n (cos 0)}
2 cos2

* (2o> =
J

+ *

(P; (/*)}
2

d/t j*
cos2

s</> d<f>

2?r (rc + s) I

~2n+T(n-*)!'
Thus

and similarly

This analysis needs modification when 5 = 0, but it is readily found that

so that

Pn (cos 7) = Pn (cos 0) Pn (cos 8)+T 2 ^~
S

\\
Ps

n (cos (9) P; (cos ) cos 5
(</>

-
3>)

s=l (^ + 5) !

(196).

GENERAL THEORY OF CURVILINEAR COORDINATES.

277. Let us write

<f> (a?, y, ^) = X,

-f (, y,z) = p,

X (x> y> z) = v
>

where
^>, ->/r, % denote any functions of x, y, z. Then we may suppose a point

in space specified by the values of X, //,, v at the point, i.e. by a knowledge of

those members of the three families of surfaces

<#> (x> y> ^)
= cons.

; i|r (xt y, z)
= cons.; % (a?, y, ^) = cons.

which pass through it.

The values of X, /*, i/ are called
"
curvilinear coordinates

"
of the point.

A great simplification is introduced into the analysis connected with

curvilinear coordinates, if the three families of surfaces are chosen in such

a way that they cut orthogonally at every point. In what follows we shall

suppose this to be the case the coordinates will be "
orthogonal curvilinear

coordinates."

The points X, p, v and X + eZX, //,,
v will be adjacent points, and the

distance between them will be equal to d\ multiplied by a function of
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X, JJL,
and v let us assume it equal to -j- . Similarly, let the distance

i

from X, fi, v to X, //, + d/n, v be
-j- ,

and let the distance from X, /-&,
i> to

Ii2

-,
, dv

X, /A, z/ + dv be T- .

%

Then the distance cfe from X, /j,,
v to X + d\, p + d/4, v + dv will be

given by

this being the diagonal of a rectangular parallelepiped of edges

d\ dp , dv

hi
'

h2 h3

'

Laplace's equation in curvilinear coordinates is obtained most readily by

applying Gauss' Theorem to the small rectangular parallelepiped of which

the edges are the eight points

X + $d\, fi $dfj,, v

In this way we obtain the relation

in the form

and as we have already seen that equation (197) is exactly equivalent to

Laplace's equation V 2F=0, it appears that equation (198) must represent

Laplace's equation transformed into curvilinear coordinates.

In any particular system of curvilinear coordinates the method of pro-
cedure is to express ^,, h2) hs in terms of X, /z and v, and then try to obtain

solutions of equation (198), giving F as a function of X, fi and v.

SPHERICAL POLAR COORDINATES.

278. The system of surfaces r = cons., 6 = cons., <j>
= cons, in spherical

polar coordinates gives a system of orthogonal curvilinear coordinates. In

these coordinates equation (198) assumes the form

?-( *?
dr(

r
dr W

already obtained in 233, which has been found to lead to the theory
of spherical harmonics.

162
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CONFOCAL COORDINATES.

279. After spherical polar coordinates, the system of curvilinear coor-

dinates which comes next in order of simplicity and importance is that in

which the surfaces are confocal ellipsoids and hyperboloids of one and two

sheets. This system will now be examined.

Taking the ellipsoid

as a standard, the conicoid

+5^ = 1 -(2 )

will be confocal with the standard ellipsoid whatever value may have, and

all confocal conicoids are represented in turn by this equation as 6 passes

from oo to + oo .

If the values of x, y, z are given, equation (200) is a cubic equation in 6.

It can be shewn that the three roots in are all real, so that three confocals

pass through any point in space, and it can further be shewn that at every

point these three confocals are orthogonal. It can also be shewn that of

these confocals one is an ellipsoid, one a hyperboloid of one sheet, and one

a hyperboloid of two sheets.

Let X, p, v be the three values of 6 which satisfy equation (200) at any

point, and let X, //,,
v refer respectively to the ellipsoid, hyperboloid of one

sheet, and hyperboloid of two sheets. Then X, /JL, v may be taken to be

orthogonal curvilinear coordinates, the families of surfaces X = cons., /n
= cons.,

v = cons, being respectively the system of ellipsoids, hyperboloids of one

sheet, and hyperboloids of two sheets, which are confocal with the standard

ellipsoid (199).

280. The first problem, as already explained, is to find the quantities

which have been denoted in 277 by h^.h^,^. As a step towards this, we

begin by expressing x
t y, z as functions of the curvilinear coordinates X, //.,

v.

The expression

is clearly a rational integral function of 6 of degree 3, the coefficient of 3

being 1. It vanishes when 9 is equal to X, /z or v, these being the curvi-

linear coordinates of the point x, y, z. Hence the expression must be equal,

identically, to

Putting = a? in the identity obtained in this way, we get the relation

tf
2
(6

2 - a2

) (c
2 - a2

)
=

(a
2 + X) (a

2 + p) (a
2 + v},
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so that x, y, z are given as functions of X, p, v by the relations

X* = ~'
2

|^-%
+
(c*

-
(

a?)

V
~ etC (201) '

281. To examine changes as we move along the normal to the surface

X = cons., we must keep //,
and v constant. Thus we have, on logarithmic

differentiation of equation (201),

2
dx _ d\
~sc

~
a? -f X

'

and there are of course similar equations giving dy and dz. Thus for the

length ds of an element of the normal to X = constant, we have

*

The quantity c?s is, however, identical with the quantity called
-j-

in
/>,

277, so that we have

4(q + X)(6* + X)(c' + \)
Al

(X-,.)(X-i.)

and clearly 7i2 and A3 can be obtained by cyclic interchange of the letters

X, yu,
and v.

282. If for brevity we write

AA = \/(a
2 + X) (6

2 + X) (c
2 + X),

we find that

so that by substitution in equation (198), Laplace's equation in the present
coordinates is seen to be

............ (203).

On multiplying throughout by A^A^A,,, this equation becomes

(204).



246 Methodsfor the Solution of Special Problems [CH. vm

Let us now introduce new variables a, /3, 7, given by

A

a a
then we have =- = A A

-
;

da dX

and equation (204) becomes

32T/- 327
^) = ............ (205).

Distribution of Electricity on a freely-charged Ellipsoid.

283. Before discussing the general solution of Laplace's equation, it will

be advantageous to examine a few special problems.

In the first place, it is clear that a particular solution of equation (205) is

V = A + B* (206),

where A, B are arbitrary constants. The equipotentials are the surfaces

a = constant, and are therefore confocal ellipsoids. Thus we can, from this

solution, obtain the field when an ellipsoidal conductor is freely electrified.

For instance, if the ellipsoid

x* f * _
a2

ft
2 e2

is raised to unit potential, the potential at any external point will be given

by equation (206) provided we choose A and B so as to have V=l when
X = 0, and V= when X = oo . In this way we obtain

A_X
( 7

frfx

Jo A;o

The surface density at any point on the ellipsoid is given

.

4-7TO- = -= -= ^1
-

dn a\ dn d\

/,

T T
00 d\

aoc I

Jo A A

(208).
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Thus the surface density at different points of the ellipsoid is proportional

to

284. The quantity hi admits of a simple geometrical interpretation.

Let I, m, n be the direction-cosines of the tangent plane to the ellipsoid at

Fm. 79.

any point X, /A, v, and let p be the perpendicular from the origin on to this

tangent plane. Then from the geometry of the ellipsoid we have

p
2

=(a
2 + X)/

2 + (6
2 + X) m2

-f (c
2 + X) 7i

2
, (209).

Moving along the normal, we shall come to the point X + d\, p, v. The

tangent plane at this point has the same direction-cosines /, m, n as before,

but the perpendicular from the, origin will be p + dp, where dp = -j-
. To

"i

obtain dp we differentiate equation (209), allowing X alone to vary, and so

have

2pdp = d\ (I
2 + ma + n*)

= d\.

Comparing this with dp j- ,
we see that hi 2p.

i

Thus the surface density at any point is proportional to the perpendicular

from the centre on to the tangent plane at the point.

In fig. 79, the thickness of the shading at any point is proportional to

the perpendicular from the centre .on to the tangent plane, so that the

shading represents the distribution of electricity on a freely electrified

ellipsoid.

It will be easily verified that the outer boundary of this shading must

be an ellipsoid, similar to and concentric with the original ellipsoid.

285. Replacing hi by 2p in equation (208), we find for the total charge E
on the ellipsoid,

Since UpdS is three times the volume of the ellipsoid, and therefore

equal to 47ra6c, this reduces to

f .

Jo AA
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Since the ellipsoid is supposed to be raised to unit potential, this quantity
E gives the capacity of an ellipsoidal conductor electrified in free space.

The capacity can however be obtained more readily by examining the

form of the potential at infinity. At points which are at a distance r

from the centre of the ellipsoid so great that a, b, c may be neglected in
o

comparison with r, \ becomes equal to r2
,
so that A A = r*

t
and

.

AA r

Thus at infinity the limiting form assumed by equation (207) is

A,

and since the value of V at infinity must be
,
the value of E follows at

once.

A freely-charged spheroid.

/oo J-\

286. The integral I
- is integrable if any two of the semi-axes

Jo AA
become equal to one another.

If b = c, the ellipsoid is a prolate spheroid, and its capacity is found to be

2 !21_
d\ '1 ' - '

where e is the eccentricity.

If a = 6, the ellipsoid is an oblate spheroid, and its capacity is found to be

ITT 2 ae

/;

d\ sin" 1 ae

Elliptic Disc.

287. In the preceding analysis, let a become vanishingly small, the

the conductor becomes an elliptic disc of semi-axes b and c.

The perpendicular from the origin on to the tangent-plane is given, as i

the ellipsoid, by
1
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and when a is made very small in the limit, this becomes

"-I a2

a*

~
'U2

~~

c2

so that the surface density at any point x, y in the disc is proportional to

.(210).

Circular Disc.

288. On further simplifying by putting b c, we arrive at the case of a

circular disc. The density of electrification is seen at once from expression

(210) to be proportional to

1-
~~

2

and therefore varies inversely as the shortest chord which can be drawn

through the point.

Moreover, when a = and b = c, we have A A = (c
2 + X) Vx, so that

.- = - tan
A A c

1
/ c \ , f d\ TT"1 -7= and = -

.

VVX/ ./o Ax c

2c
Thus the capacity of a circular disc is , and when the disc is raised to

7T

potential unity, the potential at any external point is

- tan" 1

(
=

] ,

7T . \VX/

where X is the positive root of

"x
+

c
2 + X

=: lm

289. Lord Kelvin* quotes some interesting experiments by Coulomb on the density
at different points on a circular plate of radius 5 inches. The results are given in the

following table :

Distances from the

plate's edge



250 Methodsfor the Solution of Special Problems [OH. vm

Much more remarkable is Cavendish's experimental determination of the capacity of a

circular disc. Cavendish found this to be -= times that of a sphere of equal radius,

while theory shews the true value of the denominator to be or 1-5708 !

290. By inverting the distribution of electricity on a circular disc, taking

the origin of inversion to be a point in the plane of the disc, Kelvin* has

obtained the distribution of electricity on a disc influenced by a point charge
in its plane, a problem previously solved by another method by Green. The

general Green's function for a circular disc has been obtained by Hobson*f.

Spherical Bowl.

291. Lord Kelvin has also, by inversion, obtained the solution for a

spherical bowl of any angle freely electrified. Let the bowl be a piece of a

sphere of diameter /. Let the distance from the

middle point of the bowl to any point of the bowl

be r, and let the greatest value of r, i.e. the dis-

tance from a point on the edge to the middle point
of the bowl, be a. Then Kelvin finds for the elec-

tric densities inside and outside the bowl :

2-7T
2/

=
pi +

27T/'

FIG. 80.

Some numerical results calculated from these formulae are of interest. The six values

in the following tables refer to the middle point and the five points dividing the arc from

the middle point to the edge into six equal parts.

Plane disc Curved disc arc 10 Curved disc arc 20

Pi
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Bowl arc 270 Bowl arc 340

Pi
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293. Assume general power series of the form

then on substitution in equation (211), it will be found that we must have

A" = A' = A,

B" = Bf = B,

Thus we must have

(212),

and similar equations, with the same constants A and B, must be satisfied

by M and N.

Equation (212), on substituting for a in terms of X, becomes

a differential equation of the second order in X, while M and N satisfy

equations which are identical except that ft and v are the variables.

The solution of equation (213) is known as a Lame's function, or ellip-

soidal harmonic. The function is commonly written as J$H(\), where p, n

are new arbitrary constants, connected with the constants A and B by the

relations

n(n + 1) = B, and (6
2 + c*)p = -A.

Thus is a solution of

and a solution of equation (211) is

(214).

294. Equation (213) being of the second order, must have two inde-

pendent solutions. Denoting one by L, let the other be supposed to be Lu.

Then we must have

~=(A
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so that on multiplying the former equation by u, and subtracting from the

latter,

7" _ _ ^
I G) f\

da2 da da

fda f d\
Thus

and the complete solution is seen to be

where G and D are arbitrary constants.

Accordingly, the complete solution of equation (211) can be written as

This corresponds exactly to the general solution in rational integral

spherical harmonics, namely

p n

(Cnp
"
P5(cos 0) + Dnp

"
PS(cos 0)).

Ellipsoid in uniform field of force.

295. As an illustration of the use of confocal coordinates, let us examine

the field produced by placing an uninsulated ellipsoid in a uniform field of

force.

The potential of the undisturbed field of force may be taken to be F= Fx,

or in confocal coordinates (cf. equation (201))

This is of the form F= GLMN,

where G is the constant F (6
2 - a2

)

~
*
(c

2 - a2

)" ^, and Z, Jlf, JV are functions of

X only, fju only and i/ only, respectively, namely L = Va2 + X, etc.

Since F= LMN is a solution of Laplace's equation, there must, as in 294,

be a second solution F= Lu . MNt
where

_-
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The upper limit of integration is arbitrary: if we take it to be infinite,

both u and Lu will vanish at infinity, while M and N are in any case finite

at infinity. Thus Lu . MN is a potential which vanishes at infinity and is

proportional (since u is a function of X only) at every point of any one of the

surfaces X = cons., to the potential of the original field. Thus the solution

V=CLMN + DLu.MN (215)

can be made to give zero potential over any one of the surfaces X = cons., by
a suitable choice of the constant D.

For instance if the conductor is X = 0, we have, on the conductor,

f
00 d\

u = I .

Thus on the conductor we have

V=LMN(C + D ("
.

dx
, -}.

\ Jo (^ + X)A X /

The condition for this to vanish gives the value of D
}
and on substituting

this value of D, equation (215) becomes

(216)-

This gives the field when the original field is parallel to the major axis

of the ellipsoid. If the original field is in any other direction we can resolve

it into three fields parallel to the three axes of the ellipsoid, and the final

field is then found by the superposition of three fields of the type of that

given by equation (216).

SPHEROIDAL HARMONICS.

296. When any two semi-axes of the standard ellipsoid become equal
the method of confocal coordinates breaks down. For the equation

*3
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reduces to a quadratic, and has therefore only two roots, say \, //,.
The

surfaces X cons, and
//,
= cons, are now confocal ellipsoids and hyperboloids

of revolution, but obviously a third family of surfaces is required before the

position of a point can be fixed. Such a family of surfaces, orthogonal to

the two present families, is supplied by the system of diametral planes

through the axis of revolution of the standard ellipsoid.

The two cases in which the standard ellipsoid is a prolate spheroid and

an oblate spheroid require separate examination.

Prolate Spheroids.

297. Let the standard surface be the prolate spheroid

in which a > b. If we write

y VT cos <, z TS sin <,

then the curvilinear coordinates may be taken to be X, //,, </>,
where X, //,

are

the roots of

a2 +
'

62 + (218).

In this equation, put a? 62 = c
2 and a2

4- = c2 0'2
, then the equation

becomes

C
2
0'2 C

2
(0'

2 -l)

If f
2
, if are the roots of this equation in 0'2

,
we readily find that #2 = fV

so that we may take

* = cf77 .......................................... (219),

l) (220)

in which 77 is taken to be the greater of the two roots.

The surfaces f = cons., 77
= cons, are identical with the surfaces 6 = cons.,

and are accordingly confocal ellipsoids and hyperboloids. The coordinates

f, rj ) <j> may now be taken to be orthogonal curvilinear coordinates.

It is easily found that

, _ i /^"Ei A
1

-cV^T'
from which Laplace's equation is obtained in the form

8
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298. Let us search for solutions of the form

where 5, H, 4> are solutions solely of f, 77 and c/> respectively. On substituting

this tentative solution and simplifying, we obtain

) l_ar an
-

As in the theory of spherical harmonics, the only possible solution results

from taking
1 82<D

GW* '

where m2
is a constant, and m must be an integer if the solution is to be

single valued. The solution is

<t> = G cos ra< + D sin m<f> ..................... (221).

We must now have

=
r^V*

+

and this can only be satisfied by taking

^
c

together with

Equations (222) and (223) are identical with the equation already dis-

cussed in 273, 274. The solutions are known to be

where s = n(n + l) and P, Q are the associated Legendrian functions

already investigated. Combining the values just obtained for H, H with the

value for <I> given by equation (221), we obtain the general solution

- 2S
(API (f ) 4- 5Q? (f )} {4'PJW + FQ? (17)) {tfcos m</, + D sin m</>}.

m ,

At infinity it is easily found that

77
= oo

,
= ._- = cos

while at the origin 77
= 1, f = 0.

Thus in the space outside any spheroid, the solution P% (f ) Q% (f )
is finite

everywhere, while, in the space inside, the finite solution is P
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Oblate Spheroids.

299. For an oblate spheroid, a3 62
is negative, so that in equation (218)

we replace 62 a2

by /c
2
, so that tc = ic, and obtain, in place of equations (219)

and (220),

Replacing irj by f, we may take
, f and < as real orthogonal curvilinear

coordinates, connected with Cartesian coordinates by the relations

We proceed to search for solutions of the type

F=EZ<I>,

and find that 5, < must satisfy the same equations as before, while Z must

satisfy

The solution of this is

Z = A'Pz(i{)

and the most general solution may now be written down as before.

PROBLEMS IN TWO DIMENSIONS.

300. Often when a solution of a three-dimensional problem cannot be

obtained, it is found possible to solve a similar but simpler two-dimensional

problem, and to infer the main physical features of the three-dimensional

problem from those of the two-dimensional problem. We are accordingly
led to examine methods for the solution of electrostatic problems in two

dimensions.

At the outset we notice that the unit is no longer the point-charge, but

the uniform line-charge, a line-charge of line-density er having a potential

(cf. 75)

C - 2<r log r.

\

Method of Images.

301. The method of images is available in two dimensions, but presents
no special features. An example of its use has already been given in 220.

J. 17



258 Methodsfor the Solution of Special Problems [CH. vm

Method of Inversion.

302. In two dimensions the inversion is of course about a line. Let this

be represented by the point in fig. 81.

Let PP', QQ' be two pairs of inverse points. Let a line-charge at Q

produce potential Vp at P, and let a
p

line-charge e' at Q produce potential VP

at P', so that

P'

VP>=C'-2e\ogP'Q'.
If we take e = e', we obtain FIG. 81.

(224).

Let P be a point on an equipotential when there are charges el at Q1}

2 at Q2 , etc., and let F denote the potential of this equipotential. Let F
denote the potential at P' under the influence of charges elt 2 ,

... at the

inverse points of Qlt Q2 ,
.... Then, by summation of equations such as (224)

F- F = - 2 (20 log OP') + 2 (20 log OQ) + constants,

or F= constants - 2 (20) log OP' (225).

The potential at P' of charges elt 2 ,
... at the inverse points of Qlt Q2 ,

..

plus a charge 20 at is

F+ + 2 (20) log OP',

and this by equation (225) is a constant. This result gives the method o

inversion in two dimensions:

If a surface S is an equipotential under the influence of line-charges

1} 2 ,
... at Qi, Q2 , ..., then the surface which is the inverse of S about

a line will be an equipotential under the influence of line-charges 15 2 ,

on the lines inverse to Q1} Q.2 ,
... together with a charge 20 at the line 0.

Two-dimensional Harmonics.

303. A solution of Laplace's equation can be obtained which is the

analogue in two dimensions of the three-dimensional solution in spherical

harmonics.

In two dimensions we have two coordinates, r, 0, these becoming

identical with ordinary two-dimensional polar coordinates. Laplace's equa-

tion becomes
8F\

VM dr)
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and on assuming the form

259

in which R is a function of r only, and a function of 6 only, we obtain the

solution in the form

F = D sin n<

Thus the " harmonic-functions
"
in two dimensions are the familiar sine

and cosine functions. The functions which correspond to rational integral

harmonics are the functions

r11 sin nd, rn cos nO.

In x
y y coordinates these are obviously rational integral functions of x

and y of degree n.

Corresponding to the theorem of 240, that any function of position

on the surface of a sphere can (subject to certain restrictions) be expanded
in a series of rational integral harmonics, we have the famous theorem of

Fourier, that any function of position on the circumference of a circle can

(subject to certain restrictions) be expanded in a series of sines and cosines.

In the proof which follows (as also in the proof of 240), no attempt is made

at absolute mathematical rigour : as before, the form of proof given is that

which seems best suited to the needs of the student of electrical theory.

Fourier's Theorem.

304. The value of any function F of position on the circumference of a

circle can be expressed, at every point of the circumference at which the

function is continuous, as a series of sines and cosines, provided the function is

single-valued, and has only a finite number of discontinuities and of maxima

and minima on the circumference of the circle.

Let P (f, a) be any point outside the circle, then if R is the distance

from P to the element ds of the circle

(a, 0) we have

This result can easily be obtained by inte-

gration, or can be seen at once from physical

considerations, for the integrand is the charge
induced on a conducting cylinder by unit line

charge at P.

FIG. 82.

172
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Let us now introduce a function u defined by

ds ........................... <226 >-

Then, subject to the conditions stated for F we find, as in 240, that on

the circumference of the circle, the function u becomes identical with F.

Also we have

R 2 ~/2 + a2 -
2af cos (0

-
a)

1

f-
- a2

(/
- ae' (9-<" a-/*<->

J1 " V
'j

Hence '^ =^f J

FJl4-2i (y
V cos n (0

-
a)\ ds

1 r8= 2n 1 oo f n \n r0=2ir

= ^- ^^(9+-2:(4) Fcosn(0-
ATrJe^Q TT i \// J0 =0

and on passing to the limit and putting a=f, this becomes

1 f0= 2n 1 oo rO = 2ir

F =~ FdO + -^ Fco*n(0-a)d0 ......... (227),
^7T.'0= 7T ! J0=

expressing F as a series of sines and cosines of multiples of a.

We can put this result in the form
oo

F = F + X (ttn cos na + bn sin na),
i

i r27r
where aw = J^cos nOdO,

TT J

7T

and P =

so that F is the mean value of F.

If .F has a discontinuity at any point
=

/9 of the circle, and if

the values of F at the discontinuity, then obviously at the point
=

the circle, equation (226) becomes

so that the value of the series (227) at a discontinuity is the arithmetic

mean of the two values of F at the discontinuity (cf. 256).
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305. We could go on to develop the theory of ellipsoidal harmonics etc.

in two dimensions, but all such theories are simply particular cases of a very

general theory which will now be explained.

CONJUGATE FUNCTIONS.

General Theory.

306. In two-dimensional problems, the equation to be satisfied by the

potential is

and this has a general solution in finite terms, namely

F(x-iy) ..................... (229),

where / and F are arbitrary functions, in which the coefficients may of

course involve the imaginary i.

For V to be wholly real, F must be the function obtained from / on

changing i into i. Let / (x + iy) be equal to u + iv where u and v are

real, then F (x + iy) must be equal to u iv, so that we must have V = 2u.

If we introduce a second function U equal to 2w, we have

2i (u + iv)

) ........................(230),

where
<j> (x + iy) is a completely general function of the single variable x 4- iy.

Thus the most general form of the potential which is wholly real, can be

derived from the most general arbitrary function of the single variable x + iy,

on taking the potential to be the imaginary part of this function.

307. If
<f> (x 4- iy) is a function of x -f iy, then

i<j> (x + iy) will also be

a function, and the imaginary part of this function will also give a possible

potential. We have, however, from equation (230),

shewing that U is a possible potential.

Thus when we have a relation of the type expressed by equation (230),

either U or V will be a possible potential.
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308. Taking F to be the potential, we have by differentiation of

equation (230),

dU .dV
=

dx dx

Ty^ly-
. fdU .dV\ dl

and hence ^ ( -~- + *
jr-

= ^
Veto C/&/ c^ ^

Equating real and imaginary parts in the above equation, we obtain

~o~ >

ox

so that .(231).
dx dx dy dy

This however is the condition that the families of curves 7 = cons.,

F = cons., should cut orthogonally at every point. Thus the curves

7= cons, are the orthogonal trajectories of the equipotentials i.e. are

the lines of force.

Representation of complex quantities

309. If we write

z x + iy

so that z is a complex quantity, we can suppose

the position of the point P indicated by the value

of the single complex variable z. If z is expressed

in Demoivre's form

z = reie = r (cos + i sin 0),

then we find that r = and 6 = tan" 1 V-
. The

x FIG. 83.

quantity r is known as the modulus of z and is denoted by \z\, while 6

known as the argument of z and is denoted by arg z. The representation

a complex quantity in a plane in this way is known as an Argand diagram.

310. Addition of complex quantities. Let P be z = x + iy, and let P' be

z = x' + iy. The value of z + z' is (x + x) + i(y+ y'), so that if Q represents

the value z + z' it is clear that OPQP' will be a parallelogram. Thus to

add together the complex quantities z and z' we complete the parallelogram

OPP', and the fourth point of this parallelogram will represent z + /.



308-311] Conjugate Functions 263

The matter may be put more simply by supposing the complex quantity
z = x + iy represented by the direction and length of a line, such that its

projections on two rectangular axes are x
t y. For instance in fig. 83, the

value of z will be represented equally by either OP or P'Q. We now have

the following rule for the addition of complex quantities.

To find z + z, describe a path from the origin representing z in magnitude
and direction, and from the extremity of this describe a path representing z'.

The line joining the origin to the extremity of this second path will repre-

sent z + z'.

311. Multiplication of complex quantities. If

z = x + iy
= r (cos +i sin 6 ),

and z' = x' + iy'
= r' (cos & + i sin 0'),

then, by multiplication

zz = rr {cos (6 + 0') + i sin (6 + 0')},

so that \zz'\
= rr' = z\ \z'\,

.arg (zz')
= + 0' = arg z + arg z',

and clearly we can extend this result to any number of factors. Thus we
have the important rules :

The modulus of a product is the product of the moduli of the factors.

The argument of a product is the sum of the arguments of the factors.

There is a geometrical interpretation of multiplication.

In
fig. 84, let OA = 1, OP = z, OP' = z' and OQ = zz'.

Then the angles QOA, P'OA being equal to + 6' and 6' respectively,

the angle QOP' must be equal to 0, and therefore to POA.
_

Moreover

OQ _ OP
OP'

~
OA '

each ratio being equal to r, so that the triangles

QOP' and POA are similar. Thus to multiply
the vector OP' by the vector OP, we simply
construct on OP' a triangle similar to A OP.

The same result can be more shortly ex-

pressed by saying that to multiply / (= OP') by
z (= OP), we multiply the length OP' by j

z and

turn it through an angle arg z.

So also to divide by z, we divide the length
of the line representing the dividend by z

\

and

turn through an angle arg z. In either case an angle is positive when

the turning is in the direction which brings us from the axis x to that

of y after an angle ?r/2.
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Oonforma I Representation .

312. We can now consider more fully the meaning of the relation

Let us write z = x + iy, and W=U + iV, z and W being complex

imaginaries, which we must now suppose in accordance with equation (230)

to be connected by the relation

W =
(f>(z) .............................. (232).

We can represent values of z in one Argarid diagram, and values of W in

another. The plane in which values of z are represented will be .called the

2-plane, the other will be called the TF-plane. Any point P in the z-plane

corresponds to a definite value of z and this, by equation (232), may give one

or more values of W, according as < is or is not a single-valued function.

If Q is a point in the TF-plane which represents one of these values of W,
the points P and Q are said to correspond.

As P describes any curve S in the z-plane, the point Q in the TT-plane
which corresponds to P will describe some curve T in the IT-plane, and the

curve T is said to correspond to the curve S. In particular, corresponding
to any infinitesimal linear path PP' in the s-plane, there will correspond
a small linear element QQ' in the TF-plane. If OP, OP' represent the values

z, z + dz respectively, then the element PP' will represent dz. Similarly the

dW
element QQ' will represent dW or = dz.

cLz

Hence we can get the element QQ' from the element PP7

on multiplying

it by -j , i.e. by ^- </> (z), or by <f>' (x + iy). This multiplier depends solely

on the position of the point P in the 2-plane, and not on the length or

d
-T-
dW

direction of the element dz. If we express -T- or
<fi (x + iy) in the form

dW
-T- = </>' (x 4- iy)

= p (cos x + i sin x),
u/z

we find that the element dW can be obtained from the corresponding

element dz by multiplying its length by p or
dW
dz

,
and turning it through

an angle ^, or arg (

^
1 . It follows that any element of area in the ^-plane

is represented in the TT-plane by an element of area of which the shape
is exactly similar to that of the original element, the linear dimensions are

p times as great, and the orientation is obtained by turning the original

element through an angle ^.
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From the circumstance that the shapes of two corresponding elements

in the two planes are the same, the process of passing from one plane to

the other is known as conformal representation.

313. Let us examine the value of the quantity p which, as we have

seen, measures the linear magnification produced in a small area on passing
from the z-plane to the TF-plane.

dWWe have p (cos ^ + i sin ^) = --= = <' (x + iy)

tso

that

The

8F
o
oy

~^~ >

ox

P ~

The quantity p, or
dz

,
is called the "modulus of transformation."

We now see that if V is the potential, this modulus measures the electricI/fdV\'
2 /8F\ 2

intensity R, or x/ ( -^ )
-4- [ -5 1 . Since R =

4-Trcr, this circumstance pro-v \dxj \oy/
vides a simple means of finding a, the surface-density of electricity at

any point of a conducting surface.

314. If
^-

denote differentiation along the surface of a conductor, on

which the potential V is constant, we have

dW
i

8/7 f *

dz
!

~ds
'

?.

so that ^-*-il4?r 4?r ds

The total charge on a strip of unit width between any two points P, Q of

the conductor is accordingly

315. If, on equating real and imaginary parts of any transformation of

the form

U + iV=<j>(x + iy) (234),

it is found that the curve f(ic, y}
=

corresponds to the constant value

F=C f

, then clearly the general value of V obtained from equation (234)
will be a solution of Laplace's equation subject to the condition of having
the constant value V G over the boundary f(x, y)

= 0. It will therefore

be the potential in an electrostatic field in which the curve f(x, y)
= may

be taken to be a conductor raised to potential C.
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316. From a .given transformation it is obviously always possible to

deduce the corresponding electrostatic field, but on being given the con-

ductors and potentials in the field, it is by no means always possible to

deduce the required transformation. We shall begin -by the examination of

a few fields which are given by simple known transformations.

SPECIAL TRANSFORMATIONS.

317. Considering the transformation W = zn
,
we have

U + iV = (x + iy)
n = rn (cos nd + i sin n0),

so that V=rn smnd. Thus any one of the surfaces rn sin nO = constant

may be supposed to be an equipotential, including as a special case

rn sin nd = 0,

in which the equipotential consists of two planes cutting at an angle
-

.

This transformation can be further discussed by assigning particular

values to n.

7i = l. This gives simply V x
t
a uniform field of force.

n = 2. This gives V = Zxy, so that the equipotentials are rectangular

hyperbolic cylinders, including as a special case two planes intersecting
at right angles (fig. 85).

FIG. 85. FIG. 8G.
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This transformation gives the field in the immediate, neighbourhood of

two conducting planes meeting at right angles in any field of force. It also

gives the field between two coaxal rectangular hyperbolas.

Fm. 87.

n . This gives x + iy
=

(U + iV)
2
,
so that

and on eliminating U we obtain

F 2
).

Thus the equipotentials are confocal and coaxal parabolic cylinders, in-

cluding as a special case (F = 0) a semi-infinite plane bounded by the line

of foci.

This transformation clearly gives the field in the immediate neighbour-
hood of a conducting sharp straight edge in any field of force (fig. 86).

= 1. This gives

and the equipotentials are
'x*

+ y
~~

v~

Thus the equipotentials are a series of circular cylinders, all touching
the plane y = along the axis x = 0, y = (fig. 87).
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II.

318. The transformation W =
log z gives

so that the equipotentials are the planes 6 = constant, a system of planes all

intersecting in the same line. As a special case, we may take 6 = and
= TT to be the conductors, and obtain the field when the two halves of a

plane are raised to different potentials. The lines of force, U = constant, are

circles (fig. 88).

FIG. 88.

If we take U to be the potential, the equipotentials are concentric

circular cylinders, and the field is seen to be simply that due to a uniform

line-charge, or uniformly electrified cylinder.

It may be noticed that the transformation

W =
log (z

-
a)

gives the transformation appropriate to a line-charge at z = a.

Also we notice that

W = log
z a

z + a

gives a field equivalent to the superposition of the fields given by

W =
log (z a) and W =

log (z + a).

This transformation is accordingly that appropriate to two equal and opposite

line-charges along the parallel lines z = a and z = a.

This last transformation gives U = when y = 0, so that it gives the

transformation for a line-charge in front of a parallel infinite plane.
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GENERAL METHODS.

I. Unicursal Curves.

319. Suppose that the coordinates of a point on a conductor can be

expressed as real functions of a real parameter, which varies as the point
moves over the conductor, in such a way that the whole range of variation

of the parameter just corresponds to motion over the whole conductor. In

other words, suppose that the coordinates x, y can be expressed in the form

and that all real values of p give points on the conductor, while, conversely,
all points on the conductor correspond to real values of p.

Then the transformation

(235)

will give V = over the conductor. For on putting V = in equation (235)

Wwe
obtain

so that x =/( U\ y = F( U) t

and by hypothesis the elimination of U will lead to the equation of the

conductor.

I
320. For example, consider the parabola (referred to its focus as origin),

?/
2 = 4a (x + a).

We can write the coordinates of any point on this parabola in the form

x -f- a = am2
, y = 2am,

and the transformation is seen to
1

z = "~ -a

W

agreeing wit thai which has already been seen in 317 to give a parabola
as a possible ii potential.
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321. As a second example of this method, let us consider the ellipse

y? y*L iL 1

a2+ 62
~

The coordinates of a point on the ellipse may be expressed in the form

x = a cos
<(>, y = 6 sin <,

and the transformation is seen to be

z a cos W + ib sin W.

FIG. 89.

We can take a = c cosh a, b = c sinh a, where c2 = a* b'
2
,
and the trans-

formation becomes

z = c cos ( W + i) = c cos
{
U + t ( V 4- )}.

The same transformation may be expressed in the better known form

z c cosh W.

The equipotentials are the confocal ellipses

a2 + X
3/ _,

62 + X

while the lines of force are confocal hyperbolic cylinders. On taking V
as the potential, we get a field in which the equipotentials are confocal

hyperbolic cylinders.



321, 322] Conjugate Functions 2*71

II. Sckwarzs Transformation.

322. Schwarz has shewn how to obtain a transformation in which one

equipotential can be any linear polygon.

At any angle of a polygon it is clear that the property that small elements

remain unchanged in shape can no longer hold. The reason is easily seen to

be that the modulus of transformation is either infinite or zero (cf. figs. 24

and 25, p. 61). Thus, at the angles of any polygon,

dW .

j- =0 or oo .

dz

The same result is evident from electrostatic considerations. At an angle of a

conductor, the surface-density or is either infinite or zero
( 70), while we have the

relation
( 313),

R 1 dW
dz

Let us suppose that the polygon in the ^-plane is to correspond to the

line V= in the TF-plane, and let the angular points correspond to

U=ult U = u.2) etc.

Then, when W ul} Wu2 , etc.,

- must either vanish or become infinite. We must accordingly have

(236),

where \lt X2 ,
... are numbers which may be positive or negative, while F

denotes a function, at present unknown, of W.

Suppose that, as we move along the polygon, the values of U at the

angular points occur in the order ult u2 ,
.... Then, on passing along the

side of the polygon which joins the two angles U uly U = u2) we pass along
a range for which F=0, and vfl < U<uz . Thus, along this side of the

polygon, Wu1} W uz , TF us , etc. are real quantities, positive or negative,
which retain the same sign along the whole of this edge. It follows that, as

we pass along this edge, the change in the value of arg I -r- > as given

by equation (236), is equal to the change in arg F, the arguments of the

factors

(W-u^(W-u^...
undergoing no change.

Now arg
(-TTW--)

measures the inclination of the axis V to the edge of

the polygon at any point, so that if the polygon is to be rectilinear, this

must remain constant as we. pass along any edge. It follows that there must
be no change in arg F as we pass along any side of the polygon.
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This condition can be satisfied by supposing F to be a pure numerical

constant. Taking it to be real, we have, from equation (236),

-^)+ ......... (237).

On passing through the angular point at which W u,^ the quantities

WHI, W u3 ,
etc. remain of the same sign, while the single quantity

W u2 changes sign. Thus arg(W u2) increases by TT, whence, by equa-

tion (237), arg -Tr/O
increases by \2 7r.

The axis F=0 does not turn in the IT-plane on passing through the

value W = u.2 ,
while ^gijytf} measures the inclination of the element of

the polygon in the 2-plane to the corresponding element of the axis V = in

the TF-plane.

Hence, on passing through the value W = w.a ,
the perimeter of the

polygon in the ^-plane must turn through an angle equal to the increase in

arg (-Tr > namely X^TT, the direction of turning being from Ox to Oy. Thus

\7r, X27T, . . . must be the exterior angles of the polygon, these being positive

when the polygon is convex to the axis Ox. Or, if a,, 2 ,
... are the interior

angles, reckoned positive when the polygon is concave to the axis of x, we
must have

Gti

7T

Thus the transformation required for a polygon having internal angles

a,, a,,... is

where ult u2 ,
... are real quantities, which give the values of U at the angular

points.

323. As an illustration of the use of Schwarz's transformation, suppose
the conducting system to consist of a semi-infinite plane placed parallel to an

infinite plane.

In
fig. 90, let the conductor be supposed to be a polygon A BCDE, which

is described by following the dotted line in the direction of the arrows. The

points A, B, C, E are all supposed to be at infinity, the points B and C

coinciding. Let us take A to be TF= - oo
,
B or C to be W=Q, D to be

W=l and E to be W= + oo . The angles of the polygon are zero at (BC)
and 2-7T at D. Thus the transformation is

dz _ r W-I
dW~''^ W '
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giving upon integration

z=C{W-\og F+ D] ..................... (239),

where C, D are constants of integration which may be obtained from the

FIG. 90.

condition that the two planes are to be, say, y and y h. From these

conditions we obtain C -
,
D =

ITT, so that the transformation is
7T

.(240).
7T

On replacing z
t Why z

t W, the transformation assumes the simpler form

(241).

III. Successive Transformations.

324. If f = < (#), TT=/(f) are any two transformations, then by elimi-

nation of f, a relation

Tf=F(j) .............................. (242)

is obtained, which may be regarded as a new transformation.

We may regard the relation f = (j> (z) as expressing a transformation from

the'2-plane into a -plane, while the second relation TF=/(?) expresses a

further transformation from the f-plane into a W-plane. Thus the final

transformation (242) may be regarded as the result of two successive trans-

formations.

Two uses of successive transformations are of particular importance.

325. Conductor influenced by line-charge. The transformation

gives, as we have seen ( 318) the solution when a line-charge is placed at

f= a in front of the plane represented by the real axis of f. Let the further

transformation ?=/(z) transform the real axis of into a surface S, and the

point f = a into the point z = ZQ ,
so that a = f (z ).

Then the transformation

18
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gives the solution when a line-charge is placed at z = ZQ in the presence of

the surface 8. In this transformation it must be remembered that U
t
and

not F, is the potential (cf. 318).

326. Conductors at different potentials. Let us suppose that the trans-

formation f= {z) transforms a conductor into the real axis of f. The

further transformation W = C 4- D log f ( 318) will give the solution when

the two parts of this plane on different sides of the origin are raised to

different potentials C and C -f TrD.

Thus the transformation obtained by elimination of f, namely

TF = (7 + D log <(*),

will transform two parts of the same conductor into two parallel planes,

and so will give the solution of a problem in which two parts of the same

conductor are raised to different potentials.

EXAMPLES OF THE USE OF CONJUGATE FUNCTIONS.

327. Two examples of practical importance will now be given to illus-

trate the use of the methods of conjugate functions.

Example I. Parallel Plate Condenser.

328. The transformation

* = -(?-log? + iV)

has been found to transform the two plates in fig. 90 into the positive and

negative parts of the real axis of f. The further transformation W =
log f

gives the solution when these two parts of the real axis of f are at potentials

and TT respectively ( 326).

Thus the transformation obtained by the elimination of f, namely

z = -(jr-W + vn) (243),
7T

will transform the two planes of fig. 90 one infinite and one semi-infinite

into two infinite parallel planes. Thus equation (243) gives the trans-

formation suitable to the case of a semi-infinite plane at distance h from

a parallel infinite plane, the potential difference being TT.

By the principle of images it is obvious that the distribution on the

upper plate is the same as it would be if the lower plate were a semi-

infinite plane at distance 2h instead of an infinite plane at distance h. The

equipotentials and lines of force for either problem are shewn in fig. 91.
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Separating real and imaginary parts in equation (243),

=-(" cosF-in
7T

y -
(e
usmV-V+ TT).

Thus the equipotential F=0 is the line y = h, the equipotential V =- TT is

the line = 0.

OFlG>n the former equipotentiai, the relation between x and U is

Iv / TT TT \

.(244).

When U = oo
,
# = + oo

;
as 7 increases, a? decreases until it reaches a

minimum value x = h/7r when 7=0; and as U further increases through

positive values x again increases, reaching x oo when U = + oo . Thus as

U varies while F=0, the path described is the path PQR in fig. 91.

The intensity at any point is

dW 7T

At a point on the equipotential V = 0, the surface-density is

~D 1XL JL

182
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At P, U = oo
,
so that " = TT 5

as we approach Q, cr increases and finally

becomes infinite at Q, while after passing Q and moving along QR, the upper
side of the plate, cr decreases, and ultimately vanishes to the order of e~ u.

The total charge within any range Ul ,
U*, is, by equation (233),

It therefore appears that the total charge on the upper part of the plate QR
is infinite.

Let us, however, consider the charges on the two sides of a strip of the

plate of width I from Q, i.e. the strip between x = h/7r and x = I + h/ir. The

two values of U corresponding to the points in the upper and lower faces at

which this strip terminates, are from equation (244) the two real roots of

$ + - = -(^-17) (245).
7T 7T

Of these roots we know that one, say Ult is negative and the other (Z72)

is positive. If I is large, we find that the negative root U^ is, to a first

approximation, equal to

and this is its actual value when I is very large. Thus the charge on the

lower plate within a large distance I of the edge is

and therefore the disturbance in the distribution of electricity as we approach

Q results in an increase on the charge of the lower plate equal to what would

be the charge on a strip of width h/ir in the undisturbed state.

If / is large the positive root of equation (245) is

so that the total charge on a strip of width I of the upper plate approximates,
when I is large, to

ITT\
+
TJ'

Thus although the charge on the upper plate is infinite, it vanishes in

comparison with that on the lower plate.
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Example II. Bend of a Leyden Jar.

329. The method of conjugate functions enables us to approximate to

the correction required in the formula for the capacity of a Leyden Jar, on

account of the presence of the sharp bend in the plates.

=0

FIG. 92.

As a preliminary, let us find the capacity of a two-dimensional condenser

formed of two conductors, each of which consists of an infinite plate, bent

into an L-shape. the two L's being fitted into one another as in
fig. 92.

Let us assume the five points A, B, (CD), E, F to be f = oo, a, 0,

+ 6, + oo respectively, and let us for convenience suppose the potential

difference which occurs on passing through the value f = to be TT. Then
the transformation is

where W =
log f (cf. 326).

To integrate, we put = (?+a)~ 2
(f 6)2, and obtain

=

(246),

where C is a constant of integration.

To rp 01 ' C vanish, we must have z = Q when u = 0, i.e. at the point E.

We sha rdingly take E as origin, so that = 0.
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At B, we now have = a, u= oo
,
and therefore

.

Z TrA A /
- tTT-rfi.

V CL

Thus the distances between the pairs of arms are TT A/ - -4 and
V ci

respectively.

Let P be any point in EF which is at a distance from E great compared
with EB. Let the value of f at P be fp ,

so that fp is positive and greater

than 6.

We have TF= ET + iF= log f, so that along the conductor

and 7 = log f.

The total charge per unit width on the strip EP is, by formula (233),

/247^
A \^P ~ES A V"& 5.P iv& V J

If P is far removed from E, the value of fp is very great, and since

r=f^ (248),

the value of v? will be nearly equal to unity at P.

From equation (246),

z = -2A A/- tan-1

y/| w + 2A log (1 + w)
- A log (1

- u2
),

/b /a
so that log (1 -O= 2 log (1 + w)- 2 A/- tan"1

\/ ^
M - 3 (249 )>

in which the terms log (1 u2

), z/A, are large at P in comparison with the

others. Again, from equation (248), we have

log
=

log (an? + b)
-

log (1 u2

) (250),

in which log , log (1 u2
) are large at P, in comparison with the term

log (an? + b). Combining equations (249) and (250),

log f = log (cm
2 + b)

- 2 log (1 + u) + 2 A/- tan" 1

J/ 1
u +

-|

(251),

in which the terms log f and
-j-

are large at P in comr-arison with the other
A.

terms. At P we may put u = 1 in all terms except ] jg f and z/A, and obtain

as an approximation
/6 la z

log fp = log (a> &)
- 2 log 2 + 2 A/

- tan~J A/ y + -j
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The value of zp is of course xp + iyp ,
or EP. Thus, from the equation

just obtained, equation (247) may be thrown into the form

rp i
I <rd8 = ^QogSp-

tan-' V7!
If the lines of force were not disturbed by the bend, we should have

p , 1 (EP\(rds=--f

)

rP

Equation (252) shews that I o-ds is greater than this, by an amount
J E

Let us denote the distances between the plates, namely ITA A/- and jrA,

by h and k respectively, so that A/ - = -
. Expression (253) now becomes

so that the charge on the plate EP is the same as it would be in a parallel

plate condenser in which the breadth of the strip was greater than EP by
1

When A = ^, this becomes

A ^ _ ioge 2) or -279A.
7T \2 /

MULTIPLE-VALUED POTENTIALS.

330. There are many problems to which mathematical analysis yields

more than one solution, although it may be found that only one of these

solutions will ultimately satisfy the actual data of the problem. In such

a case it will often be of interest to examine what interpretation has to

be given to the rejected solutions.

The problem of determining the potential when the boundary conditions

are given is not of this class, for it has already been shewn ( 186 188)

that, subject to specified boundary conditions, the termination of the poten-

tial is absolutely unique. But it may happen that, in searching for the

required solution, we come upon a multiple-valued solution of Laplace's

equation. Only one value can satisfy the boundary conditions, but the

interpretation of the other values is of interest, and in this way we arrive

at the study of multiple-valued potentials.
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Conjugate Functions on a Riemanris Surface.

331. An obvious case of a multiple-valued potential arises from the

conjugate function transformation

W =
(j>(z) (254),

when
</>

is not a single-valued function of z. Such cases have already

occurred in 317, 320, 323, etc.

The meaning of the multiple-valued potential becomes clear as soon

as we construct a Riemann's surface on which $(z) can be represented as

a single-valued function of position. One point on this Riemann's surface

must now correspond to each value of W, and therefore to each point in

the TF-plane. Thus we see that the transformation (254) transforms the

complete TF-plane into a complete Riemann's surface. Corresponding to

a given value of z there may be many values of the potential, but these

values will refer . to the different sheets of the Riemann's surface. If any

region on this surface is selected, which does not contain any branch points

or lines, we can regard this region as a 'real two-dimensional region, and the

corresponding value of the potential, as given by equation (254), will give

the solution of an electrostatic problem.

332. To illustrate this by a concrete case, consider the transformation

W = z% (255),

B

a'

H7

-plane. z-surface.

FIG. 93.

which has already been considered in 317. The Riemann's surface appro-

priate for the representation of the two-valued function z% may be supposed
to be a surface of two infinite sheets connected along a branch line which

extends over the positive half of the real axis of z.

To regard this surface as a deformation of the TT-plane, we must suppose
that a slit is cut along the line OB (fig. 93) in the W-plane, and that the
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two edges of the slit are taken and turned so that the angle 2?r, which they

originally enclosed in the TT-plane, is increased to 4-Tr, after which the edges
are again joined together.

The upper sheet of the Riemann's surface so formed will now represent
the upper half of the TT-plane, while the lower sheet will represent the lower

half. Two points P
l , P^ which represent equal and opposite values of W,

say + WQ ,
will (by equation (255)) be represented by points at which z has

the same value; they are accordingly the two points on the upper and

lower sheet respectively for which z has the value TfJ
2

.

A circular path pqrs surrounding in the TF-plane becomes a double

circle on the ^-surface, one circle being on the upper sheet and one on

the lower, and the path being continuous since it crosses from one sheet

to the other each time it meets the branch-line.

A line afi in the upper half of the W-plane becomes, as we have seen,

a parabola a/3 on the upper sheet of the ^-surface. Similarly a line a.'ft' in

the lower half of the Tf-plane will become a parabola a!ft on the lower sheet

of the ^--surface. The space outside the parabola a/3 on the upper sheet of

the ^-surface transforms into a space in the TF-plane bounded by the line aft

and the line at infinity. Consequently the transformation under consideration

gives the solution of the electrostatic problem, in which the field is bounded

only by a conducting parabola and the region at infinity. The same is not

true of the space inside the parabola a/3, for this transforms into a space in

the TT-plane bounded by both the line aft and the axis AOB. It is now
clear that the transformation has no application to problems in which the

electrostatic field is the space inside a parabola.

In general it will be seen that two points, which are close to one another

on one sheet of the ^-surface, but are on opposite sides of a branch-line,

will transform into two points which are not adjacent to one another in the

TF-plane, and which therefore correspond to different potentials. Conse-

quently we cannot solve a problem by a transformation which requires a

branch-line to be introduced into that part of the Riemann's surface which

represents the electrostatic field.

Images on a Riemann's Surface.

333. In the theory of electrical images, a system of imaginary charges is

placed in a region which does not form part of the actual electrostatic field.

When a two-dimensional problem is solved by a conjugate function trans-

formation, the electrostatic field must, as we have seen, be represented by
a region on a single sheet of the corresponding Riemann's surface, and this

region must not be broken by branch-lines. The same, however, is not true

of the part of the field in which the imaginary images are placed, for this
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may be represented by a region on one of the other sheets of the Riemann's

surface.

To take the simplest possible illustration, suppose that in the f-plane we

have a line-charge e along the line represented by the point P, in front of

{-plane z- surface

P +e P (upper sheet)

P'_e P (lower sheet)

FIG. 94.

the uninsulated conducting plane represented by the real axis AB. The

solution, as we know, is obtained by placing a charge e at the point P',

which is the image of P in AOB. The value of the potential (U) is given,

as in 318, by

Z7+*T=41ogjpj.~ >
Let us now transform this solution by means of the transformation

?=** (256).

The conducting plane A OB transforms into a semi-infinite plane OB, which

may be taken to coincide with the branch-line of the Riemann's surface.

The charge e at P becomes a charge at a point P on the upper sheet of the

surface, while the image at P' becomes a charge at a point P' on the lower

sheet. Thus we can replace the semi-infinite conductor OB in the ^-plane

by an image at a point P' on the lower sheet of a Riemann's surface, and we

obtain the field due to a line-charge and a semi-infinite conductor in an

ordinary two-dimensional space.

From the transformation used, the potential is found to be given by

V
'

Z Nd
U + iV= A log ~= == ,

v z v a

in which U is the potential, z = a is the point (a, a) on the upper sheet, and

z a is the image on the lower sheet.

In calculating a potential on a Riemann's surface, we must not assume

the potential of a line-charge e at the point (a, a) to be

G -2e log R (257),

where R is the distance from the point (a, a). In fact, this potential would

obviously have an infinity both at the point (a, a) on the upper sheet, and

also at the point (a, a) on the lower sheet, and would be the potential of

two line-charges, one at the point (a, a) on each sheet.
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The appropriate potential-function for a single charge can easily be

found.

As in the problem just discussed, it is clear that the potential due to the

single line-charge at (a, a) on the upper sheet is the value of U given by

U+iV=C + A log (V*
-

= C + A log
j
fVr cos

g
- Va cos

| J
+ i rVr sin

^
^a sin

3

so that

27 = (7 4- 1^. log \ (Vr cos
^

Va cos
| J

+ ( vV sin o
~ ^a s*n

2

= (7+ J4 log jr
- 2 Vor cos (0 - a) + a],

and if this is to be the potential due to a line-charge e, it is clear, on

examining the value of U near the point (a, a), that the value of A must be

2e. Thus the potential function must be

0- log }r
- 2 Vor cos 4(0 -) +

}
...............(258),

instead of that given by expression (257), namely,

C- e log {r
2 - 2ar cos (0

-
a) + a2

}
...............(259).

It will be noticed that both expressions are single-valued for given values

of (r, 6), but that for a given value of z, expression (258) has two values,

corresponding to two values of 6 differing by 2?r, while expression (259) has

only one value. Or, to state the same thing in other words, the expression

(259)^
is periodic in 6 with a period 2-Tr, while expression (258) is periodic

with a period 4?r.

Potential in a Riemanns Space.

334. Sommerfeld* has extended these ideas so as to provide the solution

of problems in three-dimensional space.

His method rests on the determination of a multiple-valued potential /\

function, the function being capable of representation as a single-valued
function of position in a " Riemann's space," this space being an imaginary

space which bears the same relation to real three-dimensional space as a

Riemann's surface bears to a plane.

335. The best introduction to this method will be found in a study of

the simplest possible example, and this will be obtained by considering the

three-dimensional problem analogous to the two-dimensional problem already
discussed in 333.

* "Ueber verzweigte Potentiale im Eaum," Proc. Lond. Math. Soc. 28, p. 395, and 30, p. 161.
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We suppose that we have a single point-charge in the presence of an

uninsulated conducting semi-infinite plane bounded by a straight edge. Let

us take cylindrical coordinates r, 9, z, taking the edge of the plane to be

r = 0, the plane itself to be 6 = 0, and the plane through the charge at right

angles to the edge of the conductor to be z = 0. Let the coordinates of the

point-charge be a, a, 0.

The Riemann's space is to be the exact analogue of the Riemann's

surface described in 332. That is to say, it is to be such that one revolu-

tion round the line r = takes us from one "
sheet

"
to the other of the

space, while two revolutions bring us back to the starting-point. Thus, for

a function to be a single-valued function of position in this space, it must be

a periodic function of 6 of period 4?r.

Let us denote by f(r, 0, z, a, a, 0) a function of r, 9, and z which is to

satisfy the following conditions :

(i) it must be a solution of Laplace's equation ;

(ii) it must be a continuous and single-valued function of position in

the Riemann's space ;

(iii) it must have one and only one infinity, this being at the point

a, a, on the first
"
sheet

"
of the space, and the function

approximating near the point to the function
-p,

where R is

the distance from this point;

(iv) it must vanish when r oo .

It can be shewn, by a method exactly similar to that used in 186, that

there can be only one function satisfying these conditions. Hence the func-

tion /(r, 0, z, a, a, 0) can be uniquely determined, and when found it will be

the potential in the Riemann's space of a point-charge of unit strength at the

point a, a, 0.

Consider now the function

f(r, 9,z, a, a, 0) -f(r, 0, z, a,
-

a, 0) (260),

which is of course the potential of equal and opposite point-charges at the

point a, a, 0, and at its image in the plane 9 = 0, namely, the point

a,
-

a, 0.

This function, by conditions (i) and (iv), satisfies Laplace's equation and

vanishes at infinity. On the first sheet of the surface, on which a varies

from to 2?r (or from 4?r to 6?r, etc.), it has only one infinity, namely, at

a, a, 0, at which it assumes the value ^.H
From the conditions which it satisfies, the function /(r, 9, z, a, a, 0) must

clearly involve 9 and a only through 9 a, and must moreover be an even

function of 9 a. It follows that, when 9 = 0, expression (260) vanishes.



6] Multiple-valued Potentials 285

n, since the function f is periodic in with a period 2-Tr, it follows

3n 6 = 2-7T, expression (260) may be written in the form

/(r, 2-7T, *, a, a, 0) -/(r, - 2-rr, *, a,
-

a, 0),

clearly vanishes. Thus expression (260) vanishes when = and

= 2-7T. That is to say, it vanishes on both sides of the semi-infinite

ng plane.

now clear that expression (260) satisfies all the conditions which

be satisfied by the potential. The problem is accordingly reduced

f the determination of the function/ (r, 0, z, a, a, 0).

Let us write

r = e ft

,
a = ep',

distance R from r, 0, z to a, a, is given by
E2 = r2 - 2ar cos (6

-
a) -f a2 + z*

= 2ar (cos % (p
- p) - cos (0

-
a)} + z\

Take new functions R' and f(u) given by

R'* = 2ar {cos i (p
-
p) - cos (0

-
u)} + z1

,

The function f(u) has infinities when u = a, a 2?r, a 4?r, ..., its residue

being unity at each infinity. Also, when u = a, the value of R' becomes R.

Hence the integral

lu .............................. (261),

where the integral is taken round any closed contour in the z^-plane which

surrounds the value u = a, but no other of the infinities off(u), will have as

its value 2i7r x
-p

. We accordingly have

j?-o-i D>^ ^ (262).
JTb

The integral just found gives a form for the potential function in ordinary

space which, as we shall now see, can easily be modified so as to give the

potential function in the Riemann's space which we are now considering.

We notice first that -

, regarded as a function of r, 0, and z, is a solution

of Laplace's equation, whatever value u may have. Hence the integral (261)
will be a solution of Laplace's equation for all values of f(u), for each term

of the integrand will satisfy the equation separately.

If we take

2 iu ia

o 2 _ 2



286 Methodsfor the Solution of Special Problems [CH. vm

we see that the infinities of f(u) occur when u = a, a 47r, a + STT, etc., and

the residue at each is unity. Hence, if we take the integral round one

infinity only, say u = a, the value of

-,f(u)du (263)

will become identical with ^ at the point at which R' = 0. Moreover,

expression (263) is, as we have seen, a solution of Laplace's equation : it

is seen on inspection to be a single-valued function of position on the

Riemann's surface, and to be periodic in 6 with period 4?r. Hence it is the

potential-function of which we are in search. Thus

in

, e, *, a, , o) = -

The details of the integration can be found in Sommerfeld's paper. The

value of the integral is found to be

1 2, /^TV
-^

- tan-1 A /
- -

,

ll 7T V (7 T

where r = cos
(<f> a), a- = cos J (p //).

337. Other systems of coordinates can be treated in the same way, and

the construction of other Riemann's spaces can be made to give the solutions

of other problems. The details of these will be found in the papers to which

reference has already been made.
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EXAMPLES.

1. An infinite conducting plane at zero potential is under the influence of a charge of

electricity at a point 0. Shew that the charge on any area of the plane is proportional to

the angle it subtends at 0.

2. A charged particle is placed in the space between two uninsulated planes which

intersect at right angles. Sketch the sections of the equipotentials made by an imaginary

plane through the charged particle, at right angles to the planes.

3. In question 2, let the particle have a charge e, and be equidistant from the planes.
Shew that the total charge on a strip, of which one edge is the line of intersection of the

planes, and of which the width is equal to the distance of the particle from this line of

intersection, is -\e.

4. In question 3, the strip is insulated from the remainder of the planes, these being
still to earth, and the particle is removed. Find the potential at the point formerly

occupied by the particle, produced by raising the strip to potential V.

5. If two infinite plane uninsulated conductors meet at an angle of 60, and there is a

charge e at a point equidistant from each, and distant r from the line of intersection, find

the electrification at any point of the planes. Shew that at a point in a principal plane

through the charged point at a distance r J'& from the line of intersection, the surface

density is

__^
47rr2

6. Two small pith balls, each of mass m, are connected by a light insulating rod.

The rod is supported by parallel threads, and hangs in a horizontal position in front of an

infinite vertical plane at potential zero. If the balls when charged with e units of

electricity are at a distance a from the plate, equal to half the length of the rod, shew
that the inclination & of the strings to the vertical is given by

7. What is the least positive charge that must be given to a spherical conductor,
insulated and influenced by an external point-charge e at distance r from its centre, in

order tha.t the surface density may be everywhere positive ?

8. An uninsulated conducting sphere is under the influence of an external electric

charge ; find the ratio in which the induced charge is divided between the part of its

surface in direct view of the external charge and the remaining part.

\L
9. A point-charge e is brought near to a spherical conductor of radius a having a

arge E. Shew that the particle will be repelled by the sphere, unless its distance from

the nearest point of its surface is less than a X/T," approximately.
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10. A hollow conductor has the form of a quarter of a sphere bounded by two

perpendicular diametral planes. Find the image of a charge placed at any point

inside.

11. A conducting surface consists of two infinite planes which meet at right angles,

and a quarter of a sphere of radius a fitted into the right angle. If the conductor is at zero

potential, and a point-charge e is symmetrically placed with regard to the planes and the

spherical surface at a great distance / from the centre, shew that the charge induced on

the spherical portion is approximately
- 5ea3

/7rf
3

.

12. A point-charge is placed in front of an infinite slab of dielectric, bounded by a

Jflane face. The angle between a line of force in the dielectric and the normal to the face

of the slab is a
;
the angle between the same two lines in the immediate neighbourhood of

the charge is /3. Prove that a, /3 are connected by the relation

?= fJL
2 V ! + /

sin
a

V2

.J
13. An electrified particle is placed in front of an infinitely thick plate of dielectric.

Shew that the particle is urged towards the plate by a force

where d is the distance of the point from the plate.

t/14. Two dielectrics of inductive capacities KI and * 2 are separated by an infinite plane
face. Charges e\, e2 are placed at points on a line at right angles to the plane, each at a

distance a from the plane. Find the forces on the two charges, and explain why they are

unequal.

15. Two conductors of capacities cl5 c2 in air are on the same normal to the plane

boundary between two dielectrics K l5 * 2 ,
at great distances

,
b from the boundary. They

are connected by a thin wire and charged. Prove that the charge is distributed between

them approximately in the ratio

- K 2 2*2

fi-
-

.

16. A thin plane conducting lamina of any shape and size is under the influence of a

fixed electrical distribution on one side of it. If <TI be the density of the induced charge
at a point P on the side of the lamina facing the fixed distribution, and <r2 that at the

corresponding point on the other side, prove that 0-1 -<r2
= 0-

,
where <r is the density at P

off the distribution induced on an infinite plane conductor coinciding with the lamina.

17. An infinite plate with a hemispherical boss of radius a is at zero potential under

le influence of a point-charge e on the axis of the boss distant /from the plate. Find the

surface density at any point of the plate, and shew that the charge is attracted towards

the plate with a force

e2 4e2a3/ 3

/ 18. A conductor is formed by the outer surfaces of two equal spheres, the angle

between their radii at a point of intersection being 27T/3. Shew that the capacity of the

conductor so formed is

5^/3-4

where a is the radius of either sphere.
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19. Within a spherical hollow in a conductor connected to earth, equal point-charges

e are placed at equal distances / from the centre, on the same diameter. Shew that each

is acted on by a force equal to

1-^/
L(

4 -
_

/
4
)
2

20. A hollow sphere of sulphur (of inductive capacity 3) whose inner radius is half its

outer is introduced into a uniform field of electric force. Prove that the intensity of the

field in the hollow will be less than that of the original field in the ratio 27 : 34.

21. A conducting spherical shell of radius a is placed, insulated and without charge,

in^ft uniform field of electric force of intensity F. Shew that if the sphere be cut into two

hemispheres by a plane perpendicular to the field, these hemispheres tend to separate and

require forces equal to fya
2F2 to keep them together.

22. An uncharged insulated conductor formed of two equal spheres of radius a

cutting one another at right angles, is placed in a uniform field of force of intensity F,

with the line joining the centres parallel to the lines of force. Prove that the charges

induced on the two spheres are ^Fa? and

23. A conducting plane has a hemispherical boss of radius a, and at a distance/ from

the centre of the boss and along its axis there is a point-charge e. If the plane and the

boss be kept at zero potential, prove that the charge induced on the boss is

- e ji- 74^Ll.
1 /A// 2+ 2

J

24. A conductor is bounded by the larger portions of two equal spheres of radius a

cutting at an angle ^TT, and of a third sphere of, radius c cutting the two former

orthogonally. Shew that the capacity of the conductor is

25. A spherical conductor of internal radius 6, which is uncharged and insulated,

surrounds a spherical conductor of radius a, the distance between their centres being c,

which is small. The charge on the inner conductor is E. Find the potential function

for points between the conductors, and shew that the surface density at a point P on the

inner conductor is

E_ /_!_ _ 3c cos B\

4^ \a*

~
Ifi^cp)

'

where 6 is the angle that the radius through P makes with the line of centres, and terms

in c2 are neglected.

\/26. If a particle charged with a quantity e of electricity be placed at the middle point
of the line joining the centres of two equal spherical conductors kept at zero potential,
shew that the charge induced on each sphere is

- 2em (l-m +m2 - 3m3+ 4m4
),

neglecting higher powers of m, which is the ratio of the radius to the distance between the

centres of the spheres.

27. Two insulating conducting spheres of radii a, b, the distance c of whose centres

is large compared with a and 6, have charges EI , E% respectively. Shew that the potential

energy is approximately

19
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/ 28. Shew that the force between two insulated spherical conductors of radius a placed

in an electric field of uniform intensity F perpendicular to their line of centres is

c being the distance between their centres.

29. Two uncharged insulated spheres, radii a, b, are placed in a uniform field of force

so that their line o centres is parallel to the lines of force, the distance c between their

centres being great compared with a and b. Prove that the surface density at the point

at which the line of centres cuts the first sphere (a) is approximately

-
v'30. A conducting sphere of radius a is embedded in a dielectric (K} whose out

boundary is a concentric sphere of radius 2a. Shew that if the system be placed in

a uniform field of force F, equal quantities of positive and negative electricity are

separated of amount

31. A sphere of glass of radius a is held in air with its centre at a distance c from a

point at which there is a positive charge e. Prove that the resultant attraction is

whep

y 32.32. A conducting spherical shell of radius a is placed, insulated and without charge,

in a uniform field of force of intensity F. Shew that if the sphere be cut into two

hemispheres by a plane perpendicular to the field, a force -^a
2F2 is required to prevent

the hemispheres from separating.

r/33.
A spherical shell, of radii a, b and inductive capacity K^ is placed in a uniform

field of force F. Shew that the force inside the shell is uniform and equal to

QKF

34. The surface of a conductor being one of revolution whose equation is

12 '

where r, / are the distances of any point from two fixed points at distance 8 apart, find

the electric density at either vertex when the conductor has a given charge.

35. The curve

_9af a+ x a x \
__

1

lM
{(<

27+a)2_
1
_
^2)1- {(*- a)2+ya}tJ

'

when rotated round the axis of x generates a single closed surface, which is made the

bounding surface of a conductor. Shew that its capacity will be a, and that the surface

density at the end of the axis will be e/37ra
2
,
where c, is the total charge.

J
36. Two equal spheres each of radius a are in contact. Shew that the capacity of the

conductor so formed is 2<x loge 2.



7. Two spheres of radii a, b are in contact, a being large compared with 6. Shew

that if the conductor so formed is raised to potential F, the charges on the two spheres are

\ . / 7T
262

and Va -
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r AVa
(
1

V

38. A conducting sphere of radius a is in contact with an infinite conducting plane.

Shew that if a unit point-charge be placed beyond the sphere and on the diameter through

the point of contact at distance c from that point, the charges induced on the plane and

sphere are

nC/b TTd , TTd
, TTOb _

cot and cot 1.

39. Prove that if the centres of two equal uninsulated spherical conductors of radius

a be at a distance 2c apart, the charge induced on each by a unit charge at a point

midway between them is

where c= acosh a.

40. Shew that the capacity of a spherical conductor of radius a, with its centre at a

distance c from an infinite conducting plane, is

00

a sinh a 2) cosech na,
i

where c= acosha.

41. An insulated conducting sphere of radius a is placed midway between two

parallel infinite uninsulated planes at a great distance 2c apart. Neglecting (

-
) ,

shew
Vv

that the capacity of the sphere is approximately

{l+flog2).

42. Two spheres of radii r1} r2 touch each other, and their capacities in this position

are cl} c2 . Shew that

(

where f=

43. A conducting sphere of radius a is placed in air, with its centre at a distance e

from the plane face of an infinite dielectric. Shew that its capacity is

a sinh a T
( -^ ^ )

cosech na,

, U^> i \K+IJ
where a^c/a.

44. A point-charge e is placed between two parallel uninsulated infinite conducting

planes, at distances a and 6 from them respectively. Shew that the potential at a point
between the planes which is at a distance z from the charge and is on the line through the

charge perpendicular to the planes is

192
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45. A spherical conductor of radius a is surrounded by a uniform dielectric K^ which

is bounded by a sphere of radius b having its centre at a small distance y from the centre

of the conductor. Prove that if the potential of the conductor is F, and there are no

other conductors in the field, the surface density at a point where the radius makes an

angle 6 with the line of centres is

KVb ( 6(K-l)ya*cos6 \

/
fl s

46. A shell of glass of inductive capacity K, which is bounded by concentric spherical

surfaces of radii a, b (a<6), surrounds an electrified particle with charge E which is at a

/f point Q at a small distance c from 0, the centre of the spheres. Shew that the potential

(/ at a point P outside the shell at a distance r from Q is approximately

E
r

where 6 is the angle which QP makes with OQ produced.

x 47. If the centres of the two shells of a spherical condenser be separated by a small

^distance c?, prove that the capacity is approximately

ab ( abd2ab (
_

abd2
}

b^a \

~
(6-a)(6

3 -a3
)/

'

48. A condenser is formed of two spherical conducting sheets, one of radius b

surrounding the other of radius a. The distance between the centres is c, this being so

small that (c/a)
2 may be neglected. The surface densities on the inner conductor at the

extremities of the axis of symmetry of the instrument are <TI, 0-2, and the mean surface

density over the inner conductor is ~v. Prove that

0-2
~

o-i

49. The equation of the surface of a conductor is r=a (1 + ePn\ where e is very small,

and the conductor is placed in a uniform field of force F parallel to the axis of harmonics.

Shew that the surface density of the induced charge at any point is greater than it would

be if the surface were perfectly spherical, by the amount

50. A conductor at potential F whose surface is of the form r=a(l-fePn) is sur-

rounded by a dielectric (K} whose boundary is the surface r=b (l+r/PJ, and outside this

the dielectric is air. Shew that the potential in the air at a distance r from the origin is

KabV n (2n+ ne

where squares and higher powers of e and
77
are neglected.

51. The surface of a conductor is nearly spherical, its equation being

where e is small. Shew that if the conductor is uninsulated, the charge induced on

it by a unit charge at a distance / from the origin and of angular coordinates 6, (f)
is

approximately
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52. A uniform circular wire of radius a charged with electricity of line density e

surrounds an uninsulated concentric spherical conductor of radius c
; prove that the

electrical density at any point of the surface of the conductor is

53. A dielectric sphere is surrounded by a thin circular wire of larger radius b

carrying a charge E. Prove that the potential within the sphere is

1-3. 5. ..27i-l /rV
a .4.6...a b

54. If within a conductor formed by a cone of semi-vertical angle cos" 1
/^ and two

spherical surfaces r= a,r= b with centres at the vertex of the cone, a charge q on the axis

at distance / from the vertex gives potential F, and if we write

the summation with respect to m extending to all positive integers, and that with respect
to n to all numbers integral or fractional for which Pn (^ )

=
0, determine Amn . Effecting

the summation with respect to m, shew that when r < r',

and that when r> /,

55. A spherical shell of radius a with a little hole in it is freely electrified to potential

F. Prove that the charge on its inner surface is less than VS/Sna, where S is the area of

the hole.

56. A thin spherical conducting shell from which any portions have been removed is

freely electrified. Prove that the difference of densities inside and outside at any point is

constant.

57. Electricity is induced on an uninsulated spherical conductor of radius a, by a

uniform surface distribution, density cr, over an external concentric non-conducting

spherical segment of radius c. Prove that the surface density at the point A of the

conductor at the nearer end of the axis of the segment is

A
~A

where B is the point of the segment on its axis, and D is any point on its edge.

58. Two conducting discs of radii a, a' are fixed at right angles to the line which

joins their centres, the length of this line being r, large compared with a. If the first

have potential F and the second is uninsulated, prove that the charge on the first is

59. A spherical conductor of diameter a is kept at zero potential in the presence of a

fine uniform wire, in the form of a circle of radius c in a tangent plane to the sphere with
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its centre at the point of contact, which has a charge E of electricity ; prove that the

electrical density induced on the sphere at a point whose direction from the centre of the

ring makes an angle \^ with the normal to the plane is

(a
2+ c2 sec2

\//>

- 2ac tan ^ cos 6)
~
% dd.

60. Prove that the capacity of a hemispherical shell of radius a is

61. Prove that the capacity of an elliptic plate of small eccentricity e and area A is

approximately

/7ZV U
Z\ 2

62. A circular disc of radius a is under the influence of a charge q at a point in its

plane at distance b from the centre of the disc. Shew that the density of the induced

distribution at a point on the disc is

/

V a2 -r"

where r, R are the distances of the point from the centre of the disc and the charge.

63. An ellipsoidal conductor differs but little from a sphere. Its volume is equal to

that of a sphere of radius r, its axes are 2r(l + a), 2r(l+j8), 2r (1+7). Shew that neg-

lecting cubes of a, /3, y, its capacity is

64. A prolate conducting spheroid, semi-axes a, 6, has a charge ." of electricity. Shew

that repulsion between the two halves into which it is divided by its diametral plane is

E2

'

a

4(a
2 -&2

)

g b'

Determine the value of the force in the case of a sphere.

65. One face of a condenser is a circular plate of radius a : the other is a segment of

a sphere of radius R^ R being so large that the plate is almost flat. Shew that the

capacity is ^KRlogti/to where 1} t are the thickness of dielectric at the middle and edge
of the condenser. Determine also the distribution of the charge.

66. A thin circular disc of radius a is electrified with charge E and surrounded by a

spheroidal conductor with charge E^ , placed so that the edge of the disc is the locus of the

focus S of the generating ellipse. Shew that the energy of the system is

IE* A i(E+Etf A
SBC

>

B being an extremity of the polar axis of the spheroid, and C the centre.

67. If the two surfaces of a condenser are concentric and coaxial oblate spheroids
small ellipticities e and e' and polar axes 2c and 2c', prove that the capacity is

CC' (C'
-

C)
~ 2

JC'
- C+ (6C'

-
f'c)},

neglecting squares of the ellipticities ;
and find the distribution of electricity on each

surface to the same order of approximation.

.
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68. An accumulator is formed of two confocal prolate spheroids, and the specific

inductive capacity of the dielectric is ,ff7/rar, where or is the distance of any point from the

axis. Prove that the capacity of the accumulator is

where a, b and j , hi are the semi-axes of the generating ellipses.

69. A thin spherical bowl is formed by the portion of the sphere
y

'- <Q/2 -1J

bounded by and lying within the cone
*

2 + 1^
=

~2'
and is Put in connection with the earth

Vy a fine wire. is the origin, and C, diametrically opposite to 0, is the vertex of the

bowl ; Q is any point on the rim, and P is any point on the great circle arc CQ. Shew
that the surface density induced at P by a charge E placed at is

EC CQ

where /=

70. Three long thin wires, equally electrified, are placed parallel to each other so that

they are cut by a plane perpendicular to them in the angular points of an equilateral

triangle of side *J%c ; shew that the polar equation of an equipotential curve drawn on the

plane is

r*+ c6 - 2r3c3 cos 3<9= constant,

the pole being at the centre of the triangle and the initial line passing through one of the

wires.

71. A flat piece of corrugated metal (y= a sin mx] is charged with electricity. Find

the, surface density at any point, and shew that it exceeds the average density approxi-

mately in the ratio my : 1.

72. A long hollow cylindrical conductor is divided into two parts by a plane through
the axis, and the parts are separated by a small interval. If the two parts are kept at

potentials Fx and F2 ,
the potential at any point within the cylinder is

1 * 2 + -L
^

-tan- 1

J~|-
where r is the distance from the axis, and 6 is the angle between the plane joining the

point to the axis and the plane through the axis normal to the plane of separation.

Shew that the capacity per unit length of a telegraph wire of radius a at height h

above the surface of the earth is

74. An electrified line with charge e per unit length is parallel to a circular cylinder
of radius a and inductive capacity K, the distance of the wire from the centre of the

cylinder being c. Shew that the force on the wire per unit length is

K-l
K+l c(c

2 -a2
)'

75. A cylindrical conductor of infinite length, whose cross-section is the outer

boundary of three equal orthogonal circles of radius a, has a charge e per unit length.
Prove that the electric density at distance r from the axis is

_e (3r
2+ a2

) (3r
2 - a2-
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76. If the cylinder r a+ b cos 6 be freely charged, shew that in free space the

resultant force varies as

r
-

1

(f2_j_ <%rc cos Q -+-C
2
)

~
*,

and makes with the line 0=0 an angle

where a2 ~b2 =2bc.

/ 77. If $-HVr=/(d?+*y) and the curves for which < = constant be closed, shew that

the capacity C of a condenser with boundary surfaces
<^>
=

1 ,
< = < is

per unit length, where
[\/r]

is the increment of ^ on passing once round a 0-curve.

/78. Using the transformation x+iy= ccot^(U+iV}, shew that the capacity C per
unit length of a condenser formed by two right circular cylinders (radii a, 6), one inside

the other, with parallel areas at a distance d apart, is given by

l/0-.c-h

tf 79. A plane infinite electric grating is made of equal and equidistant parallel thin

metal plates, the distance between their successive central lines being TT, and the breadth

of each plate 2 sin
~M -=

j
. Shew that when the grating is electrified to constant

potential, the potential and charge functions V, U in the surrounding space are given

by the equation
sin

( CT+iV}=K sin (x+ iy).

it

,f

Deduce that, when the grating is to earth and is placed in a uniform field of force of unit

intensity at right angles to its plane, the charge and potential functions of the portion of

the field which penetrates through the grating are expressed by

U+iV-(x.+iy\
and expand the potential in the latter problem in a Fourier Series.

80. A cylinder whose cross-section is one branch of a rectangular hyperbola is

maintained at zero potential under the influence of a line-charge parallel to its axis

and on the concave side. Prove that the image consists of three such line charges, and

hence find the density of the induced distribution.

81. A cylindrical space is bounded by two coaxial and confocal parabolic cylinders,

whose latera recta are 4a and 46, and a uniformly electrified line which is parallel to the

generators of the cylinder intersects the axes which pass through the foci in points distant

c from them (a> c> 6). Shew that the potential throughout the space is

cosh 7
-- cos

^^_7,t

log
Vsin + c^-a^-

where r, 6 are polar coordinates of a section, the focus being the pole. Determine A in

terms of the electrification per unit length of the line.

A in
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82. An infinitely long elliptic cylinder of inductive capacity A", given by = a where

c cosh
( + 277),

is in a uniform field P parallel to the major axis of any section.

Shew that the potential at any point inside the cylinder is

1+cotha

83. Two insulated uncharged circular cylinders outside each other, given by rj
= a and

rj= -/3 where ^+ iy=ctan^( + ^), are placed in a uniform field of force of potential Fx.

Shew that the potential due to the distribution on the cylinders is

sm

84. Two circular cylinders outside each other, given by 77

- a and
77
= -

ft where

are put to earth under the influence of a line-charge E on the line #=0, y = 0. Shew that

the potential of the induced charge outside the cylinders is

cos n + constant,
n

the summation being taken for all odd positive integral values of n,

85. The cross-sections of two infinitely long metallic cylinders are the curves

(x
2-+y2+ c2

)
2 - 4c%2=a4 and (x

2+f+ c2
)
2 - 4c%2= 64

,

where b>a>c. If they are kept at potentials Vi and F2 respectively, the intervening

space being filled with air, prove that the surface densities per unit length of the

electricity on the opposed surfaces are

y _ y Y V
^ *Jx*~+y* and ^ v^2+/

47r
2
log 4?r62 log

-

respectively.

86. What problems are solved by the transformation

a

where a > 1 ?

87.' What problem in Electrostatics is solved by the transformation

where ^ is taken as the potential function, < being the function conjugate to it ?

88. One half of a hyperbolic cylinder is given by 77= 771, where 1 17! |

< ,
and

, rj are

given in terms of the Cartesian coordinates x, y of a principal section by the trans-

formation

x+iy = c cosh ( + ^).

The half-cylinder is uninsulated and under the influence of a charge of density E per unit

length placed along the line of internal foci. Prove that the surface density at any point
of the cylinder is

cosh p- x/cos
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89. Verify that, if r, s be real positive constants, z= x-\-iy, a= pe ,

- = - + -, the

field of force outside the conductors #2+^2
-f 2s#=0, #2+y2 - 2r#=0 due to a doublet at

the point z=a, outside both the circles, of strength p. and inclination a to the axis, is

given by putting

where z=a is the inverse point to z= a with regard to either of the circles.

90. A very thin indefinitely great conducting plane is bounded by a straight edge of

indefinite length, and is connected with the earth. A unit charge is placed at a point P.

Prove that the potential at any point Q due to the charge at P and the electricity induced

on the conducting plane is

11 ./ 1 d>-
T^-cos-H cos-^

where P' is the image of P in the plane, the cylindrical coordinates of Q and P are

(r, (j>, z), (r', </>', /), the straight edge is the axis of z, the angles </>,
<' lie between and 27r,

(p
= on the conductor,

and those values of the inverse functions are taken which lie between ^TT and TT.

91. A semi-infinite conducting plane is at zero potential under the influence of an

electric charge q at a point Q outside it. Shew that the potential at any point P is

given by

/cosh iq 4- cos i(0-0i)/- 4~ ^V c sh i>7
~ cos i (^

~
^i)

, ,

(cosh rj
- cos (6

- ,

tan~i

where r, ^, z are the cylindrical coordinates of the point P, (rlt 6^ 0) of the point Q, 6=

is the equation of the conducting plane, and

%rri cosh
77
= r2+ rj

2+ 22.

Hence obtain the potential at any point due to a spherical bowl at constant potential,

and shew that the capacity of the bowl is

-I7T (

1 +
sinaj

'

where a is the radius of the aperture, and a is the angle subtended by this radius at the

centre of the sphere of which the bowl is a part.

92. A thin circular conducting disc is connected to earth and is under the influence

of a charge q of electricity at an external point P. The position of any point Q is denoted

by the peri-polar coordinates p, 6, 0, where p is the logarithm of the ratio of the distances

from Q to the two points R, S in which a plane QRS through the axis of the disc cuts its

rim, 6 is the angle RQS, and is the angle the plane QRS makes with a fixed plane

through the axis of the disc, the coordinate 6 having values between - TT and + TT, and

changing from + TT to TT in passing through the disc. Prove or verify that the potential

of the charge induced on the disc at any point Q (p, 0, 0) is
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where p , > $0 are the coordinates of P, being positive, the point P' is the optical

image of P in the disc, a is given by the equation

cos a= cosh p cosh p
- sinh p sinh p cos (<p

- $ ),

and the smallest values of the inverse functions are to be taken.

Prove that the total charge on the disc is -
qd /Tr.

Explain how to adapt the formula for the potential to the case in which the circular

disc is replaced by a spherical bowl with the same rim.

93. Shew that the potential at any point P of a circular bowl, electrified to potential

(?,

C ( . AB
,

OA . . (OP AB
+ * '

AP+1TP

where is the centre of the bowl, and A, B are the points in which a plane through P
and the axis of the bowl cuts the circular rim.

Find the density of electricity at a point on either side of the bowl and shew that the

capacity is

-(a+ sina),
77

where a is the radius of the sphere, and 2a is the angle subtended at the centre.

94. Two spheres are charged to potentials F and Fx . The ratio of the distances of

any point from the two limiting points of the spheres being denoted by e^ and the angle
between them by , prove that the potential at the point , 77

is

where
77
=

0, r)= -/3 are the equations of the spheres. Hence find the charge on either

sphere.



CHAPTEE IX

STEADY CURRENTS IN LINEAR CONDUCTORS

PHYSICAL PRINCIPLES.

338. IF two conductors charged with electricity to different potentials

are connected by a conducting wire, we know that a flow of electricity will

take place along the wire. This flow will tend to equalise the potentials

of the two conductors, and when these potentials become equal the flow of

electricity will cease. If we had some means by which the charges on the

conductors could be replenished as quickly as they were carried away by
conduction through the wire, then the current would never cease. The con-

ductors would remain permanently at different potentials, and there would

be a steady flow of electricity from one to the other. Means are known by
which two conductors can be kept permanently at different potentials, so that

a steady flow of electricity takes place through any conductor or conductors

joining them. We accordingly have to discuss the mathematical theory of

such currents of electricity.

We shall begin by the consideration of the flow of electricity in linear

conductors, by a linear conductor being meant one which has a definite

cross-section at every point. The commonest instance of a linear conductor

is a wire. ,

339. DEFINITION. The strength of a current at any point in a wire or

other linear conductor, is measured by the number of units of electricity which

flow across any cross-section of the conductor per unit time.

If the units of electricity are measured in Electrostatic Units, then the

current also will be measured in Electrostatic Units. These, however, as will

be explained later, are not the units in which currents are usually measured

in practice.

Let P, Q be two cross-sections of a linear conductor in which a steady

current is flowing, and let us suppose that no other conductors touch this

conductor between P and Q. Then, since the current is, by hypothesis,

steady, there must be no accumulation of electricity in the region of the
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conductor between P and Q. Hence the rate of flow into the section of the

conductor across P must be exactly equal to the rate of flow out of this

section across Q. Or, the currents at P and Q must be equal. Hence we

speak of the current in a conductor, rather than of the current at a point in

a conductor. For, as we pass along a conductor, the current cannot change

except at points at which the conductor is touched by other conductors.

Ohm's Law.

340. In a linear conductor in which a current is flowing, we have

electricity in motion at every point, and hence must have a continuous

variation in potential as we pass along the conductor. This is not in

opposition to the result previously obtained in Electrostatics, for in the

previous analysis it had to be assumed that the electricity was at rest.

In the present instance, the electricity is not at rest, being in fact kept
in motion by the difference of potential under discussion.

The analogy between potential and height of water will perhaps help. A lake in

which the water is at rest is analogous to a conductor in which electricity is in equi-

librium. The theorem that the potential is constant over a conductor in which electricity

is in equilibrium, is analogous to the hydrostatic theorem that the surface of still water

must all be at the same level. A conductor through which a current of electricity is

flowing finds its analogue in a stream of running water. Here the level is not the same at

all points of the river it is the difference of level which causes the water to flow. The
water will flow more rapidly in a river in which the gradient is large than in one in

which it is small. The electrical analogy to this is expressed by Ohm's Law.

OHM'S LAW. The difference of potential between any two points of a wire

or other linear conductor in which a current is flowing, stands to the current

flowing through the conductor in a constant ratio, ivhich is called the resistance

between the two points.

It is here assumed that there is no junction with other conductors

between these two points, so that the current through the conductor is

a definite quantity.

341. Thus if C is the current flowing between two points P, Q at which

the potentials are VP ,
VQ ,

we have

VP-Vq=CR (264),

where R is the resistance between the points P and Q. Very delicate

experiments have failed to detect any variation in the ratio

(fall of potential)/(current),

as the current is varied, and this justifies us in speaking of the resistance as

a definite quantity associated with the conductor. The resistance depends

naturally on the positions of the two points by which the current enters and

leaves the conductor, but when once these two points are fixed the resistance
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is independent of the amount of current. In general, however, the resistance

of a conductor varies with the temperature, and for some substances, of which

selenium is a notable example, it varies with the amount of light falling on

the conductor.

The Voltaic Cell

342. The simplest arrangement by which a steady flow of electricity can

be produced is that known as a Voltaic Cell. This is represented diagram-

matically in Fig. 95. A voltaic cell consists essentially of two conductors

FIG. 95.

A
y
B of different materials, placed in a liquid which acts chemically on at

least one of them. On establishing electrical contact between the two ends

of the conductors which are out of the liquid, it is found that a continuous

current flows round the circuit which is formed by the two conductors and

the liquid, the energy which is required to maintain the current being
derived from chemical action in the cell.

To explain the action of the cell, it will be necessary to touch on a subject

of which a full account would be out of place in the present book. As an

experimental fact it is found that two conductors of dissimilar material, when

placed in contact, have different potentials when there is no flow of electricity

from one to the other*, although of course the potential over the whole of

either conductor must be constant. In the light of this experimental fact,

let us consider the conditions prevailing in the voltaic cell before the two

ends a, b of the conductors are joined.

So long as the two conductors A, B and the liquid C do not form a closed

circuit, there can be no flow of electricity. Thus there is electric equilibrium,

* For a long time there has been a divergence of opinion as to whether this difference of

potential is not due to the chemical change at the surfaces of the conductors, and therefore

dependent on the presence of a layer of air or other third substance between the conductors. It

seems now to be almost certain that this is the case, but the question is not one of vital

importance as regards the mathematical theory of electric currents.
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and the three conductors have definite potentials VA ,
VB , Vc . The difference

of potential between the two "terminals" a, b is VA VB ,
but the peculiarity

of the voltaic cell is that this difference of potential is not equal to the

difference of potential between the two conductors when they are placed

in contact and are in electrical equilibrium without the presence of the

liquid C. Thus on electrically joining the points a, b in the voltaic cell

electrical equilibrium is an impossibility, and a current is established in the

circuit which will continue until the physical conditions become changed or

the supply of chemical energy is exhausted.

Electromotive Force.

343. Let A,B,C be any three conductors arranged so as to form a closed

circuit. Let VAB be the contact difference of potential between A and B when

there is electric equilibrium, and let VBC ,
VCA have similar meanings.

If the three substances can be placed in a closed circuit without any
current flowing, then we can have equilibrium in which the three conductors

will have potentials VA , VB ,
VC) such that

YA~YB = VAB j VB~'C 'BO 5 'c
~ VA VCA

Thus we must have

VAB + VBC+VCA = 0,

a result known as Voltas Law.

If, however, the three conductors form a voltaic cell, the expression on

the left-hand of the above equation does not vanish, and its value is called

the electromotive force of the cell. Denoting the electromotive force by E,

we have

VAB+V C+VCA = E (265).

We accordingly have the following definition :

DEFINITION. The Electromotive Force of a cell is the algebraic sum of the

discontinuities of potential encountered in passing in order through the series

of conductors of which the cell is composed.

Clearly an electromotive force has direction as well as magnitude. It

is usual to speak of the two conductors which pass into the liquid as the

high-potential terminal and the low-potential terminal, or sometimes as the

positive and negative terminals. Knowing which is the positive or high-

potential terminal, we shall of course know the direction of the electromotive

force.

344. If the conductors C, A of a voltaic cell ABC are separated, and

then joined by a fourth conductor D, such that there is no chemical action

between D and the conductors C or A, it will easily be seen that the sum of

the discontinuities in the new circuit is the same as in the old.
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For by hypothesis CDA can form a closed circuit in which no chemical

action can occur, and therefore in which there can be electric equilibrium.

Hence we must have

FCT + TL + I^ = ........................... (266).

Moreover the sum of all the discontinuities in the circuit is

C^~ 'CD~^~ 'DA

= VAB + VBC- VAC , by equation (266)

= E, by equation (265),

proving the result. A similar proof shews that we may introduce any series

of conductors between the two terminals of a cell, and so long as there is no

chemical action in which these new conductors are involved, the sum of all the

discontinuities in the circuit will be constant, and equal to the electromotive

force of the cell.

Let ABC... MN be any series of conductors, including a voltaic cell,

and let the material of N be the same as that of A. If N and A are joined
we obtain a closed circuit of electromotive force E, such that

VAB + VBC +... + VMN + VNA = E.

Moreover VNA = 0, since the material of N and A is the same. Thus the

relation may be rewritten as

VAS + VBC +... + VM1r=E ..................... (267).

In the open series of conductors ABC . . . MN, there can be no current, so

that each conductor must be at a definite uniform potential. If we denote

the potentials by VA ,
VB ,

... VM ,
VN ,

we have

V V VYA VB YAB>

'M~~'N~ 'MN'

Hence equation (267) becomes

We now see that the electromotive force of a cell is the difference of

potential between the ends of the cell when the cell forms an open circuit,

and the materials of the two ends are the same.

A series of cells, joined in series so that the high-potential terminal of

one is in electrical contact with the low-potential terminal of the next, and

so on, is called a battery of cells, or an "
electric battery

"
arranged in series.

It will be clear from what has just been proved, that the electromotive

force of such a battery of cells is equal to the sum of the electromotive forces

of the separate cells of the series.
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Units.

345. On the electrostatic system, a unit current has been defined to be

a current such that an electrostatic unit of electricity crosses any selected

cross-section of a conductor in unit time. For practical purposes, a different

unit, known as the ampere, is in use. The ampere is equal very approximately
to 3 x 109 electrostatic units of current (see below, 587).

To form some idea of the actual magnitude of this unit, it may be stated that the

amount of current required to ring an electric bell is about half an ampere. About the

same amount is required to light a 50 C.P. 100-volt metallic filament incandescent lamp.

As an electromotive force is of the same physical nature as a difference

of potential, the electrostatic unit of electromotive force is taken to be the

same as that of potential. The practical unit is about ^^ of the electrostatic

unit, and is known as the volt (see below, 587).

It may be mentioned that the electromotive force of a single voltaic cell is generally

intermediate between one and two volts
;

the electromotive force which produces a

perceptible shock in the human body is about 30 volts, while an electromotive force

of 500 volts or more is dangerous to life. Both of these latter quantities, however, vary

enormously with the condition of the body, and particularly with the state of dryness
or moisture of the skin. The electromotive force used to work an electric bell is

commonly 6 or 8 volts, while an electric light installation will generally have a voltage

of about 100 or 200 volts.

The unit of resistance, in all systems of units, is taken to be a resistance

such that unit difference of potential between its extremities produces unit

current through the conductor. We then have, by Ohm's Law,

difference of potential at extremities
current = -

T (268).
resistance

In the practical system of units, the unit of resistance is called the ohm.

From what has already been said, it follows that when two points having a

potential-difference of one volt are connected by a resistance of one ohm, the

current flowing through this resistance will be one ampere. In this case the

difference of potential is -gfo electrostatic units, and the current is 3 x 109

electrostatic units, so that by relation (268), it follows that one ohm must be

equal to - - electrostatic units of resistance (see below, 587).y x j_ij

Some idea of the amount of this unit may be gathered from the statement that

the resistance of a mile of ordinary telegraph wire is about 10 ohms. The resistance

of a good telegraph insulator may be billions of ohms.

J. 20
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PHYSICAL THEORIES OF CONDUCTION.

Electron-theory of conduction.

345 a. As has been already explained ( 28), the modern view of

electricity regards a current of electricity as a material flow of electric

charges. In all conductors except a small class known as electrolytic

conductors (see below. 345 6), these charged bodies are believed to be

identical with the electrons.

In a solid some of the electrons are supposed to be permanently bound to

particular atoms or molecules, whilst others, spoken of as
"
free

"
electrons,

move about in the interstices of the solid, continually having their courses

changed by collisions with the molecules. Both kinds of electrons will be

influenced by the presence of an electric field. It is probable that the

restricted motions of the
" bound

"
electrons account for the phenomenon of

inductive capacity (151) whilst the unrestricted motion of the free electrons

explains the phenomenon of electric conductivity.

Even when no electric forces are applied, the free electrons move about

through a solid, but they move at random in all directions, so that as many
electrons move from right to left as from left to right and the resultant

current is nil. If an electric force is applied to the conductor, each electron

has superposed on to its random motion a motion impressed on it by the

electric force, and the electrons as a whole are driven through the conductor

by the continued action of the electric force. If it were not for their collisions

with the molecules of the conductor, the electrons would gain indefinitely in

momentum under the action of the impressed electric force, but the effect of

collisions is continually to check this growth of momentum.

Let us suppose that there are N electrons per unit length of the

conductor, and that at any moment these have an average forward velocity

u through the material of the conductor. If m is the mass of each electron,

the total momentum of the moving electrons will be Nmu. The rate at

which this total momentum is checked by collisions will be proportional to

N and to u, and may be taken to be Nyu. The rate at which the momentum
is increased by the electric forces acting is NXe, where X is the electric

intensity and e is the charge, measured positively, of each electron. Thus

we have the equation

........................ (a).

In unit time the number of electrons which pass any fixed point in the

conductor is Nu, so that the total flow of electricity per unit time past any

point is Neu. This is by definition equal to the current in the conductor, so

that if we call this i, we have

Neu = i .................................... (b).



345 a, 345 b] Electrolytic Conduction 307

This enables us to reduce equation (a) to the form

7
i] (c).

dt m \ Ntf

The equation shews that if a steady electric force is applied, such that

the intensity at any point is X, the current will not increase indefinitely

but will remain stationary after it has reached a value i given by

If V is the potential at any point of a conducting wire, and if s is a

9F
coordinate measured along the wire, we have X = ^ ,

so that
os

?)V <y .

"

~ds

=
lVe*

1 '

Integrating between any two points P and Q of the conductor, we have

This is the electron-theory interpretation of equation (264), and explains

how the truth of Ohm's Law is involved in the modern conception of the

nature of an electric current. It will be noticed that on this view of the

matter, Ohm's Law is only true for steady currents.

We notice that the resistance of the conductor, on this theory, is y/NeP

per unit length. Thus, generally speaking, bodies in which there are many
free electrons ought to be good conductors, and conversely.

Taking the charge on the electron to be 4*5 x 10~ 10 electrostatic units, we may notice

that a current of one ampere (3 x 109 electrostatic units of current) is one in which

6*6 xlO18 electrons pass any given point of the conductor every second. In the best

metallic conductors the number of electrons per cubic centimetre is of the order of 1023
.

Thus in a wire of 1 square mm. cross-section there are 1021 electrons per unit length, so

that the average velocity of these when the wire is conveying a current of 1 ampere is of

the order of '0066 cm. per sec. This average velocity is superposed on to a random

velocity which is known to be of the order of magnitude of 107 cms. per sec., so that

the additional velocity produced by even a strong current is only v*ery slight in com-

parison with the normal velocity of agitation of the electrons.

Electrolytic conduction.

345 6. Besides the type of electric conduction just explained, there is a

second, and entirely different type, known as Electrolytic conduction, the

distinguishing characteristic of which is that the passage of a current is

accompanied by chemical change in the conductor.

For instance, if a current is passed through a solution of potassium
chloride in water, it will be found that some vof the salt is divided up by the

passage of the current into its chemical constituents, and that the potassium

202
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appears solely at the point at which the current leaves the liquid, while the

chlorine similarly appears at the point at which the current enters. It thus

appears that during the passage of an electric current, there is an actual

transport of matter through the liquid, chlorine moving in one direction and

potassium in the other. It is moreover found by experiment that the total

amount, whether of potassium or chlorine, which is liberated by any current

is exactly proportional to the amount of electricity which has flowed through
the electrolyte.

These and other facts suggested to Faraday the explanation, now

universally accepted, that the carriers of the current are identical with the

matter which is transported through the electrolyte. For instance, in the

foregoing illustration, each atom of potassium carries a positive charge to the

point where the current leaves the liquid, while each atom of chlorine,

moving in the direction opposite to that of the current, carries a negative

charge. The process is perhaps explained more clearly by regarding the total

current as made up of two parts, first a positive current and second a negative
current flowing in the reverse direction. Then the atoms of chlorine are the

carriers of the negative current, and the atoms of potassium are the carriers

of the positive current.

Electrolytes may be solid, liquid, or gaseous, but in most cases of

importance they are liquids, being solutions of salts or acids. The two parts

into which the molecule of the electrolyte is divided are called the ions

(Icdv), that which carries the positive current being called the positive ion,

and the other being called the negative ion. The point at which the current

enters the electrolyte is called the anode, the point at which it leaves is

called the cathode. The two ions are also called the anion or cation

according as they give up their charges at the anode or cathode respectively.

Thus we have

The anion carries charge against current, and delivers it at the

anode,

The cation carries -f charge with current, and delivers it at the

cathode.

When potassium chloride is the electrolyte, the potassium atom is the

cation, and the chlorine atom is the anion. If experiments are performed
with different chlorides (say of potassium, sodium, and lithium), it will be

found that the amount of chlorine liberated by a given current is in every
case the same, while the amounts of potassium, sodium, or lithium, being

exactly those required to combine with this fixed amount of chlorine, are

necessarily proportional to their atomic weights. This suggests that each

atom of chlorine, no matter what the electrolyte may be in which it occurs,

always carries the same negative charge, say e, while each atom of potassium,
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sodium, or lithium carries the same positive charge, say + E. Moreover E
and e must be equal, or else each undissociated molecule of the electrolyte

would have to be supposed to carry a charge E e, whereas its charge is

known to be nil.

It is found to be a general rule that every anion which is chemically

monovalent carries the same charge e, while every monovalent cation

carries a charge -f e. Moreover divalent ions carry charges + 2e
}
trivalent

ions carry charges 3e, and so on.

As regards the actual charges carried, it is found that one ampere of

current flowing for one second through a salt of silver liberates O'OOlllS

grammes of silver. Silver is monovalent and its atomic weight is 107'92

(referred to O =
16), so that the amount of any other monovalent element of

atomic weight ra deposited by the same current will be 0*00001036 x m
grammes. It follows that the passage of one electrostatic unit of electricity

u . ., ...
f 0-00001036 xm

will result in the liberation of
,
or 3'45 x 10~15 x m grammeso X J.U

of the substance.

We can calculate from these data how many ions are deposited by one unit

of current, and hence the amount of charge carried by each ion. It is found

that, to within the limits of experimental error, the negative charge carried

by each monovalent anion is exactly equal to the charge carried by the electron.

It follows that each monovalent anion has associated with it one electron

in excess of the number required to give it zero charge, while each monovalent

cation has a deficiency of one electron
;

divalent ions have an excess or

deficiency of two electrons, and so on.

345 c. Ohm's Law appears, in general, to be strictly true for the resist-

ance of electrolytes. In the light of the explanation of Ohm's Law given in

345 a, this will be seen to suggest that the ions are free to move as soon as

an electric intensity, no matter how small, begins to act on them. They
must therefore be already in a state of dissociation

;
no part of the electric

intensity is required to effect the separation of the molecule into ions.

Other facts confirm this conclusion, such as for instance the fact that various physical

properties electric conductivity, colour, optical rotatory power, etc. are additive in the

sense that the amount possessed by the whole electrolyte is the sum of the amounts

known to be possessed by the separate ions.

We may therefore suppose that as soon as an electric force begins to act,

all the positive ions begin to move in the direction of the electric force, while

all the negative ions begin to move in the opposite direction. Let us suppose
the average velocities of the positive and negative ions to be u, v respectively,

and let us suppose that there are N of each per unit length of the electrolyte

measured along the path of the current. Then across any cross-section of the

electrolyte there pass in unit time Nu positive ions each carrying a charge se
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in the direction in which the current is measured, and Nv negative ions each

carrying a charge
- se in the reverse direction, s being the valency of each

ion. It follows that the total current is given by

i Nse (u + v) (d).

Each unit of time Nu positive ions cross a cross-section close to the

anode, having started from positions between this cross-section and the

anode. Thus each unit of time Nu molecules are separated in the neigh-
bourhood of the anode, and similarly Nv molecules are separated in the

neighbourhood of the cathode. The concentration of the salt is accordingly
weakened both at the anode and at the cathode, and the ratio of the amounts

of these weakenings is that of u : v. This provides a method of determining
the ratio of u : v.

Also equation (d) provides a method of determining u + v, for i can be

readily measured, and Nse is the total charge which must be passed through
the electrolyte to liberate the ions in unit length, and this can be easily

determined.

Knowing u -f v and the ratio u : v, it is possible to determine u and v.

The following table gives results of the experiments of Kohlrausch on three

chlorides of alkali metals, for different concentrations, the current in each

case being such as to give a potential fall of 1 volt per centimetre.

Concentration
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Conduction through gases.

345 d. In a gas in its normal state, an electric current cannot be carried

in either of the ways which are possible in a solid or a liquid, and it is

consequently found that a gas under ordinary conditions conducts electricity

only in a very feeble degree. If however Rontgen rays are passed through
the gas, or ultra-violet light of very short wave-length, or a stream of the

rays from radium or one of the radio-active metals, then it is found that the

gas acquires considerable conducting powers, for a time at least. For this

kind of conduction it is found that Ohm's Law is not obeyed, the relation

between the current and the potential-gradient being an extremely complex
one.

The complicated phenomena of conduction through gases can all be

explained on the hypothesis that the gas is conducting only when "
ionised,"

and the function of the Rontgen rays, ultra-violet light, etc. is supposed to

be that of dividing up some of the molecules into their component ions.

The subject of conduction through gases is too extensive to be treated here.

In wr at follows it is assumed that the conductors under discussion are not

gases, so that Ohm's Law will be assumed to be obeyed throughout.
i

KIRCHHOFF'S LAWS.

346. Problems occur in which the flow of electricity is not through
a single continuous series of conductors : there may be junctions of three or

more conductors at which the current of electricity is free to distribute itself

between different paths, and it may be important to determine how the

electricity will pass through a network of conductors containing junctions.

The first principle to be used is that, since the currents are supposed

steady, there can be no accumulation of electricity at any point, so that the

sum of all the currents which enter any junction must be equal to the sum
of all the currents which leave it. Or, if we introduce the convention that

currents flowing into a junction are to be counted as positive, while those

leaving it are to be reckoned negative, then we may state the principle in

the form :

The algebraic sum of the currents at any junction must be zero.

From this law it follows that any network of currents, no matter how

complicated, can be regarded as made up of a number of closed currents, each

of uniform strength throughout its length. In some conductors, two or more

of these currents may of course be superposed.

Let the various junctions be denoted by A, B, C, ..., and let their

potentials be VA) VB ,
Vc , .... Let RAB be the resistance of any single con-

ductor connecting two junctions A and B, and let CAB be the current flowing
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through it from A to B. Let us select any path through the network of

conductors, such as to start from a junction and bring us back to the stsirting

point, say -ABC...NA. Then on applying Ohm's Law to the separate: con-

ductors of which this path is formed, we obtain ( 341)

v v r1 T?
'4 YB ^AB-^AB)

SCBC ,

VN-VA = CNARNA .

By addition we obtain 2CR=0 .................................... (269),

where the summation is taken over all the conductors which form the closed

circuit.

In this investigation it has been assumed that there are no discontinuities

of potential, and therefore no batteries, in the selected circuit. If dis-

continuities occur, a slight modification will have to be made. We shall

treat points at which discontinuities occur as junctions, and if A is a junction
of this kind, the potentials at A on the two sides of the surface of separation
between the two conductors will be denoted by VA and VA . Then, by Ohm's

Law, we obtain for the falls of potential in the different conductors of the

circuit,

v v'A YB

VB'-V =

and by addition of these equations

The left-hand member is simply the sum of all the discontinuities of

potential met in passing round the circuit, each being measured with its

proper sign. It is therefore equal to the sum of the electromotive forces of

all the batteries in the circuit, these also being measured with their proper
signs.

Thus we may write 2CR = %E .............................. (270),

where the summation in each term is taken round any closed circuit of

conductors, and this equation, together with

2X7=0 ................................. (271),

in which the summation now refers to all the currents entering or leaving a

single junction, suffices to determine the current in each conductor of the

network.

Equation (271) expresses what is known as KirchhofFs First Law, while

equation (270) expresses the Second Law.
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Conductors in Series.

347. When all the conductors form a single closed circuit, the current

through each conductor is the same, say C, so that equation (270) becomes

The sum 2<R is spoken of as the
"
resistance of the circuit,^ so that the

current in the circuit is equal to the total electromotive force divided by the

total resistance. Conductors arranged in such a way that the whole current

passes through each of them in succession are said to be arranged
"
in

series."

Conductors in Parallel.

348. It is possible to connect any two points A, B by a number of

conductors in such a way that the current divides itself between all these

FIG. 96.

conductors on its journey from A to B, no part of it passing through more

than one conductor. Conductors placed in this way are said to be arranged
"in parallel."

Let us suppose that the two points A, B are connected by a number of

conductors arranged in parallel. Let Rl} R2 ,
... be the resistances of the

conductors, and Clt C.2 ,
... the currents flowing through them. Then if VA> VB

are the potentials at A and B, we have, by Ohm's Law,

The total current which enters at A is C1 + <72 + , say C. Thus we
have

L
R! R.2 RI R2

The arrangement of conductors in parallel is therefore seen to offer the

same resistance to the current as a single conductor of resistance

1

The reciprocal of the resistance of a conductor is called the
"
conductivity

"

of the conductor. The conductivity of the system of conductors arranged

in parallel is
-p- -f -~- + . . .

,
and is therefore equal to the sum of the
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conductivities of the separate conductors. Also we have seen that the

current divides itself between the different conductors in the ratio of their

conductivities.

MEASUKEMENTS.

The Measurement of Current.

349. The instrument used for measuring the current passing in a circuit

at any given instant is called a galvanometer. The theory of this instrument

will be given in a later chapter (Chap. xm).

For measuring the total quantity of electricity passing within a given

time an instrument called a voltameter is sometimes used. The current,

in passing through the voltameter, encounters a number of discontinuities

of potential in crossing which electrical energy becomes transformed into

chemical energy. Thus a voltameter is practically a voltaic cell run back-

wards. On measuring the amount of chemical energy which has been stored

in the voltameter, we obtain a measure of the total quantity of electricity

which has passed through the instrument.

The Measurement of Resistance.

350. The Resistance Box. A resistance box is a piece of apparatus
which consists essentially of a collection of coils of wire of known resistances,

arranged so that any combination of these coils can be arranged in series.

The most usual arrangement is one in which the two extremities of each

coil are brought to the upper surface of the box, and are there connected

to a thick band of copper which runs over the surface of the box. This

FIG. 97.

band of copper is continuous, except between the two terminals of each coil,

and in these places the copper is cut away in such a way that a copper plug
can be made to fit exactly into the gap, and so put the two sides of the gap
in electrical contact through the plug. The arrangement is shewn diagram

-

matically in
fig. 97. When the plug is inserted in any gap DE, the plug

and the coil beneath the gap DE form two conductors in parallel connecting
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the points D and E. Denoting the resistances of the coil and plug by Rc ,
Rp ,

the resistance between D and E will be

1

L _!_'
Rc Rp

and since jRp is very small, this may be neglected. When the plug is

removed, the resistance from D to E may be taken to be the resistance of

the coil. Thus the resistance of the whole box will be the sum of the

resistances of all the coils of which the plugs have been removed.

351. The Wheatstone Bridge. This is an arrangement by which it is

possible to compare the resistances of conductors, and so determine an

unknown resistance in terms of known resistances.

The "
bridge

"
is represented diagrammatically in fig. 98. The current

enters it at A and leaves it at D, these points being connected by the lines

ABD, ACD arranged in parallel. The line AD is composed of two con-

ductors AB, BD of resistances R1} R2 ,
and the line ACD is similarly composed

of two conductors AC, CD of resistances R3 ,
R4 .

If current is allowed to flow through this arrangement of conductors, it

will not in general happen that the points B and C will be at the same

potential, so that if B and C are connected by a new conductor, there will

usually be a current flowing through BC. The method of using the

Wheatstone bridge consists in varying the resistances of one or more of the

conductors R1} R2 ,
R3 ,

R4 until no current flows through the conductor BC.

When the bridge is adjusted in this way, the points B, C must be at the

same potential, say v. Let VA ,
VD denote the potentials at A and D, and

let the current through ABD be (7. Then, by Ohm's Law,

VA -v = C

so that
R2 V-VD'

From a similar consideration of the flow in ACD, we obtain

so that we must have .(272),
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as the condition to be satisfied between the resistances when there is no

current in BC.

Clearly by adjusting the bridge in this way we can determine an unknown

resistance Rt in terms of known resistances R2 ,
R3 ,

R4 . In the simplest

form of Wheatstone's bridge, the line ACD is a single uniform wire, and the

position of the point C can be varied by moving a "sliding contact" along

the wire. The ratio of the resistances ^3 : R4 is in this case simply the ratio

of the two lengths A C, CD of the wire, so that the ratio Rl : R2 can be found

by sliding the contact C along the wire ACD until there is observed to be

no current in BC, and then reading the lengths AC and CD.

EXAMPLES OF CURRENTS IN A NETWORK.

I. Wheatstone's Bridge not in- adjustment.

352. The condition that there shall be no current in the "bridge" BC
in

fig. 98 has been seen to be that given by equation (272).

Suppose that this condition is not satisfied, and let us examine the flow

of currents which then takes place in the network of conductors. Let the

conductors AB, BD, AC, CD as before be of resistances Rl} R2) Rs> R4 ,
and

let the currents flowing through them be denoted by aclt #2 ,
#3 ,

#4 . Let the

bridge BC be of resistance Rb ,
and let the current flowing through it from

B to C be xb .

From Kirchhoff's Laws, we obtain the following equations :

(Law I, point B) xl -x.2 -xb
= Q .................. (273),

(Law I, point C) #3
- #4 + #6

= .................. (274),

(Law II, circuit ABC) X& + xbRb
- xsRs

= .................. (275),

(Law II, circuit BCD) xbRb + x4R4
- x2R.2 = .................. (276).

These four equations enable us to determine the ratios of the five currents

a?,, #2, #s #4> #& We may begin by eliminating #2 and #4 from equations

(273), (274) and (276), and obtain

xb (Rb + R2 + R4) + xzR4
- xA = 0,

and from this and equation (275),

(Rb + R, + R.) + RbR,
~
R3 (Rb + R> + R4) + RbR4

............ (277).
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The ratios of the other currents can be written down from symmetry.

If the total current entering at A is denoted by X, we have X = xl -\- xs .

Thus if each of the fractions of equations (277) is denoted by 0,

X = 6 {(R, + Rs) (Rz + RJ + Rb (R, + R2 + R,+ R4)} (278),

and this gives 6, and hence the actual values of the currents, in terms of the

total current entering at A.

The fall of potential from A to D is given by

VA -VD = R& + R2x2>

and from equations (277) this is found to reduce to

VA -VJ) = \0
)

where

X = R,R9 (R2 + R4) + R,R, (Rs + R,) + Rb (R,Ra + R,R4 4- R1R4 + RA),
so that X is the sum of the products of the five resistances taken three at

a time, omitting the two products of the three resistances which meet at the

points B and C.

There is now a current X flowing through the network, and having a

fall of potential VA YD. Hence the equivalent resistance of the network

KB
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Rn-i, Rn ,
and the resistances of the sections AF1} F^, ... Fn^Fn and FnB

being rlt r2 ,
... rn ,

rn+l . Let the end B be supposed put to earth, and let the

current be supposed to be generated by a battery of which one terminal is

connected to A while the other end is to earth.

The equivalent resistance of the whole network of conductors from A to

earth can be found in a very simple way. Current arriving at Fn from the

section Fn^Fn passes to earth through two conductors arranged in parallel,

of which the resistances are Rn and rn+1 . Hence the resistance from Fn to

earth is

1

JL J_
'

Rn TH+I

and the resistance from Fn_l to earth, through Fn ,
is

r +
l

1

l
........................... (279).

Rn rn+l

Current reaching Fn^ can, however, pass to earth by two paths, either

through the fault at ^_15 or past Fn . These paths may be regarded as

arranged in parallel, their resistances being Rn^ and expression (279)

respectively. Thus the equivalent resistance from Fn^ is

1

B-^w,
or, written as a continued fraction,

1 1 1 1

Hni ~l~ rn + Hn -f Tn+i

We can continue in this way, until finally we find as the whole resistance

from A to earth,

"l i 7*2 i -ft2 i ?*n T -t^n ~\~ fn+\

If the currents or potentials are required, it will be found best to attack

the problem in a different manner.

Let VA ,
Vl) V2 ,

... be the potentials at the points A, F1} F2 , ..., then, by
Ohm's Law,

the current from #_, to F = - -

F V's 's

rs+ i

F8 through the fault =~ .
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Hence, by Kirchhoff's first law,

V^-V. Vs -Vs+l Fg=0
rg rs+1 Rs

or Vg+1 r.+r 1 - Vs (Rs

~ l + rs
~> + rs+rj

) + U-i rr l = 0,

and from this and the system of similar equations, the potentials may be

found.

If all the R's are the same, and also all the r's are the same, the equation

reduces to a difference equation with constant coefficients. These conditions

might arise approximately if the line were supported by a series of similar

imperfect insulators at equal distances apart. The difference equation is in

this case seen to be

and if we put 1 +^ = cosh a,

the solution is known to be

V8
= A cosh sa + B sinh SOL (280),

in which A and B are constants which must be determined from

conditions at the ends of the line. For instance to express that the end B
is to earth, we have Vn+l = 0, and therefore '&

A = -B tanh(n + 1). <^v

III. Submarine cable imperfectly insulated.
iT

354. If we pass to the limiting case of an infinite number of faults, we
have the analysis appropriate to a line from which there is leakage- at every

point. The conditions now contemplated may be supposed to be realised in

a submarine cable in which, owing to the imperfection of the insulating

sheath, the current leaks through to the sea at every point.

The problem in this form can also be attacked -by the methods of the

infinitesimal calculus. Let V be the potential at a distance x along the

cable, V now being regarded as a continuous function of x. Let the

resistance of the cable be supposed, to be R per unit length, then the re-

sistance from x to x -\- dx will be Rdx. The resistance of the insulation from
o

x to x + dx, being inversely proportional to dx, may be supposed to be -*- .

Let C be the current in the cable at the point x, so that the leak from

the cable between the points x and x + dx is -p dx. This leak is a current
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rf

which flows through a resistance -7- with a fall of potential V. Hence by

Ohm's Law,

V M
1 U
dx

-
dV

Also, the fall of potential along the cable from x to x + dx is
-j dx, the

current is C, and the resistance is Rdx. Hence by Ohm's Law,

(282).

Eliminating G from equations (281) and (282), we find as the differential

equation satisfied by F,

d_(dV\_ V
dx \R dx)~ ~S

'

If R and 8 have the same values at all points of the cable, the solution

of this equation is

/R /RV=A cosh y/ -g
x + B sinh ^/ -^

x,

which is easily seen to be the limiting form assumed by equation (280).

GENERATION OF HEAT IN CONDUCTORS.

The Joule Effect.

355. Let P, Q be any two points in a linear conductor, let VP , VQ be

the potentials at these points, R the resistance between them, and x the

current flowing from P to Q. Then, by Ohm's Law,

Vp-VQ = Rx ....................
..
......... (283).

In moving a single unit of electricity from Q to P an amount of work is

done against the electric field equal to VP - VQ. Hence when a unit of

electricity passes from P to Q, there is work done on it by the electric field

of amount VP VQ. The energy represented by the work shews itself in

a heating of the conductor.

The electron theory gives a simple explanation of the mechanism of this transforma-

tion of energy. The electric forces do work on the electrons in driving them through the

field. The total kinetic energy of the electrons can, as we have seen
(

345 a), be regarded

as made up of two parts, the energy of random motion and the energy of forward motion.

The work done by the electric field goes directly towards increasing this second part of

the kinetic energy of the electrons. But after a number of collisions the direction of the

velocity of forward motion is completely changed, and the energy of this motion has

become indistinguishable from the energy of the random motion of the electrons. Thus

the collisions are continually transforming forward motion into random motion, or what

is the same thing, into heat.
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We are supposing that x units of electricity pass per unit time from

P to Q. Hence the work done by the electric field per unit time within the

region PQ is x(Vp VQ), and this again, by equation (283), is equal to Rx*.

Thus in unit time, the heat generated in the section PQ of the con-

ductor represents- Rx* units of mechanical energy. Each unit of energy is

equal to
-j.

units of heat, where J is the " mechanical equivalent of heat."
J

Thus the number of heat-units developed in unit time in the conductor PQ
will be

~Rvz

?f ....................................(284).

It is important to notice that in this formula x and R are measured in

electrostatic units. If the values of the resistance and current are given in

practical units, we must transform to electrostatic units before using formula

(284).

Let the resistance of a conductor be R' ohms, and let the current flowing through it

be x' amperes. Then, in electrostatic units, the values of the resistance R and the current

x are given by

Thus the number of heat-units produced per unit time is

Ra?_ (3xl(y>)2

J "9X1011 ../

and on substituting for Jits value 4'2 x 107 in C.G.S.-centigrade units, this becomes

Generation of Heat a minimum.

356. In general the solution of any physical problem is arrived at by the

solution of a system of equations, the number of these equations being equal
to the number of unknown quantities in the problem. The condition that

any function in which these unknown quantities enter as variables shall be a

maximum or a minimum, is also arrived at by the solution of an equal
number of equations. If it is possible to discover a function of the unknown

quantities such that the two systems of equations become identical, i.e. if

the equations which express that the function is a maximum or a minimum
are the same as those which contain the solution of the physical problem
then we may say that the solution of the problem is contained in the single

statement that the function in question is a maximum or a minimum.

Examples of functions which serve this purpose are not hard to find. In

189, we proved that when an electrostatic system is in equilibrium, its

potential energy is a minimum. Thus the solution of any electrostatic

problem is contained in the single statement that the function which

j. 21
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expresses the potential energy is a minimum. Again, the solution of any

dynamical problem is contained in the statement that the "action" is a

minimum, while in thermodynamics the equilibrium state of any system

can be expressed by the condition that the "
entropy

"
shall be a maximum.

It will now be shewn that the function which expresses he total rate of

generation of heat plays a similar role in the theory of steady electric

currents.

357. THEOREM. When a steady current flows through a network of

conductors in which no discontinuities of potential occur (and which, therefore,

contains no batteries), the currents are distributed in such a way that the rate of

generation of heat in the network is a minimum, subject only to the conditions

imposed by Kirchhoff's first law; and conversely.

To prove this, let us select any closed circuit PQR ... P in the network,

and let the currents and resistances in the sections PQ, QR, ... be xly #2 ,

and Rl} R2 ,
.... Let the currents and resistances in those sections of the net-

work which are not included in this closed circuit be denoted by xa , #&,...

and Ra , R^, Then the total rate of production of heat is

21W + 21W (285).

A different arrangement of currents, and one moreover which does not

violate Kirchhoff 's first law, can be obtained in imagination by supposing all

the currents in the circuit PQR ... P increased by the same amount e. The
total rate of production of heat is now

2l2fl
ffa

9 + 212, fa + e)
2
,

and this exceeds the actual rate of production of heat, as given by expression

(285), by .

2.fi1 (20?1 +.e
a

) (286).

Now if the original distribution of currents is that which actually occurs

in nature, then

21^ = 0,

by Kirchhoff's second law. Thus the rate of production of heat, under the

new imaginary distribution of currents, exceeds that in the actual distribu-

tion by e'212!, an essentially positive quantity.

The most general alteration which can be supposed made to the original

system of currents, consistently with Kirchhoff's first law remaining satisfied,

will consist in superposing upon this system a number of currents flowing
in closed circuits in the network. One such current is typified by the

current e, already discussed. If we have any number of such currents, the

resulting increase in the rate of heat-production

= 2ft (^ 4- e + e' + e" + . . .)
2 -
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where e, e', e", . . . are the additional currents flowing through the resistance

RI. As before this expression

(e + e' + e" + ...) + 2R, (e + e' + e" + ...)
2

by Kirchhoff's second law. This is an essentially positive quantity, so that

any alteration in the distribution of the currents increases the rate of heat-

production. In other words, the original distribution was that in which the

rate was a minimum.

To prove the converse it is sufficient to notice that if the rate of heat-

production is given to be a minimum, then expression (286) must vanish as

far as the first power of e, so that we have

2^ = 0,

and of course similar equations for all other possible closed circuits. These,

however, are known to be the equations which determine the actual dis-

tribution.

358. THEOREM. When a system of steady currents flows through a net-

work of conductors of resistances Rlt R2 ,
. . .

, containing batteries of electromotive

forces El} E^ ..., the currents xly #2 ,
... are distributed in such a way that the

function
21^-22^ ..............................(287)

is a minimum, subject to the conditions imposed by Kirchhoff's first law ; and

conversely.

As before, we can imagine the most general variation possible to consist

of the superposition of small currents e, e', e", . . . flowing in closed circuits.

The increase in the function (287) produced by this variation is

2R [(as + e + e' + ...)
2 - *2

]
- 22# [(x + e + e' + ...)

-
x]

= 2e.(212a?-2#) + 2e' () +

+ 2-R (6 + e' + ...)" ........................... (288).

If the system of currents x, x, ... is the natural system, then the first line

of this expression vanishes by Kirchhoff's second law (cf. equations (270)),

and the increase in heat-production is the essentially positive quantity

shewing that the original value of function (287) must have been a minimum.

Conversely, .if the original value of function (287) was given to be a

minimum, then expression (288) must vanish as far as first powers of e, e', ...,

so that we must have
2Rx = E, etc.,

shewing that the currents x, x
>

... must be the natural system of currents.

212
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359. THEOREM. If two points A, B are connected by a network of con-

ductors, a decrease in the resistance of any one of these conductors will decrease

(or, in special cases, leave unaltered) the equivalent resistance from A to B.

Let x be the current flowing from A to B, R the equivalent resistance of

the network, and VA VB the fall of potential. The generation of heat per

unit time represents the energy set free by x units moving through a

potential-difference VA VB . Thus the rate of generation of heat is

or, since VA VB Rx, the rate of generation of heat will be

Let the resistance of any single conductor in the network be supposed
decreased from R

1
to jR/, and let xl be the current originally flowing through

the network. If we imagine the currents to remain unaltered in spite of the

change in the resistance of this conductor, then there will be a decrease in

the rate of heat-production equal to (Rl R^) x?. The currents now flowing

are not the natural currents, but if we allow the current entering the network

to distribute itself in the natural way, there is, by 357, a further decrease

in the rate of heat-production. Thus a decrease in the resistance of the

single conductor has resulted in a decrease in the natural rate of heat-

production.

If R, R are the equivalent resistances before and after the change, the

two rates of heat-production are Rx2 and Rx2
. We have proved that

R'a?<Rx2
,
so that R < R, proving the theorem.

GENERAL THEORY OF A NETWORK.

360. In addition to depending on the resistances of the conductors, the

flow of currents through a network depends on the order in which the con-

ductors are connected together, but not on the geometrical shapes, positions
or distances of the conductors. ,Thus we can obtain the most general case of

flow through any network by considering a number of points 1, 2, ... n, con-

nected in pairs by conductors of general resistances which may be denoted by
RU> RM> If, in any special problem, any two points P, Q are not joined

by a conductor, we must simply suppose RPQ to be infinite. Discontinuities

of potential must not be excluded, so we shall suppose that in passing through
the conductor PQ, we pass over discontinuities of algebraic sum Epq . This

is the same as supposing that there are batteries in the arm PQ of total

electromotive force Epq . We shall suppose that the current flowing in PQ
from P to Q is XPQ ,

and shall denote the potentials at the points 1, 2, ... by
If, It'....

The total fall of potential from P to Q.is VP VQ ,
but of this an amount
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E-pQ is contributed by discontinuities, so that the aggregate fall from P to

Q which arises from the steady potential gradient in conductors will be

Hence, by Ohm's Law,

If we introduce a symbol Kpq to denote the conductivity -^ ,
we have

the current given by
rr /TT Tr , v

.(289).

Suppose that currents X1} X2 ,
... enter the system from outside at the

points 1, 2, ..., then we must have

since there is to be no accumulation of electricity at the point 1
?
and so on

for the points 2, 3, .... Substituting from equations (289) into the right

hand of this equation,

X, = #M (K

(290).

The symbol KPP has so far had no meaning assigned to it. Let us use it

to denote (KPl + KP2 + KPZ + ...)', then equation (290) may be written in

the more concise form

.) + KlA + Kl3 E,s + .........(291).

There are n equations of this type, but it is easily seen that they are not

all independent. For if we add corresponding members we obtain

X, + Z2 + ... + Xn = - SKC^H + #12 + ... + Kln} + 22 (KPQEPQ + KQPEQP ).

i

The first term on the right vanishes on account of the meaning which has been

assigned to Ku , etc.; while the second term vanishes because EPQ
= EQP ,

while Kpq
= KQP . Thus the equation reduces to

which simply expresses that the total flow into the network .is equal to the

total flow out of it, a condition which must be satisfied by Xlt X2 ,
... Xn at

the outset. Thus we arrive at the conclusion that the equations of system

(291) are not independent.

This is as it should be, for if the equations were independent, we should have

n equations from which it would be possible to determine the values of F1? F2 ,
... in

terms of JTX ,
T2 , ...; whereas clearly from a knowledge of the currents entering the

network, we must be able to determine differences of potential only, and not absolute

values.
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To the right-hand side of equation (291), let us add the expression

of which the value is zero by the definition ofKu . The equation becomes

V-
, TT J? . TT 7,T

. . TT T?= A! + A 12^ 12 + A 13A 13 + ... -f A lw /irlw .

There are n equations of this type in all. Of these the first (n 1) may
be regarded as a system of equations determining

K-Vn, V,-Vn> ..., Vn-.-Vn.

That these equations are independent will be seen a posteriori from the fact

that they enable us to determine the values of the n 1 independent

quantities
V V V V V Vr \ 'n, '2 'n> > 'n l 'n*

Solving these equations, we have

V _i_ V V V V
11^21 + ... ~\- -t\.2n J2sm ,

A 22, -ft-23)

7? _L _L V J? IT If
i lj il2sn_i il

-+- ... -f- /i. n_])W J^n i,n) -K-n1,2) -^-n i

I IT 77- T7- rr
\ -"-U) -^-12? -^-13) > f*-l,nl

IT ir ir IT1 21 , -fl-^, ^-23) ! ^*-2,n 1

.., -L\.n }
t ni

The current flowing in conductor In follows at once from equation (289),

and the currents in the other conductors can be written down from

symmetry.

If we denote the determinant in the denominator of the foregoing

equation by A, and the minor of the term KPQ by Apy ,
we find that the

value of Vl Vn can be expressed in the form

(292).

361, Suppose first that the whole system of currents in the network is

produced by a current X entering at P and leaving at Q, there being no

batteries in the network. Then all the E's vanish, and all the X's vanish

except XP and XQ) these being given by

= -XQ
= X.
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Equation (292) now becomes

T7" T7 V ^Pl V ^1K-K=-ZP -XQ
--

so that K-K = (^-K)-(K-K)

=
^(A^1 -Ay2 -A P1 -hAP.2) (293).

Replacing 1, 2 by P, Q and P, Q by 1, 2, we find that if a current X
enters the network at 1 and leaves it at 2, the fall of potential from P
to Q is

VP - VQ = -^ (A2P
- A2Q

- A,P + A1Q) (294),

and since Ars
= Asr ,

it is clear that the right-hand members of equations

(293) and (294) are identical.

From this we have the theorem :

The potential-fall from A to B when unit current traverses the network

from C to D is the same as the potential-fall from C to D when unit current

traverses the networkfrom A to B.

362. Let it now be supposed that the whole flow of current in the

network is produced by a battery of electromotive force E placed in the

conductor PQ. We now take all the X's equal to zero in equation (292)

and all the E's equal to zero except EPQ which we put equal to E, and

EQP which we put equal to E. We then have

Hence K- K = (AP1
- A^- A

yi + A,2) (295),

and, by equation (289), the current flowing in the arm 12 is

h -
K*K tE

(*n - Afa
- A

gl + Ay) (296).

This expression remains unaltered if we replace 1, 2 by P, Q and P, Q by

1, 2. From this we deduce the theorem :

The current which flows from A to B when an electromotive force E is

introduced into the arm CD of the network, is equal to the current which flows

from C to D when the same electromotive force is introduced into the

arm AB.
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Conjugate Conductors.

363. The same expression occurs as a factor in the right-hand members

of each of the equations (293), (294), (295), and (296), namely,

-Am -A; .(297).

If this expression vanishes, the two conductors 12 and PQ are said to be
"
conjugate."

By examining the form assumed by equations (293) to (296), when

expression (297) vanishes, we obtain the following theorems.

THEOREM I. If the conductors AB and CD are conjugate, a current

entering at A and leaving at B will produce no current in CD. Similarly,

a current entering at C and leaving at D will produce no current in AB.

THEOREM II. If the conductors AB and CD are conjugate, a battery

introduced into the arm AB produces no current in CD. Similarly, a battery

introduced into the arm CD produces no current in AB.

As an illustration of two conductors which are conjugate, it may be

noticed that when the Wheatstone's Bridge ( 352) is in adjustment, the

conductors AD and BC are conjugate.

Equations expressed in Symmetrical Form.

364. The determinant A is not in form a symmetric function of the

n points 1, 2, ..., n, so that equations and conditions which must necessarily

involve these n points symmetrically have not yet been expressed in

symmetrical form.

We have, for instance,

5T K K K K
T
{. K K K K

"n i,i) "! -"- n 1, 1,5 >
-"-

in which the points which enter unsymmetrically are not. only 1 and 3, but

also n. Similarly, we have

-21) **8t* -*Mj -^25) >

flj -^32> AMI *** '

so that, on subtraction,

A 13-A 14
:

T7 W \

/122, A 23 -J-

#32, #33 +

#n-i,i> #w-i,2) #ri-i,3+ #w-l,4> #w-i,5) >



363, 364] General Theory of a Network 329

From the relation

TZ i Z7" i ~KT \ IT C\ ^9QS\A P1 -f -ti-pz + . .. + AP)/l
_1 + -K-p,n

== " V^yo,)*

it follows that the sum of all the terms in the first row of the above deter-

minant is equal to #2>n ,
the sum of all the terms in the second row is equal

to K^ n ,
and so on. Thus the equation may be replaced by

A A / I \n
| J7' J7" ff

13 ^14 \ "/ -*-*-21> -** 22 > -**-25> '
>

-"-n 1,1 5 -t*-n 1,2> -"-n i,s> > -"-n i,w 1 -"-n i,n

and similarly,

A.23 -A 21 =(-ir-^
31 > #32 > #35 > >

These two determinants differ only in their first row, so that on sub-

traction,

(A13 -A 14)-(A23 -A24)

K K K

"-n 1,25 -"-n 1,5> > **-w l, n

"- 31 )
" 32 >

-** 35 > )
"-

3, ?l

^C^^r^r;^ (2">>

Knl ,
Kn2 ,

Kn5 , ..., Knn
the last transformation being effected by the use of relation (298).

The relation which has now been obtained is in a symmetrical shape. If

D is a symmetrical determinant given by

K K K
K K K

K K K
then the determinant on the right-hand of equation (299) is obtained from
D by striking out the lines and columns which contain the terms K13 and K^.
Thus equation (299) may be written in the form

+ A24 -A23 -A 14
=-
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Again the determinant A given by

K*' K^'

"".

K
*' n~l

..
(30 )

r K K K

may be written in the form

A =^ .

This is not of symmetrical form, for the point n enters unsymmetrically.

We can, however, easily shew that the value of A is symmetrical, although its

form is unsymmetrical.

By application of relation (298), we can transform equation (300) into

I V V V VA
n>1 ,

2i
nj 2? -A-71,3? ) -fl-Tl.Tl-l

IT IT W IT
-O-21) ^22) -/1-23? ? -^-2,71 1

rr jr TT" IT" n 1,1? J-^-n 1,2? -"-TI 1,3? ?
** 7i l, n i

=
( l)

n~ J KK, KM, K?z, -, Ka,n-i

T TT IT IT
*-n 1,1? -^-711,2? *!,> ? -"-n i,n-

K K K
v v TV
.ft. 22 , -**-23) ? -ft-2,71 1) ^2,71

-^711,2) -^711,3) > -^711,711? -t*-n 1,71

7^ JT Jf Jf

Thus A is the differential coefficient of Z) with respect to either .fifu or

Kn,n> r of course with respect to any other one of the terms in the leading

diagonal of D. Thus, if K denote any term in the leading diagonal of D,

we have

and this virtually expresses A in a symmetrical form.

We can now express in symmetrical form the relations which have been

obtained in 360 to 362, as follows :

I. ( 362.) The conductors 1, 2 and P, Q will be conjugate if

- = 0.
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II. (Equation 293.) If the conductors 1, 2 and P, Q are not conjugate,

a current X entering at P and leaving at Q produces in 1, 2 a fall of

potential given by

III. (Equation 295.) If the conductors 1, 2 awe? P, Q are no conjugate,

a battery of electromotive force E placed in the arm PQ produces in 1, 2 a fall

of potential given by

and a current from 1 o 2 given by

All these results and formulae obtain illustration in the results already

obtained for the Wheatstone's Bridge in 351 and 352.

SLOWLY-VARYING CURRENTS.

365. All the analysis of the present chapter has proceeded upon the

assumption that the currents are absolutely steady, shewing no variation

with the time. Changes in the strength of electric currents are in general

accompanied by a series of phenomena, which may be spoken of as
"
induction phenomena," of which the discussion is beyond the scope of the

present chapter. If, however, the rate of change of the strength of the

currents is very small, the importance of the induction phenomena also

becomes very small, so that if the variation of the currents is slow, the

analysis of the present chapter will give a close approximation to the truth.

This method of dealing with slowly-varying currents will be illustrated by
two examples.

I. Discharge of a Condenser through a high Resistance.

366. Let the two plates A ,
B of a condenser of capacity G be connected

by a conductor of high resistance R, and let the condenser be discharged by

leakage through this conductor. At any instant let the potentials of the two

plates be VA ,
VB) so that the charges on these plates will be + C(VA VB).

Let i be the current in the conductor, measured in the direction from A to B.
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Then, by Ohm's Law,
VA -VB = Ri,

whence we find that the charges on plates A and B are respectively + CRi

and CRi. Since i units leave plate A per unit time, we must have

a differential equation of which the solution is

where iQ is the current at time t = 0. The condition that the strength of

the current shall only vary slowly is now seen a posteriori to be that OR
shall be large.

At time t the charge on the plate A is CRi or

t

CRi e CR.

This may be written as

where Q is the charge at time t = 0. Thus both the charge and the current

are seen to fall off exponentially with the time, both having the same modulus

of decay CR.

Later ( 516) we shall examine the same problem but without the limita-

tion that the current only varies slowly.

II. Transmission of Signals along a Cable.

367. It has already been mentioned that a cable acts as an electrostatic

condenser of considerable capacity. This fact retards the transmission of

signals, and in a cable of high-capacity, the rate of transmission may be so

slow that the analysis of the present chapter can be used without serious

error.

Let # be a coordinate which measures distances along the cable, let F, i

be the potential at x and the current in the direction of ^-increasing, and let

K and R be the capacity and resistance of the cable per unit length, these

latter quantities being supposed independent of x.

The section of the cable between points A and B at distances x and

x + dx is a condenser of capacity Kdx t
and is at the same time a conductor
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of resistance Rdx. The potential of the condenser is V, so that its charge is

VKdx. The fall of potential in the conductor is

so that by Ohm's Law,
97
^ dx iRdx (301).
xj/ji

^
- '

The current enters the section AB at a rate i units per unit time, and

leaves at a rate of i + - dx units per unit time. Hence the charge in this

section decreases at a rate ~- dx per unit time, so that we must have
dx

di ,

.............. .........(302)-

Eliminating i from equations (301) and (302), we obtain

- ..............................<*>

368. This equation, being a partial differential equation of the second

order, must have two arbitrary functions in its complete solution. We shall

shew, however, that there is a particular solution in which V is a function of

the single variable xf*Jt, and this solution will be found to give us all the

information we require.

Let us introduce the new variable u, given by u = xj*Jt, and let us assume

provisionally that there is a solution V of equation (303) which is a function

of u only. For this solution we must have

t du*
'

== _
dt du dt V*

3 du '

so that equation (303) becomes

The fact that this equation involves 7 and u only, shews that there is an

integral of the original equation for which 7 is a function of u only. This

integral is easily obtained, for equation (304) can be put in the form

d

whence _ = Ce
du

in which C is a constant of integration.
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Integrating this, we find that the solution for V is

in which the lower limit to the integral is a second constant of integration.

Introducing a new variable y such that y'
2 = \KRit?, and changing the

constants of integration, we may write the solution in the form

r

'I
J

(305).

369. We must remember that this is not the general solution of equa-
tion (303), but is simply one particular solution. Thus the solution cannot

be adjusted to satisfy any initial and boundary conditions we please, but will

represent only the solution corresponding to one definite set of initial and

boundary conditions. We now proceed to examine what these conditions are.

At time = 0, the value of xj*Jt is infinite except at the point x = 0.

Thus except at this point, we have V= TJ when t = 0. At this point the

value of xjijt is indeterminate at the actual instant t = 0, but immediately
after this instant assumes the value zero, which it retains through all time.

Thus at x = 0, the potential has the constant value

or, say, F = If, where C' = .

VTT

At x = oo
,
the value of V is V = V through all time.

Thus equation (305) expresses the solution for a line of infinite length
which is initially at potential F=T, and of which the end x= oo remains at

this potential all the time, while the end x = is raised to potential Tf by

being suddenly connected to a battery-terminal at the instant t = 0.

The current at any instant is given by

1 8F ^

i = -f= -~- ,
from equation (301),

_C'l /
R 2V e it~, from equation (305),

(306).

We see that the current vanishes only when t = and when = oo .

Thus even within an infinitesimal time of making contact, there will,

according to equation (306), be a current at all points along the wire. It

must, however, be remembered that equation (306) is only an approxima-

tion, holding splely for slowly-varying currents, so that we must not apply
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the solution at the instant t = at which the currents, as given by equation

(306), vary with infinite rapidity. For larger values of t, however, we may
suppose the current given by equation (306).

The maximum current at any point is found, on differentiating equation

(306), to occur at the instant given by
i 1 TTP/r-2 ^Qn*7\t s- J\_ J\ui> ^OU I

),

so that the further along the wire we go, the longer it takes for the current

to attain its maximum value. The maximum value of this current, when it

occurs, is

'*
(308),

and so is proportional to -
. Thus the further we go from the end x = 0, the

cc

smaller the maximum current will be.

We notice that K occurs in expression (307) but not in (308). Thus the

electrostatic capacity of a cable will not interfere with the strength of signals

sent along a cable, but will interfere with the rapidity of their transmission.
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EXAMPLES.

1. A length 4a of uniform wire is bent into the form of a square, and the opposite

angular points are joined with straight pieces of the same wire, which are in contact

at their intersection. A given current enters at the intersection of the diagonals and
leaves at an angular point : find the current strength in the various parts of the network,
and shew that its whole resistance is equal to that of a length

2\/2 + l

of the wire.

/' 2. A network is formed of uniform wire in the shape of a rectangle of sides 2a, 3a,
with parallel wires arranged so as to divide the internal space into six squares of sides a,

the contact at points of intersection being perfect. Shew that if a current enter the

framework by one corner and leave it by the opposite, the resistance is equivalent to that

of a length 121a/69 of the wire.
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3. A fault of given earth-resistance develops in a telegraph line. Prove that the

current at the receiving end, generated by an assigned battery at the signalling end, is

least when the fault is at the middle of the line.

/4. The resistances of three wires BC, CA, AB, of the same uniform section and

limerial, are a, b, c respectively. Another wire from A of constant resistance d can make

a sliding contact with BC. If a current enter at A and leave at the point 6f contact

with BC, shew that the maximum resistance of the network is

and determine the least resistance.

/5. A certain kind of cell has a resistance of 10 ohms and an electromotive force of

85 of a volt. Shew that the greatest current which can be produced in a wire whose

resistance is 22*5 ohms, by a battery of five such cells arranged in a single series, of

which any element is either one cell or a set of cells in parallel, is exactly '06 of an

6. Six points A, A', B, B', C, C' are connected to one another by copper wire whose

lengths in yards are as follows: AA'= 16, BC=B'C=l, BC'= B'C'= 2, AB= A'B' = 6,

AC'= A'C'= &. Also B and B' are joined by wires, each a yard in length, to the terminals

of a battery whose internal resistance is equal to that of r yards of the wire, and all the

wires are of the same thickness. Shew that the current in the wire AA' is equal to that

which the battery would maintain in a simple circuit consisting of 31r+ 104 yards of

the wire.

7. Two places A, B are connected by a telegraph line of which the end at A is

connected to one terminal of a battery, and the end at B to one terminal of a receiver,

the other terminals of the battery and receiver being connected to earth. At a point C
of the line a fault is developed, of which the resistance is r. If the resistances of AC, CB
be p, q respectively, shew that the current in the receiver is diminished in the ratio

r(p+q) : qr+ rp+pq,
the resistances of the battery, receiver and earth circuit being neglected.

A/8. Two cells of electromotive forces elt e% and resistances r1} r2 are connected in

parallel to the ends of a wire of resistance R. Shew that the current in the wire is

and find the rates at which the cells are working.

s^9. A network of conductors is in the form of a tetrahedron PQRS ;
there is a battery

of electromotive force E in PQ, and the resistance of PQ, including the battery, is R.

If the resistances in QR, RP are each equal to r, and the resistances in PS, RS are each

equal to \r, and that in QS=$r, find the current in each branch.

A, B, C, D are the four junction points of a Wheatstone's Bridge, and the

resistances c, /3, b, y in AB, BD, AC, CD respectively are such that the battery sends no

current through the galvanometer in BC. If now a new battery of electromotive force E
be introduced into the galvanometer circuit, and so raise the total resistance in that

circuit to a, find the current that will flow through the galvanometer.

11. A cable AB, 50 miles in length, is known to have one fault, and it is necessary to

localise it. If the end A is attached to a battery, and has its potential maintained

at 200 volts, while the other end B is insulated, it is found that the potential of B when
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steady is 40 volts. Similarly when A is insulated the potential to which B must be raised

to give A a steady potential of 40 volts is 300 volts. Shew that the distance of the fault

from A is 19'05 miles.

12. A wire is interpolated in a circuit of given resistance and electromotive force.

Find the resistance of the interpolated wire in order that the rate of generation of heat

mayybe a maximum.

<y!3.
The resistances of the opposite sides of a Wheatstone's Bridge are-&, OL and b, b'

respectively. Shew that when the two diagonals which contain the battery and galvano-

meter are interchanged,
E E _(a-a'}(b-V}(G-R)
C C'~ aa'-bb' '

where C and C' are the currents through the galvanometer in the two cases, G and R are

the resistances of the galvanometer and battery conductors, and E the electromotive force

of the battery.

. 14. A current C is introduced into a network of linear conductors at A, and taken

ont at B, the heat generated being ff1 . If the network be closed by joining A, B by a

resistance r in which an electromotive force E is inserted, the heat generated is ff
z .

Prove that

vl5. A number N of incandescent lamps, each of resistance r, are fed by a machine of

resistance R (including the leads). If the light emitted by any lamp is proportional to

the square of the heat produced, prove that the most economical way of arranging the

lamps is to place them in parallel arc, each arc containing n lamps, where n is the integer

nearest to \/NRjr.

y/16.
A battery of electromotive force E and of resistance B is connected with the two

terminals of two wires arranged in parallel. The first wire includes a voltameter which

contains discontinuities of potential such that a unit current passing through it for a

unit time does p units of work. The resistance of the first wire, including the voltameter,
is R : that of the second is r. Shew that if E is greater than p (B+ r)/r, the current

through the battery is

/ Rr+B(R+ry
V 17. A system of 30 conductors of equal resistance are connected in the same way as

the edges of a dodecahedron. Shew that the resistance of the network between a pair of

opposite corners is ^ of the resistance of a single conductor.

^18.
In a network PA, PB, PC, PD, AB, BC, CD, DA, the resistances are a, & y, 8,

y+ 8, 8+ a, a+/3, /3+y respectively. Shew that, if AD contains a battery of electromotive

force E, the current in BC is

-ay)
2 '

Q = /3y+ ya+ a/3+ ad+ j8d + yd.

A wire forms a regular hexagon and the angular points are joined to the centre

by wires each of which has a resistance - of the resistance of a side of the hexagon.
72*

Shew that the resistance to a current entering at one angular point of the hexagon and

leaving it by the opposite point is

2(^+ 3)

times the resistance of a side of the hexagon.

J. 22
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/20. Two long equal parallel wires AB, A'B', of length I, have their ends B, B' joined

by a wire of negligible resistance, while A, A' are joined to the poles of a cell whose

resistance is equal to that of a length r of the wire. A similar cell is placed as a bridge

across the wires at a distance x from A, A'. Shew that the effect of the second cell is to

increase the current in BB' in the ratio

2 (2l+r) (x+r)l{r(4l+ r) + 2# (2J
-

r)
-
4^}.

21. There are n points 1, 2, ... n, joined in pairs by linear conductors. On introducing

a current C at electrode 1 and taking it out at 2, the potentials of these are F1? F2 ,
... Fn .

If #12 is the actual current in the direction 12, and #12
'

any other that merely satisfies the

conditions of introduction at 1 and abstraction at 2, shew that

2 (r12#w*ia
f

)
=

( F!
- F2) (7= 2 (ria ffla ),

and interpret the result physically.

If x typify the actual current when the current enters at 1 and leaves at 2, and y

typify the actual current when the current enters at 3 and leaves at 4, shew that

2 (r12 a?12yia)
=

(JT.
- JT4) C= (

Yl
- F2) C,

where the X's are potentials corresponding to currents x, and the Js are potentials

corresponding to currents y.

/ 22. A, B, C are three stations on the same telegraph wire. An operator at A knows

that there is a fault between A and B, and observes that the current at A when he uses a

given battery is i, i' or i", according as B is insulated and C to earth, B to earth, or B
and C both insulated. Shew that the distance of the fault from A is

{ka
- k'b+ (b- a)* (ka

-
k'bfy/(k

-
k'\

where AB=a, BC=b-a, *=T>, #=r,.

23. Six conductors join four points A, B, C, D in pairs, and have resistances

a, a, 6, ft c, y, where a, a refer to BC, AD respectively, and so on. If this network

be used as a resistance coil, with A, B as electrodes, shew that the resistance cannot

lie outside the limits

24. Two equal straight pieces of wire AoAn ,
B Bn are each divided into n equal parts

at the points A 1 ... A n _ 1 and Bl ...Bn _ 1 respectively, the resistance of each part and

that of A nBn being R. The corresponding points of each wire from 1 to n inclusive

are joined by cross wires, and a battery is placed in A^BQ. Shew that, if the current

through each cross wire is the same, the resistance of the cross wire A 8B8 is

y/25. If n points are joined two and two by wires of equal resistance r, and two of

them are connected to the electrodes of a battery of electromotive force E and resistance

R, shew that the current in the wire joining the two points is

IE

Six points A, B, C, D, P, Q are joined by nine conductors AB, AP, BC, BQ, PQ,

QC, PD, DC, AD. An electromotive force is inserted in the conductor AD, and a

galvanometer in PQ. Denoting the resistance of any conductor XY by rxy, shew that

if no current passes through the galvanometer,
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27. A network is made by joining the five points 1, 2, 3, 4, 5 by conductors in every

possible way. Shew that the condition that conductors 23 and 14 are conjugate is

where JT is conductivity of conductor rs.

28. Two endless wires are each divided into mn equal parts by the successive

terminals of mn connecting wires, the resistance of each part being R. There is an

identically similar battery in every mih connecting wire, the total resistance of each

being the same, and the resistance of each of the other mn n connecting wires is h.

Prove that the current through a connecting wire which is the rth from the nearest

battery is

^C(l - tan a) (tan
r a -ftan- 1

*

a)/(tan a- tanw a),

where C is the current through each battery, and sin 2a=A/(A+/2).

29. A long line of telegraph wire A A^A^ ... A nAn + l is supported by n equidistant

insulators at A l ,
A 2 ,

... A n . The end A is connected to one pole of a battery of electro-

motive force E and resistance B, and the other pole of this battery is put to earth, as

also the other end A n + i
of the wire. The resistance of each portion AA^ AiA 2 ,

...

A nA n + i
is the same, R. In wet weather there is a leakage to earth at each insulator,

whose resistance may be taken equal to r. Shew that the current strength in APAP + 1 is

where 2 sinh a=

30. A regular polygon A^A^...A }L is formed of n pieces of uniform wire, each of.

resistance cr,
and the centre is joined to each angular point by a straight piece of the

same wire. Shew that, if the point is maintained at zero potential, and the point A l

at potential F, the current that flows in the conductor A rA r + i is

2 V sinh a sinh (n
- 2r+l)a

a- cosh na

where a is given by the equation
7T

cosh 2a=l+ sin .

n

31. A resistance network is constructed of %n rectangular meshes forming a truncated

cylinder of 2n faces, with two ends each in the form of a regular polygon of 2/i sides.

Each of these sides is of resistance r, and the other edges of resistance R. If the

electrodes be two opposite corners, then the resistance is

where sinh2 ^=-yi
.

ZiLl/

32. A network is formed by a system of conductors joining every pair of a set of

n points, the resistances of the conductors being all equal, and there is an electromotive

force in the conductor joining the points A lt A 2 . Shew that there is no current in any
conductor except those which pass through AI or J 2) and find the current in these

conductors.

222
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33. Each member of the series of n points A\, A^...A n is united to its successor

by a wire of resistance p, and similarly for the series of n points Slt BI, ...Bn . Each

pair of points corresponding in the two series, such as A r and Br ,
is united by a wire

of resistance R. A steady current i enters the network at A l and leaves it at Bn . Shew

that the current at AI divides itself between AiA 2 and A^ in the ratio

sinha+sinh(tt 1) a+ sinh (n 2) a : sinha+ sinh (n l)a sinh (n--2) a,

R+Pwhere cosh a= ~
.

34. An underground cable of length a is badly insulated so that it has faults

throughout its length indefinitely near to one another and uniformly distributed. The

conductivity of the faults is 1/p' per unit length of cable, and the resistance of the

cable is p per unit length. One pole of a battery is connected to one end of a cable

and the other pole is earthed. Prove that the current at the farther end is the same

as if the cable were free from faults and of total resistance

"'

tanh

35. Two parallel conducting wires at unit distance are connected by n -f 1 cross pieces

of the same wire, so as to form n squares. A current enters by an outer corner of the

first square, and leaves by the diagonally opposite corner of the last. Shew that, if

the resistance is that of a length %n+ an of the wire,

/36. A, B are the ends of a long telegraph wire with a number of faults, and C is

an intermediate point on the wire. The resistance to a current sent from A is R when
C is earth connected, but if C is not earth connected the resistance is S or T according
as the end B is to earth or insulated. If R', <S", T' denote the resistances under similar

circumstances when a current is sent from B towards A, shew that

T'(R-S} = R'(R-T).

37. The inner plates of two condensers of capacities (7, C' are joined by wires of

resistances R, R' to a point P, and their outer plates by wires of negligible resistance

to a point Q. If the inner plates be also connected through a galvanometer, shew that

the needle will suffer no sudden deflection on joining P, Q to the poles of a battery,
if CR=C'R.

38. An infinite cable of capacity and resistance K and R per unit length is at zero

potential. At the instant t=0 one end is suddenly connected to a battery for an
infinitesimal interval and then insulated. Shew that, except for very small values of t,

the potential at any instant at a distance x from this end of the cable will be pro-

portional to

1

l



CHAPTER X

STEADY CURRENTS IN CONTINUOUS MEDIA

Components of Current.

370. IN the present chapter we shall consider steady currents of elec-

tricity flowing through continuous two- and three-dimensional conductors

instead of through systems of linear conductors.

We can find the direction of flow at any point P in a conductor by

imagining that we take a small plane of area dS and turn it about at the

point P until we find the position in which the amount of electricity crossing

it per unit time is a maximum. The normal to the plane when in this

position will give the direction of the current at P, and if the total amount

of electricity crossing this plane per unit time when in this position is CdS,

then C may be defined to be the strength of the current at P.

If I, m, n are the direction-cosines of the direction of the current at P,

then the current C may be treated as the superposition of three currents

1C, mC, nC parallel to the axes. To prove this we need only notice that the

flow across an area dS of which the normal makes an angle with the direc-

tion of the current, and has direction-cosines I', m, n', must be CdS cos 0, or

The first term of this expression may be regarded as the contribution from

a current 1C parallel to the axis Ox, and so on. The quantities 1C, mC, nC
are called the components of the current at the point P.

Lines and Tubes of Flow.

371. DEFINITION. A line of flow is a line drawn in a conductor such

that at every point its tangent is in the direction of the current at the point.

DEFINITION. A tube of flow is a tubular region of infinitesimal cross-

section, bounded by lines of flow.
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It is clear that at every point on the surface of a tube of flow, the current

is tangential to the surface. Thus no current crosses the boundary of a tube

of flow, from which it follows that the aggregate current flowing across all

cross-sections of a tube of flow will be the same.

The amount of this current will be called the strength of the tube.

Thus if C is the current at any point of a tube of flow, and if o> is the

cross-section of the tube at that point, then Ceo is constant throughout the

length of the tube, and is equal to the strength of the tube.

There is an obvious analogy between tubes of flow in current electricity and tubes

of force in statical electricity, the current C corresponding to the polarisation P.

In current electricity, Ca> is constant and equal to the strength of the tube of flow,

while in statical electricity PC* is constant and equal to the strength of the tube of force

( 129).

Specific Resistance.

372. The specific resistance of a substance is defined to be the resistance

of a cube of unit edge of the substance, the current entering by a perfectly

conducting electrode which extends over the whole of one face, and leaving

by a similar electrode on the opposite face.

The specific resistances of some substances of which conductors and insulators are

frequently made are given in the following table. The units are the centimetre and
the ohm.

Silver 1'61 x l6~ 6
. Dilute sulphuric acid (^ acid at 22 C.) 3'3.

Copper ... l-64xlO~ 6
. (| acid at 22 C.) 1-6.

Iron (soft) ... 9-83 x 10
~ 6

. Glass (at 200 C.) 2-27 x 107
.

(hard) ... 9-06x10-6. (at400C.) 7'35 x 104
.

Mercury ... 96'15xlO- 6
. Guttapercha, about 3xl014

.

If T is the specific resistance of any substance, the resistance of a wire

of length I and cross-section s will clearly be .

Ohms Law.

373. In a conductor in which a current is flowing, different points

will, in general, be at different potentials. Thus there will be a system
of equipotentials and of lines of force inside a conductor similar to those

in an electrostatic field. It is found, as an experimental fact, that in a

homogeneous conductor, the lines of flow coincide with the lines of force

or, in other words, the electricity at every point moves in the direction of

the forces acting on it.

In considering the motion of material particles in general it is not usually true that the

motion of the particles is in the direction of the forces acting upon them. The velocity
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of a particle at the end of any small interval of time is compounded of the velocity at

the beginning of the interval together with the velocity generated during the interval.

The latter velocity is in the direction of the forces acting on the particle, but is generally

insignificant in comparison with the original velocity of the particle. In the particular

case in which the original velocity of the particle was very small, the direction of motion

at the end of a small interval will be that of the force acting on the particle. If the

particle moves in a resisting medium, it may be that the velocity of the particle is kept

permanently very small by the resistance of the medium : in this case tire direction of

motion of the particle at every instant, relatively to the medium, may be that of the

forces acting on it.

On the modern view of electricity, a current of electricity is composed of electrons

which are driven through a conductor by the electric forces acting on them, and in

their motion experience frequent collisions with the molecules of the conductor. The

effect of these collisions is continually to check the forward velocity of the electrons, so

that this forward velocity is kept small just as if they were moving through a resisting

medium of the ordinary kind, and so it comes about that the direction of flow of current

is in the direction of the electric intensity (cf. 345 a).

374. Let us select any tube of force of small cross-section inside a

conductor, and let P, Q be any two points on this tube of force, at which

the potentials are VP and VQ ,
the former being the greater. Let these

points be so near together that throughout the range PQ the cross-section

of the tube of force may be supposed to have a constant value &>, while the

specific resistance of the material of the conductor may be supposed to

have a constant value r.

From what has been said in 373, it follows that the tube of force under

consideration is also a tube of flow. If denotes the current, then the

current flowing through this tube of flow in the direction from P to Q
will be Ceo. This current may, within the range PQ, be regarded as flowing

through a conductor of cross-section co and of specific resistance r. The

resistance of this conductor from P to Q is accordingly ,
while the fall

O)

of potential is VP - VQ . Thus by Ohm's Law

so that ,,^
g = Cr.

If =- denotes differentiation along the tube of force, the fraction on the
OS

left of the foregoing equation reduces, when P and Q are made to coincide,

to --
,
so that the equation assumes the form

~^=Gr (309).
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Let I, m, n be the direction-cosines of the line of flow at P, and let u, v,

be the components of the current at P, so that u = 1C, etc. Then

8F
7
87

TT- I ^ ICr = UT, etc.,
dx os

and we see that equation (309) is equivalent to the three equations

T 9a?

.(310).

w-
-5T 02

These equations express Ohm's Law in a form appropriate to flow through

a solid conductor.

Equation of Continuity.

375. Since we are supposing the currents to be steady, the amount of

current which flows into any closed region must be exactly equal to the

amount which flows out. This can be expressed by saying that the integral

algebraic flow into any closed region must be nil.

Let any closed surface S be taken entirely inside a conductor. Let I, ra, n

be the direction-cosines of the inward normal to any element dS of this

surface, and let u, v, w be the components of current at this point. Then

the normal component of flow across the element dS is lu + mv + nw, and the

condition that the integral algebraic flow across the surface S shall be nil is

expressed by the equation

(lu + mv + nw) dS = 0.

By Green's Theorem ( 176), this equation may be transformed into

and since this integral has to vanish, whatever the region through which it is

taken, each integrand must vanish separately. Hence at every point inside

the conductor, we must have

3J? + 9J! +^ = ...........................(311).
dx dy dz

This is the so-called "equation of continuity," expressing that no elec-

tricity is created or destroyed or allowed to accumulate during the passage
of a steady current through a conductor.
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The same equation can be obtained at once on considering the current-

flow across the different faces of a small rectangular parallelepiped of edges

dx, dy, dz (cf. 49).

Equation (310) of course expresses that the vector C of which the

components are u, v, w, must be solenoidal. The equation of continuity

can accordingly be expressed in the form

div C = 0.

Equation satisfied by the Potential.

376. On substituting in equation (311) the values for u, v, w given by

equations (310), we obtain

............ (312).

The potential must accordingly be a solution of this differential equation.

The equation is the same as would be satisfied by the potential in an

uncharged dielectric in an electrostatic field, provided the inductive capacity

at every point is proportional to -. If the specific resistance of the con-

ductor is the same throughout, the differential equation to be satisfied by
the potential reduces to

V*F=0.

377. We may for convenience suppose that the current enters and leaves

by perfectly conducting electrodes, and that the conductor through which the

current flows is bounded, except at the electrodes, by perfect insulators. Then,

over the surface of contact between the conductor and the electrodes, the

potential will be constant. Over the remaining boundaries of the conductor,

the condition to be satisfied is that there shall be no flow of current, and this

is expressed mathematically by the condition that
-^

shall vanish.

Thus the problem of determining the current-flow in a conductor amounts

mathematically to determining a function V such that equation (312) is satis-

fied throughout the volume of the conductor, while either = 0, or else V has

a specified value, at each point on the boundary. By the method used in 188,

it is easily shewn that the solution of this problem is unique.

It is only in a very few simple cases that an exact solution of the problem
can be obtained. There are, however, various artifices by which approxima-
tions can be reached, and various ways of regarding the problem from which it

may be possible to form some ideas of the physical processes which determine

the nature of the flow in a conductor. Some of these will be discussed later

( 386 394). At present we consider general characteristics of the flow of

currents through conductors.
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CONDITIONS TO BE SATISFIED AT THE BOUNDARY OF TWO

CONDUCTING MEDIA.

378. The conditions to be satisfied at a boundary at which the current

flows from one conductor to another are as follows :

(i) Since there must be no accumulation of electricity at the boundary,

the normal flow across the boundary must be the same whether calculated in

the first medium or the second. In other words

19F-
-r must be continuous,

r on

where
^-

denotes differentiation along the normal to the boundary.

(ii) The tangential force must be continuous, or else the potential would

not be continuous. Thus

dv
-^- must be continuous,
9s

where =- denotes differentiation along any line in the boundary.

These boundary conditions are just the same as would be satisfied in an

electrostatical problem at the boundary between two dielectrics of inductive

capacities equal to the two values of -. Thus the equipotentials in this

electrostatic problem coincide with the equipotentials in the actual current

problem, and the lines of force in the electrostatic problem correspond with

the lines of flow in the current problem.

Clearly these results could be deduced at once from the differential equation (312) on

passing to the limit and making r become discontinuous on crossing a boundary.

Refraction of Lines of Flow.

379. Let any line of flow cross the boundary between two different

conducting media of specific resistances TI} r2 , making angles e^ e2 with the

normal at the point at which it meets the boundary in the two media

respectively. The lines of flow satisfy the same conditions as would be

satisfied by electrostatic lines of force crossing the boundary between two

dielectrics of inductive capacities ,

-
,
so that we must have (cf. equa-

TI T2

tion (71))

- COt j
= COt 2 .

TI T2

Hence T
X tan el

= r2 tan e2 ,

expressing the law of refraction of lines of flow.
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380. As an example of refraction of lines of current flow, we may
consider the case of a steady uniform current in a conductor being dis-

turbed by the presence of a sphere of different metal inside the conductor.

The lines shewn in fig. 78 will represent the lines of flow if the specific

resistance of the sphere is less than that of the main conductor. The lines

of flow tend to crowd into the sphere, this being the better conductor in

the language of popular science, the current tends to take the path of least

resistance.

Charge on a Surface of Discontinuity.

381. If u is the normal component of current flowing across the

boundary between two different conductors, we have by Ohm's Law,

1 8K = _^9K
TJ dn r2 dn

'

where ^- denotes differentiation along the normal which is drawn in the
dn

direction in which u is measured (say from (1) to (2)), and Vl ,
V2 are the

potentials in the two conductors.

If there is no charge on the boundary between the two conductors we

must, from equation (70), have the relation

where Kl} K2 are the inductive capacities of the two conductors. This

condition will, however, in general be inconsistent with the condition which,

as we have just seen, is made necessary by the continuity of u. Thus there

will in general be a surface charge on the boundary between two conductors

of different materials.

The amount of this charge is given at once by equation (72), p. 125. If a
denotes the surface density at any point, we have

..................... (313).

This surface charge is very small compared with the charges which occur in statical

electricity. For instance, if we have current of 100 amperes per sq. cm. passing from one

metallic conductor to another, we take in formula (313),

^= 100 amperes= 3x 1011 electrostatic units,

10~ 6

r= 10-6 ohms =^TUrI

ff-1,

the last two being true as regards order of magnitude only. The value of 47ro- is of the

order of magnitude of Kru, or |x!0~
6 in electrostatic units. As has been said, the value

of 47TO- at the surface of a conductor charged as highly as possible in air is of the order

of 100.
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382. As an example of the distribution of a sur large, we may
notice that the surface-density of the charge on the turf of the sphere

considered in 380 will be proportional to either value ^x
,
and therefore

to cos 0, where 6 is the angle between the radius through the point and the

direction of flow of the undisturbed current.

GENERATION OF HEAT.

383. Consider any small element of a tube of flow, length ds, cross-

1 dV
section &>. The current per unit area is, by equations (310), ,

so
T OS

l dV
that the current flowing through the tube is w. The resistance of

T OS

the element of the tube under consideration is -
. Hence, as in 355, the

amount of heat generated per unit time in this element is

fldV \ 9 rds I fdV\*
I

-
-5

co I or -
I ^r cods.

\T ds /co r\.dsj

Thus the heat generated per unit time per unit volume is -
( ) ,

and
T \ OS /

the total generation of heat per unit time will be

rrri /dv\*
III- f-s

) discdydz,

Thus the heat generated per unit time is STT times the energy of the

whole field in the analogous electrostatic problem (,169).

Rate of generation of heat a minimum.

384. It can be shewn that for a given current flowing through a con-

ductor, the rate of heat generation is a minimum when the current distributes

itself as directed by Ohm's Law. To do this we have to compare the rate of

heat generation just obtained with the rate of heat generation when the

current distributes itself in some other way.

Let us suppose that the components of current at any point have no

longer the values

_ldV _ 1 9F _
1 3F

T dx
'

T dy
'

T dz

assigned to them by Ohm's Law, but that they have different values

IdV 19F IdV
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In order that there may be no accumulation at any point under this new

distribution, the components of current must satisfy the equation of con-

tinuity, so that we must have

du dv dw Q _
5- + ~- 4- ~- = ........................... (315).ox dy dz

By the same reasoning as in 383, we find for the rate at which heat is

generated under the new system of currents,

18F Y / 18F
T~ + v

l
+ (---3- +

r dy / \ r dz

which, on expanding, is equal to

fff (/ 1
T l(--

JJj (
r

fff
( II
JJj

~ [fff2J f I

JJJ V

i j/8F\
2

, /8Fy ,

/8F , , ,H -5 +^~ + hr~ r dxdy dz
r \\docj \dyj \dz

8F 8F 8F ,^+ v-~- +-t0-~- dxdydz

(316).

On transforming by Green's Theorem, the second term

- 2
//
F (lu + mv + nw) ds-

The volume integral vanishes by equation (315), the integrand of the

surface integral vanishes over each electrode from the condition that the total

flow of current across the electrode is to remain unaltered, and at every point
of the insulating boundary from the condition that there is to be no flow

across this boundary. Thus the new rate of generation of heat is represented

by the first and third terms of expression (316). The first term represents
the old rate of generation of heat, the third term is an essentially positive

quantity. Thus the rate of heat generation is increased by any deviation

from the natural distribution of currents, proving the result.

385. An immediate result of this is that any increase or decrease in the

specific resistance of any part of a conductor is accompanied by an increase

or decrease of the resistance of the conductor as a whole. For on decreasing
the value of r at any point and keeping the distribution of currents

unaltered, the rate of heat production will obviously decrease. On allow-

ing the currents to assume their natural distribution, the rate of heat

production will further decrease. Thus the rate of heat production with a

natural distribution of currents is lessened by any decrease of specific

resistance. But if / is the total current transmitted by the conductor, and

R the resistance of the conductor, this rate of heat production is HI 2
.

Thus R decreases when r is decreased at any point, and obviously the

converse must be true (cf. 359).
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THE SOLUTION OF SPECIAL PROBLEMS.

Current-flow in an Infinite Conductor.

386. A good approximation to the conditions of electric flow can

occasionally be obtained by neglecting the
'

restrictive influence of the

boundaries of a conductor, and regarding the problem as one of flow between

two electrodes in an infinite conductor. For simplicity, we shall consider only

the case in which the conductor is homogeneous.

The conditions to be satisfied by the potential V are as follows. We
must have V Trover one electrode, and V=V2 over the second electrode,

dV 1
while

-^-
must vanish at infinity to a higher order than and throughout

the conductor we must have V 2F = ( 376). We can easily see^cf. 186,

187) that these conditions determine V uniquely.

Consider now an analogous electrostatic problem. Let the conducting

medium be replaced by air, while the electrodes remain conductors. Let

the electrodes receive equal and opposite charges of electricity until their

difference of potential is Vl Vz . At this stage let ^r denote the electro-

static potential at any point in the field. Let fa, fa be the values of ty over

the two electrodes, so that fa fa T K. Then there will be a constant

G (namely TJ fa), such that
-fy 4- G assumes the values Vlt V* respectively

over the two electrodes. Moreover V 2

-\|r
= throughout the field, so that

throughout the field, and >/r=0 at infinity except for terms

in (cf. 67), so that -
(-^ + G) vanishes at infinity to a higher order

than .

r2

Hence ty + G satisfies the conditions which, as we have seen, must be

satisfied by the potential V in the current problem, and these are known to

suffice to determine V uniquely. It follows that the value of V must be

Thus the lines of flow in the current problem are identical with the lines

of force when the two electrodes are charged to different potentials in air.

The normal current-flow at any point on the surface of an electrode is

18F
r dn'

so that the total flow of current outwards from this electrode
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If E is the charge on this electrode in the analogous electrostatic problem
we have, by Gauss' Theorem,

so that the total flow of current is seen to be- .

T

If pn , pw , pw are the coefficients of potential in the electrostatic problem

so that

K- V, = +j- ^ = (pn
~
2p

If I is the total current, and R the equivalent resistance between the

electrodes, we have just seen that

T

so that

(317).

If we regard the two electrodes in air as forming a condenser, and denote

its capacity by C, we have

so that

387. As instances of the applications of formulae (317) and (318) to

special problems, we have the following:

I. The resistance per unit length between two concentric cylinders of

radii a, b (as, for instance, the resistance between the core of a submarine

cable and the sea), is, by formula (318),

r . b

II. The resistance per unit length between two straight parallel

lindrical wires of radii a, b, placed with their centres at a great distance r

irt, in an infinite conducting medium, is, by formula (317),

-^ (log a
- 2 log r + log 6)

r2

ab

r . r*= ^ l 8^-



352 Steady Currents in continuous Media [CH. x

III. The resistance between two spherical electrodes, radii a, 6, at a

great distance r apart, in an infinite conducting medium, is, by formula (317),

l_ji ---
4fir)p*1> r

388. If two electrodes of any shape are placed in an infinite medium at

a distance r apart, which is great compared with their linear distances, we

may take >12 in formula (317) equal, to a first approximation, to -
. This is

small compared with pu and p.^, so that, to a first approximation, we may

replace formula (317) by

It accordingly appears that the resistance of the infinite medium may be

regarded as the sum of two resistances a resistance -^ at the crossing of

7*71

the current from the first electrode to the medium, and a resistance -~ at

the return of the current from the medium to the second electrode. Thus

we may legitimately speak of the resistance of a single junction between an

electrode and the conducting medium surrounding it.

For instance, suppose a circular plate of radius a is buried deep in the earth, and acts

as electrode to distribute a current through the earth. The value of pu for a disc of

radius a is ^- ,
so that the resistance of the junction is . So also if a disc of radius a

2ct ott

is placed on the earth's surface, the resistance at the junction is -
,
and clearly this

4C

also is the resistance if the electrode is a semicircle of radius a buried vertically in the

earth with its diameter in the surface.

Flow in a Plane Sheet of Metal.

389. When the flow takes place in a sheet of metal of uniform thickness

and structure, so that the current at every point may be regarded as flowing

in a plane parallel to the surface of the sheet, the whole problem becomes

two-dimensional. If x, y are rectangular coordinates, the problem reduces to

that of finding a solution of

82F 82F
a^

+^ =

dV
which shall be such that either V has a given value, or else - = 0, at every

point of the boundary. The methods already given in Chap, vin/or obt

ing two-dimensional solutions of Laplace's equation are therefore available

for the present problem. The method of greatest value is that of Conjugate
Functions.
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If the conducting medium extends to infinity, or is bounded entirely by
the two electrodes, the transformations will be identical with those already

discussed for two conductors at different potentials ( 386). If the medium

has also boundaries at which
^

= 0, the procedure must be slightly different.
(7?2>

We must try to transform the two electrodes into lines V constant, and the

other boundaries into lines U = constant, so, that the whole of~fche medium
becomes transformed into the interior of a rectangle in the U, V plane.

Let U + iV=f(x + iy)

be a transformation which gives the required value for V over both electrodes,

3F
and gives ^

= over the boundary of a conductor. Then V will be the

potential at any point, the lines V constant will be the equipotentials, and

the lines U = constant, the orthogonal trajectories of the equipotentials, will

be the lines of flow.

At any point the direction of the current is normal to the equipotential

through the point, and of amount

But
^

is equal to -~
,
where

^-
denotes differentiation in the equipotential.

Thus the current flowing across any piece PQ of an equipotential

= (
Q
Gds

J p

If P, Q are any two points in the conductor, a path from P to Q can be

regarded as made up of a piece of an equipotential PN, and a piece of a line

of flow NQ. The flow across NQ is zero/that across PN is

\(UN
-UP).

This is accordingly the total flow across PQ, and since UN = UQ, it may
be written as

390. As an illustration, let us suppose that the conducting plate is a

polygon, two or more edges being the electrodes. We can transform this

into the real axis in the f-plane by a transformation of the type

|=(?-O*~
1

(?-a,)"~
1

..................(319),

23
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and this real axis has to be transformed into a rectangle formed (say) by the

lines V=V ,
V=V1,*U=Q, U=G in the W-plane. The transformation

for this will be

^ = [(f-o)(f-^)(f-a?)(r-ar)]^ (320),

where a
,
ap and a

qy
ar are the points on the real axis of f which determine

the ends of the electrodes. By elimination of f from the integrals of equa-

tions (319) and (320) we obtain the transformation required.

391. The following example of this method is taken from a paper by
H. F. Moulton (Proc. Lond. Math. Soc. in. p. 104).
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sn mz (mod n) ;
the sides PQ, PS of the second rectangle are the periods in

W, say , T ,
of sn m TF(mod X)."mm

f

In the TF-plane, the potential difference of the two electrodes is PS, or 7 ,

1 //
while the current is - PQ, or r- The equivalent resistance _of jthe plate

T mr
is accordingly rL'/L, so that the quantity we are trying to determine is L'/L.

Let the coordinates of P, Q, R, S in the ^-plane be zlt zz ,
z3f z4 . In the

f-plane the coordinates of these points are p, q, r, s. Hence from equations

(321), we have

_ a (b d)
- b (a d) sn2 mz1 (mod /c)

(b d) (a d) sn2 mzl (mod tc)

and similar equations for q, r, s. The ratio L'/L of which we are in search

is now given by

L' _ (q r) (p s) _ (sn
2 mz2 sn2

mz^) (sn
2 mz1 sn2 mz4)

L (p r) (q s)

~~

(sn
2 mz1 sn2 mz3) (sn

2 mz2 sn2 mz4)

'

the whole being to modulus K. The values of snmz can be obtained from

Legendre's Tables.

Moulton has calculated the resistance of a square sheet with electrodes,

each of length equal to one-fifth of a side, in tHe following four cases :

(1) Electrodes at middle of two opposite sides, Resistance = 1'745-R,

(2) Electrodes at ends of two opposite sides and facing one another,

Resistance = 2'408.ft,

(3) Electrodes at ends of two opposite sides and not facing one

another, Resistance = 2'589^,

(4) Electrodes bent equally round two opposite corners of square,

Resistance = 3'027-E,

where R is the resistance of the square when the whole of two opposite sides

form the electrodes. A comparison of the results in cases (2) and (3) shews

how large a part of the resistance is due to the crowding in of the lines of

force near the electrode, and how small a part arises from the uncrowded

part of the path.

Limits to the Resistance of a Conductor.

392. The result obtained in 386 enables us to assign an upper and

a lower limit to the resistance of a conductor, when this resistance cannot be

calculated accurately. For if any parts of the conductor are made into

perfect conductors, the resistance of the whole will be lessened, and it may
be possible to change parts of the conductor into perfect conductors in such

232
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a way that the resistance of the new conductor can be calculated. This

resistance will then be a lower limit to the resistance of the original con-

ductor.

As an illustration, we may examine the case of a straight wire of variable

cross-section S. Let us imagine that at small distances along its length we

take cross-sections of infinitely small thickness, and make these into perfect

conductors. The resistance between two such sections at distance ds apart,

will be -~-, where S is the cross-section of either,
o

the resistance is supplied by the formula

ds

Thus a lower limit to

393. Again, if we replace parts of the conductor by insulators, so causing
the current to flow in giyen channels, the resistance of the whole is increased,

and in this way we may be able to assign an upper limit to the resistance

of a conductor.

394. As an instance of a conductor to the resistance of which both

upper and lower limits can be assigned, let us consider the case of a

cylindrical conductor AB terminating in an infinite

conductor C of the same material. This example is

of practical importance in connection with mercury
resistance standards. The appropriate analysis was

first given by Lord Rayleigh, discussing a parallel

problem in the theory of sound.

Let I be the length and a the radius of the tube.

To obtain a lower limit to the resistance, we imagine
a perfectly conducting plane inserted at B. The resistance then consists of

the resistance to this new electrode at B, plus the resistance from this with

the infinite conductor C. The former resistance is -
,
the latter, by 388,

TTCv

is
-j ,

so that a lower limit to the
4>a

rhole resistance is

JL
'

which is the resistance of a length I + -r- of the tube.

To obtain an upper limit to the resistance, we imagine non-conducting
tubes placed inside the main tube AB, so that the current is constrained to

flow in a uniform stream parallel to the axis of the main tube until the

end B is reached. After this the current flows through the semi-infinite

conductor C as directed by Ohm's Law.
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The resistance of the tube AB is, as before, . To obtain the resist-
7TO?

ance of the conductor C, we must examine the corresponding electrostatic

problem. If I is the total current, the flow of current per unit area over

the circular mouth at B is //Tra
2

. In order that the potentials in the

electrostatic problem may be the same, we must have a uniform surface

density of electricity

T/
<y= I I or

on the surface of the disc.

The heat generated is I 2
R, where R is the resistance of the conductor G.

It is also

taken through the conductor C. Now if W is the electrostatic energy of

a disc of radius a, having a uniform surface density cr = 7-7^5
on each side,

we have

where the integral is taken through all space, or again,

w .[f[\pr\' + (*i}'+(w
^TTJJJ \\oxj \dy-J \oz

where the integral is taken through the semi-infinite space on one side of

the disc, i.e. through the space C, if the disc is made to coincide with the

mouth B. On substituting for the volume integral in expression (323), we

find that

Following Maxwell, we shall find it convenient to calculate W directly

from the potential. If a disc of radius fa has a uniform surface density cr

on each side, the potential at a point P on its edge will be

where -the integral is taken over one side of the disc, and r is the distance

from P to the element dxdy. Taking polar coordinates, with P as origin,

the equation of the circle will be r 26 cos 6
;
we may replace dxdy by

rdrdd, and obtain

rr=2bcosO re=-
VP = 2a-

2 drd0
J r-O J 0=-?
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On increasing the radius of the disc to b + db, we bring up a charge
4>7rbadb from infinity to potential 8bor, so that the work done is

dW = 327r&Vtf&,

and integrating from 6 = to b = a, we find for the potential energy of the

complete disc of radius a,

F=^7ra3
<r

2
.

Thus, from equation (324),

or, snce

Thus an upper limit to the whole resistance is

lr_
Sr

7TO?

/2T
"

3/ 2T

T/

R 8T

o

which is the resistance of a length I + ^ a of the tube.
O7T

Thus we may say that the resistance of the whole is that of a length

I + act of the tube, where a is intermediate between -r and ^ , i.e. between
~p O7T

'785 and '849. Lord Rayleigh*, by more elaborate analysis, has shewn that

the upper limit for a must be less than '8242, and believes that the true

value of a must be pretty close to '82.

THE PASSAGE OF ELECTRICITY THROUGH DIELECTRICS.

395. Since even the best insulators are not wholly devoid of conducting

power, it is of importance to consider the flow of electricity in dielectrics.

Using the previous notation, we shall denote the potential at any point

in the dielectric by F, the specific resistance by r, and the inductive capacity

by K. We shall consider steady flow first.

If the flow is to be steady, the equation of continuity, namely

= ...............
dx\r dxj dy\T dy J dz\r dz J

must be satisfied. Also if there is a volume density of electrification p, the

potential must satisfy equation (62), namely

jffi*.- .........(326).
cxj dy\ dy / dz\ dz J

*
Theory of Sound, Vol. n. Appendix A.
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From a comparison of equations (325) and (326), it is clear that steady

flow will not generally be consistent with having p = 0. Hence if currents

are started flowing through an uncharged dielectric, the dielectric will

acquire volume charges before the currents become steady. When the

currents have become steady, the value of V will be determined by

equation (325) and the boundary conditions, and the value of p is then

given by equation (326).

From equations (325) and (326), we obtain

_
3Fj>

1
......

dz dz
^ '

j4-7TT (da; dx^ dy dy
^

The condition that p shall vanish, whatever the value of F, is that KT shall

be constant throughout the dielectric : if this condition is satisfied the value

of p necessarily vanishes at every point for all systems of steady currents.

The most important case of this condition being satisfied occurs when the

dielectric is homogeneous throughout. If KT is not constant throughout
the dielectric, equation (327) shews that we can have p = Q at every point

provided the surfaces F = cons. and Kr = cons. cut one another at right

angles at every point, i.e. provided KT is constant along every line of flow.

We have already had an illustration ( 381) of the accumulation of

charge which occurs when the value of KT varies in passing along a line

of flow.

Time of Relaxation in a Homogeneous Dielectric.

396. Let a homogeneous dielectric be charged so that the volume

density at any point is p.

If any closed surface is taken inside the dielectric, the total" charge
inside this surface must be

ill'
pdxdydz,

while the rate at which electricity flows into the surface will, as in 375, be

u + mv + nw) dS,

where u, v, w are the components of current and I, m, n are the direction

cosines of the normal drawn into the surface. Since this rate of flow into

the surface must be equal to the rate at which the charge inside the surface

increases, we must have

I \(lu + mv + nw) dS=-T-\\ \pdxdydz

-in -TJ- docdydz.
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The integral on the left may, by Green's Theorem, be transformed into

Mdu
dv ds^

and this again is equal, by equations (310), to

Thus we have

and since this is true whatever surface is taken, each integrand must vanish

separately, and we must have, at every point of the dielectric,

cPV <^F_ dp
' + ~ T~'

We have also, as in equation (326),

927 d^y d^V__
da?

+
df

* ^2
" K

dp 4-7T

that ---

The integral of this equation is

where p is the value of p at time t = 0.

Thus the charge at every point in the dielectric falls off exponentially

with the time, the modulus of decay being -~r- . The time -
,
in which

J\. T 'rTT

all the charges in the dielectric are reduced to 1/e times their original

value, is called the " time of relaxation," being analogous to the corresponding

quantity in the Dynamical Theory of Gases*.

The relaxation-time admits of experimental determination, and as r is

easily determined, this gives us a means of determining K experimentally
for conductors. In the case of good conductors, the relaxation-time is too

small to be observed with any accuracy, but the method has been employed

by Cohn and Aronsf to determine the inductive capacity of water. The

value obtained, -&T=73'6, is in good agreement' with the values obtained in

other ways (cf. 84).

*
Cf. Maxwell, Collected Works, n. p. 681, or Jeans, Dynamical Theory of Gases, p. 294.

+ Wied. Ann. xxvui. p. 454.
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Discharge of a Condenser.

397. Let us suppose that a condenser is charged up to a certain

potential, and that a certain amount of leakage takes place through the

dielectric between the two plates. Then, as we have just seen, the dielectric

will, except in very special cases, become charged with electricity.

Now suppose that the two plates are connected by a wire, so that, in

ordinary language, the condenser is discharged. Conduction through the

wire is a very much quicker process than conduction through the dielectric,

so that we may suppose that the plates of the condenser are reduced to the

same potential before the charges imprisoned in the dielectric have begun to

move. For simplicity, let us suppose that the plates of the condenser are

both reduced to potential zero. Then the surface of the dielectric may,
with fair accuracy, be regarded as an equipotential surface, the potential

being zero all over it. It follows that there can be no lines of force outside

this equipotential : all lines of force which originate on the charges im-

prisoned in the dielectric, and which do not terminate on similar charges,

must terminate on the surface of the dielectric. Thus we shall have a

system of charges on the surface of the dielectric, these charges being equal
in magnitude but opposite in sign to those of the Green's "equivalent
stratum

"

corresponding to the system of charges imprisoned in the dielectric.

This system of charges on the surface of the dielectric is of the kind which

Faraday would call a "bound" charge (cf. 141).

Suppose the plates of the condenser to be again insulated. The system
of charges inside the dielectric and at its surface is not an equilibrium dis-

tribution, so that currents will be set up in the dielectric, and a general

rearrangement of electricity will take place. The potentials throughout the

dielectric will change, and in particular the potentials of the condenser-plates

at the surface of the dielectric will change. In other words, the charge on

these plates is no longer a " bound
"
charge, but becomes, at least partially, a

"
free

"

charge. On joining the two plates by a wire, a new discharge will

take place.

This is Maxwell's explanation of the phenomenon of
"
residual discharge."

It is found that, some time after a condenser has been discharged and

insulated, a second and smaller discharge can be obtained on joining the

plates, after this a third, and so on, almost indefinitely. It should be

noticed that, on the explanation which has been given, no residual discharge

ought to take place if the dielectric is perfectly homogeneous. Maxwell's

theory accordingly receives confirmation from the experiments of Rowland

and Nichols* and others, who shewed that the residual discharge disappeared
when homogeneous dielectrics were employed.

* Phil. Mag. [5] vol. n. p. 414 (1881).
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EXAMPLES.

1. The ends of a rectangular conducting lamina of breadth c, length a, and uniform

thickness r, are maintained at different potentials. If /(#, y) be the specific resistance p
at a point whose distances from an end and a side are x, y, prove that the resistance of

the lamina cannot be less than

dx

p
or greater than

dy

2. Two large vessels filled with mercury are connected by a capillary tube of uniform

bore. Find superior and inferior limits to the conductivity.

3. A cylindrical cable consists of a conducting core of copper surrounded by a thin

insulating sheath of material of given specific resistance. Shew that if the sectional

areas of the core and sheath are given, the resistance to lateral leakage is greatest when
the surfaces of the two materials are coaxal right circular cylinders.

4. Prove that the product of the resistance to leakage per unit length between two

practically infinitely long parallel wires insulated by a uniform dielectric and at different

potentials, and the capacity per unit length, is Kpl^ir, where K is the inductive capacity
and p the specific resistance of the dielectric. Prove also that the time that elapses before

the potential difference sinks to a given fraction of its original value is independent of the

sectional dimensions and relative positions of the wires.

5. If the right sections of the wires in the last question are semicircles described on

opposite sides of a square as diameters, and outside the square, while the cylindrical space
whose section is the semicircles similarly described on the other two sides of the square is

filled up with a dielectric of infinite specific resistance, and all the neighbouring space is

filled up with a dielectric of resistance p, prove that the leakage per unit length in unit

time is 2 V/p, where V is the potential difference.

6. If
<fr-

st-fy=f(x+iy\ and the curves for which < = cons. be closed curves, shew that

the insulation resistance between lengths I of the surfaces < =
,

= <i> is

where
[>//] is the increment of ^ on passing once round a </>-curve, and p is the specific

resistance of the dielectric.
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7. Current enters and leaves a uniform circular disc through two circular wires of

small radius e whose central lines pass through the edge of the disc at the extremities of

a chord of length d. Shew that the total resistance of the sheet is

(2er/ir)10g(d/).

8. Using the transformation

tog(*+ty) +*?*

prove that the resistance of an infinite strip of uniform breadth TT between "fcwa electrodes

distant 2a apart, situated on the middle line of the strip and having equal radii d, is

9. Shew that the transformation

yf+ ^y= cosh TT (x

enables us to obtain the potential due to any distribution of electrodes upon a thin

conductor in the form of the semi-infinite strip bounded by y= 0, y= a, and #=0.

If the margin be uninsulated, find the potential and flow due to a source at the point

x=c, y=- . Shew that if the flows across the three edges are equal, then 7rc= acosh~ 1 2.

10. Equal and opposite electrodes are placed at the extremities of the base of an

isosceles triangular lamina, the length of one of the equal sides being a, and the vertical

angle . Shew that the lines of flow and equal potential are given by

I to . 1 + en it^

2^ "l-cni*'

/i\ /i\ /i\ /
where 3ir(

-
)
ua= T(

-
)
r

(

-
)
(ze ~^

and the modulus of en u is sin 75, the origin being at the vertex.

11. A circular sheet of copper, of specific resistance &i per unit area, is inserted in a

very large sheet of tinfoil
(o- ),

and currents flow in the composite sheet, entering and

leaving at electrodes. Prove that the current-function in the tinfoil corresponding to an

electrode at which a current e enters the tinfoil is the coefficient of i in the imaginary

part of

where a is the radius of the copper sheet, z is a complex variable with its origin at the

centre of the sheet, and c is the distance of the electrode from the origin, the real axis

passing through the electrode.

Generalise the expression for any position of the electrode in the copper or in the

tinfoil, and investigate the corresponding expressions determining the lines of flow in the

copper.

12. A uniform conducting sheet has the form of the catenary of revolution

y*+z
2= c2 cosh2 -.

Prove that the potential at any point due to an electrode at #
, y ,

z
, introducing a

current C, is

constant -^ log (cosh
^ -

-,

>+zz
-} .

4*r
6
V e V 2 +222+z 2 '



CHAPTER XI

PERMANENT MAGNETISM

PHYSICAL PHENOMENA.

398. IT is found that certain bodies, known as magnets, will attract or

repel one another, while a magnet will also exert forces on pieces of iron

or steel which are not themselves magnets, these forces being invariably

attractive. The most familiar fact of magnetism, namely the tendency of

a magnetic needle to point north arid south, is simply a particular instance

of the first of the sets of phenomena just mentioned, it being found that

the earth itself may be regarded as a vast aggregation of magnets.

The simplest piece of apparatus used for the experimental study of

magnetism is that known as a bar-magnet. This consists of a bar of steel

which shews the property of attracting to itself small pieces of steel or iron.

Usually it is found that the magnetic properties of a bar-magnet reside

largely or entirely at its two ends. For instance, if the whole bar is dipped
into a collection of iron filings, it is found that the filings are attracted in

great numbers to its two ends, while there is hardly any attraction to the

middle parts, so that on lifting the bar out from the collection of filings, we
shall find that filings continue to cluster round the ends of the bar, while

the middle regions will be comparatively free.

Poles of a Magnet.

399. The two enpls of a magnet or, more strictly, the two regions
in which the magnetic properties are concentrated are spoken of as the

"poles" of the magnet. If the magnet is freely suspended, it will turn

so that the line joining the two poles points approximately north arid

south. The pole which places itself so as to point towards the north is

called the "north-seeking pole," while the other pole, pointing to the south,

is called the "
south-seeking pole."

By experimenting with two or more magnets, it is found to be a general
law that similar poles repel one another, while dissimilar poles attract one

another.
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The earth may roughly be regarded as a single magnet of which the two

magnetic poles are at points near to the geographical north and south poles.

Since the northern magnetic pole of the earth attracts the north-seeking

pole of a suspended bar-magnet, it is clear that this northern magnetic pole

must be a south-seeking pole ;
and similarly the southern pole of the earth

must be a north-seeking pole. Lord Kelvin speaks of a south-seeking pole as

a " true north
"
pole i.e. a pole of which the magnetism is of the" kind found

in the northerly regions of the earth. But for purposes of mathematical

theory it will be most convenient to distinguish the two kinds of pole by
the entirely neutral terms, positive and negative. And, as a matter of

convention, we agree to call the north-seeking pole positive. Thus we

have the following pairs of terms :

North-seeking = True South = Positive,

South-seeking
= True North = Negative.

Law of Force between Magnetic Poles.

400. By experiments with his torsion-balance, Coulomb established that

the force between two magnetic poles varies inversely as the square of the

distance between them. It was found also to be proportional to the product
of two quantities spoken of as the "strengths" of the poles. Thus if F is the

repulsion between two poles of strengths m, m at a distance r apart, we have

(328).

It is found that c depends on the medium in which the poles are placed,

but is otherwise constant. Clearly if we agree that the strength of positive

poles is to be reckoned as positive, while that of negative poles is reckoned

negative, then c will be a positive quantity.

The Unit Magnetic Pole.

401. Just as Coulomb's electrostatic law of force, supplied a convenient

way of measuring the strength of an electric charge, so the law expressed

by equation (328) provides a convenient way of measuring the strength of a

magnetic pole, and so gives a system of magnetic units. A system of units,

analogous to the electrostatic system ( 17, 18) is obtained by defining the

unit pole to be such as to make c = 1 in equation (328). This system is

called the Magnetic (or, more generally, Electromagnetic) system of units.

We define a unit pole, in this system, to be a pole of strength such that

when placed at unit distance from a pole of equal strength the repulsion
between the two poles is one of unit force.
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Thus the force F between two poles of strengths m, m', measured in the

Electromagnetic system of units, is given by

(329).

The physical dimensions of the magnetic unit can be discussed in just

the same way in which the physical dimensions of the electrostatic unit

have already been discussed in 18.

Moment of a Line-Magnet.

402. It is found that every positive pole has associated with it a

negative pole of exactly equal strength, and that these two poles are

always in the same piece of matter.

Thus not only are positive and negative magnetism necessarily brought
into existence together and in equal quantities, as is the case with positive

and negative electricity, but, further, it is impossible to separate the positive

and negative magnetism after they have been brought into existence, and in

this respect magnetism is unlike electricity.

It follows that it is impossible to have a body
"
charged with magnetism

"

in the way in which we can have a body charged with electricity. A mag-
netised body may possess any number of poles, and at each pole there is, in

a sense, a charge of magnetism ;
but the total charge of magnetism in the

body will always be zero.

Hence it follows that the simplest and most fundamental piece of matter

we can imagine which is of interest for the theory of magnetism, is not a

small body carrying a charge of magnetism, but a small body carrying (so

to speak) two equal and opposite charges at a certain distance apart.

This leads us to introduce the conception of a line-magnet. A line-

magnet is an ideal bar-magnet of which the width is infinitesimal, the

length finite, and the poles at the two extreme ends. Thus geometrically
the ideal line-magnet is a line, while its poles are points.

The strengths of the two poles of a line-magnet are necessarily equal
and opposite. The product of the numerical strength of either pole and the

distance between the poles is called the " moment "
of the line-magnet.

Magnetic Particle.

403. If we imagine the distance between the two poles of a line-magnet
to shrink until it is infinitesimal, the magnet becomes what is spoken of as a

magnetic particle. If + m are the strengths of its poles and ds is the distance

between the two poles, the moment of the magnetic particle is mds.
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It is easily shewn that, as regards all phenomena occurring at a finite

distance away, two magnetic particles have the same effect if their moments

are equal ;
their length and the strengths of their poles separately are of no

importance. To see this we need only consider the case of two magnetic

particles, each having poles + m, and length ds, and therefore moment mds.

Clearly these will produce the same effect at finite distances whether they

are placed end to end or side by side. In the latter case, we have a magnet
of length ds, poles 2m, while in the former case the two contiguous poles,

being of opposite sign, neutralise one another, and the arrangement is in

effect a magnet of length Zds and poles m. Thus in each case the moment

is the same, namely 2mds, while the strengths of the poles and their distances

apart are different.

If we place a large number n of similar magnetic particles end to end,

all the poles will neutralise one another except those at the extreme ends,

so that the arrangement produces the same effect as a line-magnet of length

nds. By taking n= ^-,
where I is a finite length, we see that the effect of

a line-magnet of length I can be produced exactly by n magnetic particles

of length ds.

The two arrangements will be indistinguishable by their magnetic effects

at all external points. There is, however, a way by which it would be easy
to distinguish them. If the arrangement were simply two poles + m, at the

ends of a wire of length I, then on cutting the wire into two pieces, we should

have one pole remaining in each piece. If, however, the arrangement were

+ -+ -4- -+ -+ --+ -+ - + h -+ H h -+ --f -

Fm. 104.

that of a series of magnetic particles, we should be able to divide the series

between two particles, and should in this way obtain two complete magnets.
The pair of poles on the two sides of the point of division which have so far

been neutralising one another now figure as independent poles.

As a matter of experiment, it is not only found to be possible to produce
two complete magnets by cutting a single magnet between its poles, but it

is found that two new magnets are produced, no matter at what point the

cutting takes place. The inference is not only that a natural magnet must

be supposed to consist of magnetic particles, but also that these particles

are so small that when the magnet is cut in two, there is no possibility of
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cutting a magnetic particle in two, so that one pole is left on each side of

the division. In other words, we must suppose the magnetic particles either

to be identical with the molecules of which the matter is composed or else

to be even smaller than these molecules. At % the same time, it will not

be necessary to limit the magnetic particle of mathematical analysis by

assigning this definite meaning to it: any collection of molecules, so small

that the whole space occupied by it may be regarded as infinitesimal, will

be spoken of as a magnetic particle.

404. Axis of a magnetic particle. The axis of a magnetic particle is

defined to be the direction of a line drawn from the negative to the positive

pole of the particle.

It will be clear, from what has already been said, that the effect of

a magnetic particle at all external points is known when we know its

position, axis and moment.

Intensity of Magnetisation.

405. In considering a bar-magnet, which must be supposed to have

breadth as well as length, we have to consider the magnetic particles as

being stacked side by side as well as placed end to end. For clearness, let

us suppose that the magnet is a rectangular parallelepiped, its length being

parallel to the axis of x, while its height and breadth are parallel to the two

other axes. The poles of this bar-magnet may be supposed to consist of

a uniform distribution of infinitesimal magnetic poles over each of the two

faces parallel to the plane of yz, let us say a distribution of poles of aggregate

strength / per unit area at the positive pole, and / per unit area at the

negative pole, so that if A is the area of each of these faces, the poles of

the magnet are of strengths + IA.

As a first step, we may regard the magnet as made up of an infinite

number of line-magnets placed side by side, each line-magnet being a

rectangular prism parallel to the length of the magnet, and of very small

cross-section. Thus a prism of cross-section dydz may be regarded as a line-

magnet having poles + 1 dydz. This again may be regarded as made up of

a number of magnetic particles. As a type, let us consider a particle of

length dx, so that the volume of the magnet occupied by this particle is

dxdydz. The poles of this particle are of strength + 1 dydz, so that the

moment of the particle is

Idxdydz.

If we take any small cluster of these particles, occupying a small volume

dv, the sum of their moments is clearly Idv, and these produce the same

magnetic effects at external points as a single particle of moment

Idv.
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The quantity / is called the "
intensity of magnetisation

"
of the magnet.

This magnetisation has direction as well as magnitude. In the present

instance the direction is that of the axis of x.

406. In general, we define the intensity and direction of magnetisation
as follows:

The intensity of magnetisation at any point of a magnetised body is defined

to be the ratio of the magnetic moment of any small particle at this point to

the volume of the particle.

The direction of magnetisation at any point of a magnetised body is defined

to be the direction of the magnetic axis of a small particle of magnetic matter

at the point.

Instead of specifying the magnetisation of a body in terms of its poles,

it is both more convenient from the mathematical point of view, and more

in accordance with truth from the physical point of view, to specify the

intensity at every point in magnitude and direction. Thus the bar-magnet
which has been under consideration would be specified by the statement

that its intensity of magnetisation at every point is / parallel to the axis

of x. A body such that the intensity is the same at every point, both in

magnitude and direction, is said to be uniformly magnetised.

THE MAGNETIC FIELD OF FORCE.

407. The field of force produced by a collection of magnets is in many
respects similar to an electrostatic field of force, so that the various conceptions

which were found of use in electrostatic theory will again be employed.

The first of these conceptions was that of electric intensity at a point.

In electrostatic theory, the intensity at any point was defined to be the

force per unit charge which would act on a small charged particle placed

at the point. It was necessary to suppose the charge to be of infinitesimal

amount, in order that the charges on the conductors in the field might not

be disturbed by induction.

There is, as we shall see later, a phenomenon of magnetic induction,

which is in many respects similar to that of electrostatic induction, so that

in defining magnetic intensity we have again to introduce a condition to

exclude effects of induction.

Also, to avoid confusion between the magnetic intensity and the intensity

of magnetisation defined in 406, it will be convenient to speak of magnetic
force at a point, rather than of magnetic intensity. We accordingly have the

following definition, analogous to that given in 30.

j. 24

\



370 Permanent Magnetism [OH. XT

The magnetic force at any point is given, in magnitude and direction,

by the force per unit strength of pole, which would act on a magnetic pole

situated at this point, the strength of the pole being supposed so small that

the magnetism of the field is not affected by its presence.

408. The other quantities and conceptions follow in order, as in

Chapter II. Thus we have the following definitions:

A line of force is a curve in the magnetic field, such that the tangent at

every point is in the direction of the magnetic force at that point (cf. 31).

The potential at any point in the field is the work per unit strength of pole

which has to be done on a magnetic pole to bring it to that point from infinity,

the strength of the pole being supposed so small that the magnetism of the field

is not affected by its presence (cf. 33).

Let fl denote the magnetic potential and a, ft, 7 the components of

magnetic force at any point x, y, z, then we have from this definition

(cf. equation (6)),

Oss-J
'*

(adx + pdy + ydz) ..................(330),
J oo

and the relations (cf. equations (9)),

30 an 80

A surface in the magnetic field such that at every point on it the potential

has the same value, is called an Equipotential Surface (cf. 35).

From this definition, as in 35, follows the theorem :

Equipotential Surfaces cut lines of force at right angles.

The law of force being the same as in electrostatics, we have as the value

of the potential (cf. equation (10)),

= 2- ................................. (332),

where m is the strength of any typical pole, and r is the distance from it

to the point at which the potential is being evaluated.

As in 42, we have Gauss' Theorem :

(333),

where the integration is over any closed surface, and 2m is the sum of

the strengths of all the poles inside this surface. If the surface is drawn

so as not to cut through any magnetised matter, 2m will be the aggregate

strength of the poles of complete magnetic particles, and therefore equal
to zero. Thus for a surface drawn in this way

(334).
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If the position of the surface 8 is determined by geometrical conditions

if, for instance, it is the boundary of a small rectangular element dccdydz
then we cannot suppose it to contain only complete magnetic particles, and

equation (334) will not in general be true.

If there is no magnetic matter present in a certain region, equation (334)

is true for any surface in this region, and on applying it to the surface of the

small rectangular element dxdydz, we obtain, as in 50,

"(335) '

the differential equation satisfied by the magnetic potential at every point
of a region in which there is no magnetic matter present.

Tubes of Force.

409. A tubular surface bounded by lines of force is, as in electrostatics,

called a tube of force. Let wl} o>2 be the areas of any two normal cross-

sections of a thin tube of force, and let Hlt H2 be the values of the

intensities at these points. By applying Gauss' Theorem to the closed

surface formed by these two cross-sections and the portion of the tube

which lies between them, we obtain, as in 56,

provided there is no magnetic matter inside this closed surface.

Thus in free space the product Hco remains constant. The value of this

product is called the strength of the tube.

In electrostatics, it was found convenient to define a unit tube to be one which ended

on a unit charge, so that the product of intensity and cross-section was not equal to unity
but to 4?r.

Potential of a Magnetic Particle.

410. Let a magnetic particle consist of a pole of strength m1 at 0, and

a pole of strength +mi at P, the distance OP being
infinitesimal.

The potential at any point Q will be ^f\

If we put OQ r, and denote the angle POQ by 0, -w
l

this becomes FIG 105

_ m, (OQ - PQ) _ m, OP cos _p cos 6 _
Q
~

PQ.OQ PQ.OQ r2

where
fji
= m1 . OP, the moment of the particle.

242
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The analysis here given and the result reached are exactly similar to

those already given for an electric doublet in 64. The same result can also

be put in a different form.

Let us put OP = ds, and let ^- denote differentiation in the direction of
OS

OP, the axis of the particle. Then equation (336) admits of expression in

the form

(338).

Let I, m, n be the direction-cosines of the axis of the particle, then

formula (338) can also be written

oc

.

dy z \r

where, in differentiation, x, y, z are supposed to be the coordinates of the

particle, and not of the point Q.

411. Resolution of a magnetic particle. Equation (339) shews that the

potential of the single particle we have been considering is the same as the

potential of three separate particles, of strengths pi, pm and pn, and axes in

the directions Ox, Oy, Oz respectively. Thus a magnetic particle may be

resolved into components, and this resolution follows the usual vector law.

The same result can be seen geometrically.

Let us start from and move a distance Ids parallel to the axis of x, then

a distance mds parallel to the axis of y, and then

a distance nds parallel to the axis of z. This

series of movements brings us from to P, a

distance ds in the direction I, m, n. Let -the

path be OqrP in fig. 106. The magnetic particle

under consideration has poles m1 at and + m L

at P. Without altering the field we can super-

pose two equal and opposite poles + ml at q, and

also two equal and opposite poles + ml at r.

The six poles now in the field can be taken

in three pairs so as to constitute three doublets

of strengths m^.Oq, ml . qr and ml . rP respec-

tively along Oq, qr and rP. These, however, are

doublets of strengths pi, pm and pn parallel to the coordinate axes.

Fm. 106.

Potential of a Magnetised Body.

412. Let / be the intensity of magnetisation at any point of a mag-
netised body, and let I, m, n be the direction-cosines of the direction of

magnetisation at this point.
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The matter occupying any element of volume dxdydz at this point will

be a magnetic particle of which the moment is Idxdydz and the axis is in

direction I, m, n. By formula (339), the potential of this particle at any
external point is

d fl\ 8 /1\ 3 /1\) , , ,

*-(-) -H5-(- +5- -If dxdydz,
dx\rj dy\rj dz\rj)

so that, by integration, we obtain as the potential of the whole body at any
external point Q,

in which r is the distance from Q to the element dxdydz, and the integration

extends over the whole of the magnetised body.

If we introduce quantities A, B, C defined by

B-Im\ (341),

C=In }

then equation (340) can be put in the form

*

(1)x\rj (-) + <4 (1)1 dxdydz ..... (342).
dy\rj dz\rj)

The quantities A, B, C are called the components of magnetisation at the

point x
t y, z. Equation (342) shews that the potential of the original magnet,

of magnetisation /, is the same* as. the potential of three superposed magnets,
of intensities A, B, C parallel to the three axes. This is also obvious from

the fact that the particle of strength Idxdydz, which occupies the element of

volume dxdydz, may be resolved into three particles parallel to the axes, of

which the strengths will be A dxdydz, Bdxdydz and Cdxdydz, if A, B, G are

given by equations (341).

Potential of a uniformly Magnetised Body.

413. If the magnetisation of any body is uniform, the values of A, B, C
are the same at all points of the body.

Let the coordinates of the point Q in equation (342) be x', y', z', so that

Then, clearly,
~

(-}
= -~

(-} ,
etc.J '

dx\rj dx \rj
'
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Replacing differentiation with respect to x, y, z by differentiation with

respect to x, y'',
2' in this way, we find that equation (342) assumes the form

7) r) 7)

the quantities A,B,C and the operators ^ ,

^
, , being taken outside the

sign of integration, since they are not affected by changes in x, y, z.

If TJ denote the potential of a uniform distribution of electricity of volume

density unity throughout the region occupied by the magnet, we have

(344),
j j j i

so that equation (343) becomes

& =-A d

j^-B
d

^,-C
d^ (345),ox oy oz

where X, F, Z are the components of electric intensity at Q produced by
this distribution.

*j

Or again if
^-7

denotes differentiation with respect to the coordinates of QOS

in a direction parallel to that of the magnetisation of the body, namely that

of direction-cosines I, m, n, equation (345) becomes

(346).

414. Yet another expression for the potential of a uniformly magnetised

body is obtained on transforming equation (342) by Green's Theorem. If

I', m', ri are the direction-cosines of the outward-drawn normal to the magnet
at any element dS of its surface, the equation obtained after transformation is

jj(Al'
+ Bm' + Cn^^dS.

By equations (341),

Al' + Bm' + Cn' = I (II' + mm' + nn')

= I cos 0,

where is the angle between the direction of magnetisation and the outward

normal to the element dS of surface. The equation now becomes
'

Ic
-^d8 (347),

shewing that the potential at any external point is the same as that of a

surface distribution of magnetic poles of density / cos 6 per unit area, spread
over the surface of the magnet.
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This distribution is of course simply the " Green's Equivalent Stratum
"

( 204) which is necessary to produce the observed external field.

The bar-magnet already considered in 405, provides an obvious illustra-

tion of these results.

415. Uniformly magnetised sphere. A second and interesting . example
of a uniformly magnetised body is a sphere, magnetised with uniform

intensity /. This acquires its interest from the fact that the earth may, to

a very rough approximation, be regarded as a uniformly magnetised sphere.

If we follow the method of 413, we obtain for the value of VQ ,
defined

by equation (344),

where a is the radius of the sphere. If we suppose the magnetisation to be

in the direction of the axis of x, we have

IX

r COs6

Thus the potential at any external point is the same as that of a magnetic

particle of moment f TTO? I at the centre of the sphere.

To treat the problem by the method of 414, we have to calculate the

potential of a surface density / cos 9 spread over the surface of the sphere.

Regarding cos 6 as the first zonal harmonic Pl (cos 0), the result follows at

once from 257.

Poisson's imaginary Magnetic Matter.

416. If the magnetisation of the body is not uniform, the value of flQ

given in equation (342) cannot be transformed into a surface integral, so

that the potential of the magnet cannot be represented as being due to a

surface charge of magnetic matter. If we apply Green's Theorem to the

integral which occurs in equation (342), we obtain

where I, m, n are the direction-cosines of the outward-drawn normal to the

element dS of surface.
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Thus nQ=dxdydz+dS .................. (348),

where p, cr are given by
dA dB dC\

(349) '

0-= lA + mB + nC ........................ (350).

Thus the potential of the magnet at any external point Q is the same as

if there were a distribution of magnetic charges throughout the interior, of

volume density p given by equation (349), together with a distribution over

the surface, of surface-density cr given by equation (350).

Potential of a Magnetic Shell.

417. A magnetised body which is so thin that its thickness at every point

may be treated as infinitesimal, is called a "
magnetic shell." Throughout

the small thickness of a shell we shall suppose the magnetisation to remain

constant in magnitude and direction, so that to specify the magnetisation of

a shell we require to know the thickness of the shell and the intensity and

direction of the magnetisation at every point.

Shells in which the magnetisation is in the direction of the normal to the

surface of the shell are spoken of as
"
normally-magnetised shells." These

form the only class of magnetic shells of any importance, so that we shall deal

only with normally-magnetised shells, and it will be unnecessary to repeat in

every case the statement that normal magnetisation is intended.

If I is the intensity of magnetisation at any point inside a shell of this

kind, and if r is its thickness at this point, the product IT is spoken of as the

"strength" of the shell at this point. Any element dS of the shell will

behave as a magnetic particle of moment IrdS, so that the strength of a

shell is the magnetic moment per unit area, just as the intensity of magneti-
sation of a body is the magnetic moment per unit volume.

Any element dS of a shell of strength </>
behaves like a magnetic particle of

strength <j>dS of which the axis is normal to dS.

The magnetisation of a magnetic shell may often be conveniently pictured

as being due to the presence of layers of positive and negative poles on its

two faces. Clearly if
<f>

is the strength and r the thickness of a shell at

any point, the surface density of these poles must be taken to be -
.

418. To obtain the potential of a shell at an external point, we regard

any element dS of the shell as a magnetic particle of moment <f>dS and axis

in the direction of the normal to the shell at this point, it being agreed that

this normal must be drawn in the direction of magnetisation of the shell.
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The potential of the element dS of the shell at a point Q distant r from dS
is then

so that the potential of the whole shell at Q is given by

-//* r2

where 6 is the angle between the normal at dS and the line joining dS to P.

Clearly dScos 6 is the projection of the element dS on a plane perpendicular

to the line joining dS to P, so that is the solid angle subtended by

dS at Q. Denoting this by dco, we have the potential in the form

la (351).

419. Uniform shell. If the shell is of uniform strength, < may be taken

outside the sign of integration in equation (351), so that we obtain

(352),

where H is the total solid angle subtended by the shell at Q.

POTENTIAL ENERGY OF A MAGNET IN A FIELD OF FORCE.

420. The potential energy of a magnet in an external field of force is

equal to the work done in bringing up the magnet from infinity, the field of

force being supposed to remain unaltered during the process.

Consider first the potential energy of a single particle, consisting of a pole

of strength ml at and a pole of strength + nil at P. Let

the potential of the field of force at be fl and at P be flp .

Then the amounts of work done on the two poles in bringing

up this particle from infinity are respectively ml f! and

r^ftp, so that the potential energy of the particle when in FIG. 107.

the position OP
= m1 (ftp

- H )

= ma . OP --
,
in the notation already used,

an ,.ao. an _.
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The potential energy of any magnetised body can be found by integration

of expression (353), the body being regarded as an aggregation of magnetic

particles.

421. Equation (353) assumes a special form if the magnetic field is due

solely to the presence of a second magnetic particle. Let this be of moment

/JL',
its axis having direction cosines I', m', ri, and its centre having coordinates

x', y', z'. Then we have as the value of H, from 410,

, ,
ds \rj \ dor dy dz'

Substituting these values for O in the formulae just obtained, we have as

the mutual potential energy of the two magnets,

l

This is symmetrical with respect to the two magnets, as of course it ought to be it is

immaterial whether we bring the first magnet into the field of the second, or the second

into the field of the first.

If we now put
1 1

r
{(x

- xj + (y
- yj +(z- /)

2P
we obtain on differentiation,

9 /IN _ x x' _ x x'

92 /IN 1 3(x-xJ
so that 5-5-, [

- = -
,

9^?9 \r/ r3 r5

92/9
/

\rx r5

Hence we obtain as the value of W,

Let us now denote the angle between the axes of the two magnets by e,

and the angles between the line joining the two magnets and the axes of the

first and second magnets respectively by 6 and 6'. Then

cos e = IV + mm' + nn',

cos 6 = -
[I (x x') + m(y- y') + n(z- z')},

cos & = i
[I

1

(x
-

x') + m'(y- y') + ri(z- z%
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so that W can be expressed in the form

W = (cose-3cos<9cos<9') ..................(354).

If we take the line drawn from the first magnet to the second as pole in

spherical polar coordinates, and denote the azimuths of the axes of the two

magnets by ty, -//,
then the polar coordinates of the directions of the axes of

the two magnets will be 6, ty and 0', ty' respectively, and we shall have

cos e = cos cos 6' + sin 6 sin 9' cos
(\Jr -*//).

On substituting this value for cos e in equation (354), we obtain

W =^ {sin e sin 9' cos
(i|r

-
<f')

- 2 cos 9 cos
9'} ...... (355).

422. Knowing the mutual potential energy W, we can derive a know-

ledge of all the mechanical forces by differentiation. For instance the

repulsion between the two magnets, i.e. the force tending to increase r, is

dW

4 {sin sin 9' cos
(A/T ^') 2 cos cos

0'}.

r
Thus, whatever the position of the magnets, the jforce between them

varies as the inverse fourth power of the distance.

If the magnets are parallel to one another, = & and ^ =
ty',

so that the

repulsion

=^ (sin
2 0-2 cos2

0).

Thus when = 0, i.e. when the magnets lie along the line joining them,

the force is an attractive force -~- . When = -
,
so that the magnets are

at right angles to the line joining them, the force is a repulsive force -^ .

In passing from the one position to the other the force changes from one of

attraction to one of repulsion when sin2 0-2 cos2 =
0, i.e. when = tan"1

V2.

The couples can be found in the same way. If ^ is any angle, the couple
dW

tending to increase the angle % is -~ ,
or

~~
*^~ d~ f

s*n ^ s*n ^ cos^ ~~ <

^r/)
~" ^ cos ^ cos ^'}'

so that all the couples vary inversely as the cube of the distance.
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For instance, taking % to be the same as ty, we find that the couple

tending to rotate the first magnet about the line joining it to the second,

in the direction of ty increasing

= ~ = sin sin ff sin (^ ~^
so that this couple vanishes if either of the magnets is along the line joining

them, or if they are in the same plane, results which are obvious enough

geometrically.

Potential Energy of a Shell in a Field of Force.

423. Consider a shell of which the strength at any point is <, placed
in a field of potential ft. The element dS of the shell is a magnetic particle

of strength cfrdS, so that its potential energy in the field of force will, by
formula (353), be

where ^- denotes differentiation along the normal to the shell. Thus the
on

potential energy of the whole shell will be

~d8 ........................... (356).

If the shell is of uniform strength, this may be replaced by

Since the normal component of force at a point just outside the shell

and on its positive face is
^ ,

it is clear that M
^

dS is equal to minus

the surface integral of normal force taken over the positive face of the shell,

and this again is equal to minus the number of unit tubes of force which

emerge from the shell on its positive face. Denoting this number of unit

tubes by n, equation (357) may be expressed in the form

W =
-(f)n .............................. (358).

Here it must be noticed that we are concerned only with the original

field before the shell is supposed placed in position. Or, in other terms, the

number n is the number of tubes which would cross the space occupied by
the shell, if the shell were annihilated. Since the tubes are counted on the

positive face of the shell, we see that n may be regarded as the number of

unit tubes of the external field which cross the shell in the direction of its

magnetisation.
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424. Consider a field consisting only of two shells, each of unit strength.

Let % be the number of tubes from shell 1 which cross the area occupied

by 2, and let nz be the number of tubes from shell 2 which cross the area

occupied by 1. The potential energy of the field may be regarded as being

either the energy of shell 1 in the field set up by 2, or as the energy of

shell 2 in the field set up by 1. Regarded in the first manner, the energy
of the field is found to be n2 ; regarded in the second manner] the energy
is found to be n^. Hence we see that n^ n^. This result, which is

of great importance, will be obtained again later ( 446) by a purely

geometrical method.

Potential Energy of any Magnetised Body in a Magnetic Field of Force.

425. Let / be the intensity of magnetisation and I, m, n the direction-

cosines of the direction of magnetisation at any point x, y, z of a magnetised

body, and let fl be the potential, at this point, of an external field of magnetic
force. The element dxdydz of the magnetised body is a magnetic particle

of strength Idxdydz, of which the axis is in the direction I, m, n. Thus its

potential energy in the field of force is, by formula (353),

T , , , fjda ,

an an
Idxdydz [I -= \- m -= h -5-

V dx dy dz

and by integration the potential of the whole magnet is

FORCE INSIDE A MAGNETISED BODY.

426. So far the magnetic force has been defined and discussed only in

regions not occupied by magnetised matter : it is now necessary to consider

the more difficult question of the measurement of force at points inside a

magnetised body.

At the outset we are confronted with a difficulty of the same kind as

that encountered in discussing the measurement of electric force inside a

dielectric, on the molecular hypothesis explained in 143. We found that

the molecules of a dielectric could be regarded as each possessing two equal
and opposite charges of electricity on two opposite faces. If we replace
"
electricity

"
by

"
magnetism

"
the state is very similar to what we believe

to be the state of the ultimate magnetic particles. In the electric problem
a difficulty arose from the fact that the electric force inside matter varied

rapidly as we passed from one molecule to another, because the intensity of

the field set up by the charges on the molecules nearest to any point was
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comparable with the whole field. A similar difficulty arises in the magnetic

problem, but will be handled in a way slightly different from that previously

adopted. There are two reasons for this difference of treatment in the first

place, we are not willing to identify the ultimate magnetic particles with

the molecules of the matter, and in the second place, we are not willing to

assume that the magnetism of an ultimate particle may be localised in the

form of charges on the two opposite faces. We shall follow a method which

rests on no assumptions as to the connection between molecular structure

and magnetic properties, beyond the well-established fact that on cutting

a magnet new magnetic poles appear on the surfaces created by cutting.

427. One way of measuring the force at a point Q inside a magnet will

be to imagine a cavity scooped out of the magnetic matter so as to enclose

the point Q, and then to imagine the force measured on a pole of unit

strength placed at Q. This method of measurement will only determine

a definite force at Q if it can be shewn that the force is independent of

the position, shape and size of the cavity, and this, as will be obvious from

what follows, is not generally the case.

428. Let us suppose that, in order to form a cavity in which to place

the imaginary unit pole, we remove a small cylinder of magnetic matter, the

axis of this cylinder being in the direction of magnetisation at the point.

Let this cylinder be of length I and cross-section 8, and let the intensity of

magnetisation at the point be /. Let the size of the cylinder be supposed to

be very great in comparison with the scale of molecular structure, although

very small in comparison with the scale of variation in the magnetisation
of the body.

In steel or iron there are roughly 1023 molecules to the cubic centimetre, so that a

length of 1 millimetre may be regarded as large when measured by the molecular scale,

although in most magnets the magnetisation may be treated as constant within a length

of a millimetre.

At a point near the centre of this cavity we are at a distance from the

nearest magnetic particles, which is, by hypothesis, great compared with

molecular dimensions. Hence, by 416, we may regard the potential at

points near the centre of the cavity as being that due to the following

distributions of imaginary magnetic matter:

I. A distribution of surface-density IA + mB + nC, spread over the

surface of every magnet.

II. A distribution of volume-density

_ fdA
dB

d_

(dot dy a*

spread throughout the whole space which is occupied by magnetic matter

after the cavity has been scooped out.

C\

*/'
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III. A distribution of surface-density IA + mB + nC, spread over the

walls of the cavity.

From the way in which the cavity has been chosen, it follows that

lA + mB + nC vanishes over the side-walls, and is equal to + 1 on the

two ends.

The force acting on an imaginary unit pole placed at T>r -near the

centre of the cavity may be regarded as the force arising from these

three distributions.

429. The force from distribution III can be made to vanish by taking
the length of the cavity to be very great in comparison with the linear

dimensions of its ends. For the ends of the cavity may then be treated as

points, and the force exerted by either end upon a unit pole placed at the

centre of the cavity will be

SI

wr
and this will vanish if S is small compared with I

2
. The resultant force will

therefore arise solely from distributions I and II.

The force arising from distribution II may be regarded as the force

arising from a distribution of volume-density

-(;>dae dy

spread throughout the whole of the magnetised matter, regardless of the

existence of the cavity, together with a distribution of volume-density

'dA dB d
-5- + ^ +
ox dy

spread through the space occupied by the cavity. The force from this

latter distribution vanishes in the limit when the size of the cavity is

infinitesimal, so that the force from distribution II may be regarded as

that from a volume-density

\ dx dy

spread through all the original magnetised matter.

We have now arrived at a force which is independent of the shape, size

and position of the cavity, provided only that these satisfy the conditions

which have already been laid down. This force we define to be the magnetic

force, at the point under discussion, inside the magnetised body.

430. In the notation of 416, the force which has just been defined is

due to a distribution of surface-density <r, and a distribution of volume-
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density p throughout the whole magnetised matter. The potential of these

distributions is

or if we regard this as defined by equation (348). Thus, with this

meaning assigned to flG ,
the components of force at a point Q inside a

magnetic body will be

FIG. 108.

At the same time it must be remembered that IIQ has not been shewn to

be the true value of the potential except when the point Q is outside the

magnetic matter. The true potential inside magnetised matter will vary

rapidly as we pass from one magnetic particle to another.

431. Let us next suppose that the length I of the cylindrical cavity is

very small compared with the linear dimensions of an

end. The force, as before, is that due to the distributions

I, II and III of 428. The force from distribution III,

however, will no longer vanish, for this distribution con-

sists of distributions / over the ends of the cavity,

and the force from these is not now negligible. From

analogy with the distribution of electricity on a parallel plate condenser, it

is clear that the force arising from distribution III is a force 4?r/ in the

direction of magnetisation. The forces from distributions I and II are

easily seen to be the same as in the former case. Thus the force on a unit

pole placed at a point Q inside a cavity of the kind we are now considering

is the resultant of

(i) the magnetic force at Q, as defined in 429,

(ii) a force 47rJ in the direction of the intensity of magnetisation at Q.

The resultant of these forces is called the magnetic induction at Q.

432. The magnetic force will be denoted by H, and its components

by a, ft 7.

The induction will be denoted by B, and its components by a, b, c.

We have seen that the force B is the resultant of a force H and a force

47T/. The components of this latter force are 4-7T.4, 4?r5, 4?r(7. Hence we
have the equations

a = a. 4- 4-7TA

C =
ry + 47TO

(359).
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FIG. 109.

433. Let us next consider the force on a unit pole inside a cylindrical

cavity when the cavity is disc-shaped, as in 431, but its

axis is not in the direction of magnetisation. The force can,

as in 428, be regarded as arising from three distributions.

Distributions I and II are the same as before, but

distribution III will now consist of charges both on the

ends and on the side-walls of the cylinder. By making the

length of the cylinder small in comparison with the linear

dimensions of its cross-section, the force from the distri-

bution on the side-walls can be made to vanish. And if 6 is the angle
between the axis of the cavity and the direction of magnetisation, the

distribution on the ends is one of density + I cos 6. Thus the force arising

from distribution III is a force 4?r7 cos in the direction of the axis of

the cavity.

Thus the force on a pole placed inside this cavity may be regarded as

compounded of the force H (arising from distributions I and II), and a force

4-7T/ cos 6 in the direction of magnetisation, arising from distribution III.

Let e be the angle between the direction of the force H and the axis of

the cavity, then the component force in the direction of the axis of the cavity

=H cos e -I- 4-7T/ cos 0.

If I, m, n are the direction-cosines of this last direction,

.
H cos e = la + m/3 + wy,

4-77-7 cos 6 = 4-7T (IA + mB + nC),

so that, by equations (359),

H cos e + 4?r/ cos 6 = la + nib + nc.

Thus the component of the force in the direction of the axis of the cavity
is the same as the component, in the same direction, of the magnetic induc-

tion, namely la + mb -f- nc.

434. We are now in a position to understand the importance of the

vector which has been called the induction. This arises entirely from the

property of the induction which is expressed in the following theorem :

THEOREM. The surface-integral of the normal component of induction,

taken over any surface whatever, vanishes,

or in other words (cf. 177),

The induction is a solenoidal vector throughout the whole of the magnetic

field.

J. 25



386 Permanent Magnetism [CH. XI

To prove this let us take any closed surface 8 in the field, this surface

cutting any number of magnetised bodies. Along those parts of the surface

which are inside magnetic bodies, let us remove a layer of matter, so that the

surface no longer actually passes through any magnetic matter.

FIG. 110.

Then by Gauss' Theorem ( 409),

(360),

where N is the component of force in the direction of the outward normal to

8, acting on a unit pole placed at any point of the surface 8. This force,

however, is exactly identical with that considered in 433, and its normal

component has been seen to be identical with the normal component of the

induction. Thus N, in equation (360), will be the normal component of

induction, so that this equation proves the theorem.

Analytically, the theorem may be stated in the form

(361),

and this by Green's Theorem ( 179), is identical with

x .(362).

435. DEFINITION. By a line of induction is meant a curve in the

magnetic field such that the tangent at every point is in the direction of
the magnetic induction at that point.

DEFINITION. A tube of induction is a tubular surface of small cross-

section, which is bounded entirely by lines of induction.

By a proof exactly similar to that of 409, it can be shewn that the

product of the induction and cross-section of a tube retains a constant value

along the tube. This constant value is called the strength of the tube.
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In free space the lines and tubes of induction become identical with the

lines and tubes of force, and the foregoing definition of the strength of a tube

of induction is such as to make the strengths of the tubes also become

identical.

436. At any point of a surface let E be the induction, and let e be the

angle between the direction of the induction and the normal to ihe-surface.

The aggregate cross-section of all the tubes which pass through an element

dS of this surface is dS cos e, so that the aggregate strength of all these tubes

is B cos edS. Since B cos e = N, where N is the normal induction, this may
be written in the form NdS. Thus the aggregate strength of the tubes of

induction which cross any area is equal toW ^
jJNdS.

*

This, we may say, is the number of unit-tubes of induction which cross

this area.

The theorem that nNdS = Q,
J J

where the integration extends over a closed surface, may now be stated in

the form that the number of tubes which enter any closed surface is equal
to the number which leave it. This is true no matter where the surface

is situated, so that we see that tubes of induction can have no beginning
or ending.

437. Let us take any closed circuit s in space, and let n be the number
of tubes of induction which pass through this circuit in a specified direction.

Then n will also be the number of tubes which cut any area whatever

which is bounded by the circuit s. If S is any such area, this number is

known to be I 1NdS, where the integration is taken over the area $, so that

n= [INdS.

The number n, however, depends only on the position of the curve s by
which the area S is bounded, so that it must be possible to express n in a

form which depends only on the position of the curve s, and not on the area S.

In other words, it must be possible to replace 1 1NdS by an expression which

depends only on the boundary of the area s. This we are enabled to do by
a theorem due to Stokes.

252
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STOKES' THEOREM.

438. THEOREM. If X, Y, Z are continuous functions of position in space,

then

ds ds ds

= [[\i(w\ +m(} +n(w\) ds ^
JJ( \oy dzj \oz dxj \dx dyJ)

where the line integral is taken round any closed curve in space, and the surface

integral is taken over any area (or shell) bounded by the contour.

Here I, m, n are the direction-cosines of the normal to the surface. A
rule is needed to fix the direction in which the normal is to be drawn. The

following is perhaps the simplest. Imagine the shell turned about in space
so that the tangent plane at any point P is parallel to the plane of xy, and
so that the direction in which the line integral is taken round the contour

is the same as that of turning from the axis of x to the axis of y. Then
the normal at P must be supposed drawn in the direction of the positive
axis of z.

439. To prove the theorem, let us select any two points A, B on the

contour, and let us introduce a quantity / defined by

// y W/lX/
-y U-y y U/^ \ 7

I I
~ ~J "~ * ~J~ ' " ~j~ i "'

A \ as as as,

the path from A to B being the same as that followed in the integral of

equation (363). Let us also introduce a quantity J equal to the same

FIG. 111.

integral taken from A to B, but along the opposite edge of the shell. Then
the whole integral on the left of equation (363) is equal to I - J.
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It will be possible to connect A and B by a series of non-intersecting

lines drawn in the shell in such a way as to divide the whole shell into

narrow strips. Let us denote these lines by the letters a, b, . . . n, the lines

being taken in order across the shell, starting with the line nearest to that

along which we integrate in calculating 7. Let us denote the value of

[
s

f v dx v dy >7
dz\ ,

I (A.-:r + Y-/--\-Z-r )ds
j A \ ds ds ds)

taken along the line a by Ia .

Then the left-hand member of equation (363)

Ic) + . . . + (In
-

J).

Let us consider the value of any term of this series, say Ia Ib .

Let us take each point on the line a and cause it to undergo a slight

displacement, so that the coordinates of any point x, y, z are changed to

x + Bx, y+By, z + Bz. If 8%, By, Bz are continuous functions of x, y, z the

result will be to displace the line a into some adjacent position, and by a

suitable choice of the values of Bx, By, Bz this displaced position of line a can

be made to coincide with line b. If this is done, it is clear that the value of

Ia ,
after replacing x, y, z by x + Bx, y + By, z + Bz, will be Ib . Hence if we

denote this new value of Ia by Ia + SI, we shall have

so that Ia

dx dy dz\
-

T--t-Jr-r--fZ-T-,
ds ds ds)

and the value of this quantity can be obtained by the ordinary rules of the

calculus of variations.

We have

-B (Jfy r B /7/v, rB

A ds

/-B (Jfy r B /7/v, rB (J

o X~d8=l SX~ds+ X^
J A ds } A ds J A ds

[
B

(
dx * ^x dx \dx, r^ n*

(
B dx * j=

-^- Sx+ ^ 8y+ ^ Sz \-j-ds + JTda? -
-j-Sxds,

J A \dx dy dz J ds
[_ ] A j A ds

and since Bx vanishes both at A and B, the term X&r may be omitted,

and the whole expression put equal to

[* (fdX ,
,

dX s ,

dX , \ dx fdXdx ,

dX dy dXdz
](^-&x + -^-By + -^t>z}-r -(^--j- + ^--/- + ^- ^-

J A\\dv ty dz / ds \dxds dy ds dz ds
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or again, on simplifying, to

[*pXfz dx dy\ dX/s cfe x da:\}
,

\ -*- \y j o
i

-
-^- ^ i wr -j^ ) Kw.

1 A\dy \ ds ds) dz V cfo cfo7J

This may be written in the form

*

jA

B

FIG. 112.

Now in fig. 112, let P, Q, P' be the points a;, y, 2
; x + dx, y + dyt e + dz]

and a? + S#, y + &/, 4- S^. Let d> denote the area of the parallelogram

PQQ'P', and let Z, m, n be the direction-cosines of the normal to its plane.

Then the projection of the parallelogram on the plane of xy will be of area

ndS, while the coordinates of three of its angular points will be x
t y ;

x + dx,

y + dy ;
and x + &e, y + Sy. Using the usual formula for the area, we obtain

ndS = (By das - Sxdy),

and using this relation in expression (364), we obtain

'by dz J
"

the integral denoting summation over all those elements of area of the shell

which lie between lines a and b. By summation of three equations of the

type of (365), we obtain

*Y da; j *(
B V d2/J *(**&*,X-r-ds-Bl Y^dsBI Z ~r ds

A ds J A ds J A ds

dY\ . , fdX dZ\ ftT dX
"~"sr) w '8f+ -a- -*-) md8 +\jr--*-oz ) \dz dxj \dx dy

where the integration has the same meaning as before. If we add a system
of equations of this type, one for each strip, the left-hand, as already seen,

becomes I - J, which is equal to the left-hand member of equation (363),

while the right-hand member of the new equation is also the right-hand
member of equation (363). This proves the theorem.
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440. Stokes' Theorem can be readily expressed in a vector notation. If

X, F, Z are the components of any vector F, it is usual to denote by curl F
the vector of which the components are

dy dz
'

dz dx
'

dx dy

Hence Stokes' Theorem assumes the form

/(component of F along ds) ds

= //(components of curl F along normal to dS)dS.

The theorem enables us to transform any line integral taken round a

closed circuit into a surface integral taken over any area by which the circuit

can be filled up. The converse operation of changing a surface integral into

a line integral may or may not be possible.

441. THEOREM. It will be possible to transform the surface integral

lu + mv + nw)dS (366)

into a line integral taken round the contour of the area S if, and only if,

g^+g^ + = (367)

at every point of the area S.

It is easy to see that this condition is a necessary one. Let S' denote any
area having the same boundary as S, and being adjacent to it, but not

coinciding with it. Then if / is the line integral into which the surface

integral can be transformed, we must have

I=ll(lu + mv + nw)dS (368),

and also / =
ff(l'u

+ m'v + n'w) dS' (369).

On equating these two values for I we obtain an equation which may be

expressed in the form

= 0. ...(370),

where the integration is over a closed surface bounded by S and S', and

I, m, n are the direction-cosines of the outward normal to the surface at any

point. From equation (370), the necessity of condition (367) follows at once.

Condition (367) is most easily proved to be sufficient by exhibiting an

actual solution of the problem when this condition is satisfied. We have to
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shew that, subject to condition (367) being satisfied, there are functions

X, Y, Z such that

dZ dY
o
---^-
dy dz

dX dZ

dY dX
-~
-- ^dx dy

for if this is so, the required line integral is I (IX + mY + nZ)ds.

By inspection a solution of equations (371) is seen to be

X =
jvdz, Y=-judz,

Z=0 ............... (372),

for it is obvious that the first two equations are satisfied, and on substituting

in the third, we obtain

dY dX {( du dv\, [dw,
-*
--

*- I ( 5 5- )
a#= l^-dz = w,

d& dy J\ dx oy) J dz

shewing that the proposed solution satisfies all the conditions.

442. The absence of symmetry from solution (372) suggests that this

solution is not the most general solution. The most general solution can,

however, be easily found. If we assume it to be

X =
jvdz

+ X', Y=-judz+Y',
Z=Z' .........(373),

then we find, on substitution in equations (371), that we must have

a^_ar az;_a^ arjaz;
dy

"
dz

'

dz
~

dx
'

dx
==

dy
............... ( *

and if we introduce a new variable % defined by % = I X'dx, we find at once

that

X'- d-X Y'-?X Z'-^
~dx' ~dy

} ~dz'

so that the most general solution of equations (371) is

Substituting these values, the line integral is found to be

and the condition that this shall be equal to the surface integral is that

f^
J ds

or that x shall be single-valued.
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Thus if % is any single-valued function, equations (375) represent a solu-

tion, and the most general solution, of equations (371).

VECTOR-POTENTIAL.

443. The discussion as to the transformation from surface to line inte-

grals arose in connection with the integral llNdS or 1 1 (la + mb~\ nc) dS, in

which a, b, c are the components of magnetic induction. Since the condition

is satisfied throughout all space, it must always be possible (cf. 441) to

transform the surface integral into a line integral by a relation of the form

(f(
JJ

(la + mb + nc) dS = + G +H ds.
J \ ds ds as/

The vector of which the components are F, G, H is known as the magnetic

vector-potential.

From what has been said in 442, it is clear that the vector-potential is

not fully determined when the magnetic field is given. On the other hand,

if the vector-potential is given the magnetic field is fully determined, being

given by the equations

_
dy dz

.(376).
dz dx

~
dx dy J

We shall calculate some possible values of the components of vector-

potential in a few simple cases. It must be remembered that the values

obtained, although solutions of equations (376), will not be the most general
solutions.

Magnetic Particle.

444. Let us first suppose that the field is produced by a single magnetic
particle at the point x', y', z in free space, parallel to the axis of z. Then,

by equation (338), fl =
//, ^-, (

-
J

,
so that at any point x, y, z,

an

and similarly
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The equations to be solved (equations (376)) are

[CH. XI

dx

dx

dydz

I
2

(I
dz2 (r

/i\

(r)
'

and the simplest solution, similar to that given by equations (372), is

F=LL^ - G
dx\rdy\rj'

The components of vector-potential for a magnet parallel to the axes of

x or y can be written down from symmetry. In terms of the coordinates

x', y',
z' of the magnetic particle, this solution may be expressed as

F = - ~
<y

f
l
\

4,

-
,

\rj

8
f
l

6r = a 5 > I

-
I ,

n.0=

445. Let us superpose the fields of a magnetic particle of strength Ijj,

parallel to the axis of x, one of strength mp, parallel to the axis of y, and

one of strength nfi parallel to the axis of z. Then we obtain the vector

potential at x, y, z due to a magnetic particle of strength p and axis (I, m, n)

at x', y ,
z' in the forms

=
dz dyjr

(=
/A

V

d_

'dz'

d

dy'Jr

1

=
/*

9 M
^ ,

m 5, I

-
oy ox J r i

r (377).

The number of lines of induction which cross the circuit from a magnetic

particle is ( 437)

ds

dz

which may be written in the form

dx dy

m, n ds,

-(
l

dy\r

the integral being taken round the circuit in the direction determined by the

rule given in 438 (p. 388).
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Uniform Magnetic Shell.

446. Next let us suppose that the lines of force proceed from a uniform

magnetic shell, supposed for simplicity to be of unit strength. Let I', m', n'

be the direction-cosines of the normal to any element dS' of this shell.

Then the element dS' will be a magnetic particle of moment dS' and of

direction-cosines I', m', n'. The element accordingly contributes to F a term

which, by equations (377), is seen to be

'

, a , a wim - - n'
wi\ ,

0/
[

-
}dS ,

/ \r/

where a?', T/', / are the coordinates of the element dS'. Thus the whole value

This surface integral satisfies the condition of 441, so that it must be

possible to transform it into a line integral of the form

The equations giving /, g, h are

dh d
^ / n~~

dy oz
dg_

^ / n~~> '

fa' dy'

Clearly a solution is

r
'

so that on substitution the value of F is

--
r7 .

r ds

Similarly 0=-^ ds',
J r ds

1 dz'[
1 dz' ,H = --

^-7 ew'.
J r as

Thus the number of tubes of induction crossing the circuit s from a

magnetic shell of unit strength bounded by the circuit s', is given by

dx d dz
-r +-- + -rds ds ds

or
n/dxdoc dy dy dzdz\l , 7 ,=
IT-^ + / -T-' + ^- ^~ )

~ ^5d;s
J J \as as ds ds ds ds J r
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If e is the angle between the two elements ds, ds', the direction of these

elements being taken to be that in which the integration takes place, then

dx dx
f

dy dy' dz dz'
__i / 7 l__ _ pn<a f.

ds ds'^ ds ds'^ dsds'~

so that n = I 1
- dsds'.

From the rule as to directions given on p. 388, it will be clear that if the

integration is taken in the same direction round both circuits, then the

direction in which the n lines cross the circuit will be that of the direction

of magnetisation of the shell.

Clearly n is symmetrical as regards the two circuits s and s, so that we

have the important result :

The number of tubes of induction crossing the circuit s from a shell of unit

strength bounded by the circuit s' is equal to the number of tubes of induction

crossing the circuit s from a shell of unit strength bounded by the circuit s.

Here we have arrived at a purely geometrical proof of the theorem

already obtained from dynamical principles in 424.

ENERGY OF A MAGNETIC FIELD.

447. Let a, b, c, . . . n be a system of magnetised bodies, the magnetisation
of each being permanent, and let us suppose that the total magnetic field

arises solely from these bodies. Let us suppose that the potential fl at any

point is regarded as the sum of the potentials due to the separate magnets.

Denoting these by fla , H&, ... fln ,
we shall have

Let us denote the potential energy of magnet a, when placed in the field

of force of potential fl, by fl (a) ;
if placed in the field of force arising from

magnet b alone, by H6 (a), etc.

Let us imagine that we construct the magnetic field by bringing up the

magnets a, 6, c, . . . n in this order, from infinity to their final positions.

We do no work in bringing magnet a into position, for there are no

forces against which work can be done. After the operation of placing a in

position, the potential of the field is fla . The operation of bringing magnet
a from infinity has of course been simply that of moving a field of force of

potential fla from infinity, where this same field of force had previously

existed.

On bringing up magnet b, the work done is that of placing magnet b in

a field of force of potential fla . The work done is accordingly Oa (b).



446-448] Energy of a Magnetic Field 397

The work done in bringing up magnet c is that of placing magnet c in a

field of force of potential fla + H6 . It is therefore fla (c) + fl 6 (c).

Continuing this process we find that the total work done, W, is given by

W= n6

d> + etc.

If, however, the magnets had been brought up in the reverse order, we
should have had

W= Ha+ n

+ etc.

so that by addition of these two values for TP, we have

(6) + ftd (6) + .

+ etc.

The first line is equal to fl (a) except for the absence of the term fla (a),

and so on for the other lines. Thus we have

2W= na-na a)

(378).

The quantity Oa (a), the potential energy of the magnet a in its own

field of force, is purely a constant of the magnet a, being entirely independent
of the properties or positions of the other magnets 6, c, d, Thus in

equation (378), we may regard the term SHa (a) as a constant, and may
replace the equation by

a) + constant ........................(379).

448. If we take the magnets a, b, c, . . . n to be the ultimate magnetic

particles, the values of Ha (a), O& (6), . . . etc. all vanish, and their sum also

vanishes. Thus equation (379) assumes the form

TF=i2Xl(a) (380),

where the standard configuration from which W is measured is one in which

the ultimate particles are scattered at infinity. The value of 1 (a) for a

single particle is (cf. 420)

(l^L n ^L n ^~
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On replacing yit by Idxdydz, we find for the energy of a system of

magnetised bodies

the integration being taken throughout all magnetised matter.

449. An alternative proof can be given of equations (380) and (381),

following the method of 106, in which we obtained the energy of a system
of electric charges.

Out of the magnetic materials scattered at infinity, it will be possible to

construct n systems, each exactly similar as regards arrangement in space to

the final system, but of only one-rath the strength of the final system. If n

is made very great, it is easily seen that the work done in constructing a

single system vanishes to the order of
,
so that in the limit when n is very

great, the work done in constructing the series of n systems is infinitesimal.

Thus the energy of the final system may be regarded as the work done in

superposing this series of n systems.

Let us suppose so many of the component systems to have been super-

posed, that the system in position is K times its final strength, where K

is a positive quantity less than unity. The potential of the field at any

point will be /cO. On bringing up a new system let us suppose that K is

increased to K + die, so that the strength of the new system is dtc times that

of the final system. In bringing up the new system, we place a magnet of

dtc times the strength of a in a field of force of potential /cfl, and so on with

the other magnets. Thus the work done is

dtc . /cfl (a) + d/e . *J1 (6) + ...,

and on integration of the work performed, we obtain

agreeing with equation (380), and leading as before to equation (381).

450. If the magnetic matter consists solely of normally magnetised

shells, we may replace equation (381) by

where ds denotes thickness and dS an element of area of a shell. Replacing
Ids by </>,

so that
</>

is the strength of a shell, we have
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For uniform shells, (j> may be taken outside the sign of integration, and

the equation becomes

(cf. 423), where n is the number of lines of induction which cross the shell.

This calculation measures the energy from a standard configuration in

which the magnetic materials are all scattered at infinity. To calculate

the energy measured from a standard configuration in which the shells have

already been constructed and are scattered at infinity as complete shells, we

use equation (378), namely

from which we obtain W= J 2 1 1 $> -~ dS,

where ^ denotes the values ^ at the surface of any shell if the shell itself
dn dn

is supposed annihilated.

If all the shells are uniform, this may again be written

TF=-i2</w' .............. ................ (382),

where n' is the number of tubes of force from the remaining shells, which

cross the shell of strength </>.
An example of this has already occurred in

424.

ENERGY IN THE MEDIUM.

451. We have seen that the energy of a magnetic field is given by

(cf. equation (381))

the integration being taken over all magnetic matter. As a preliminary to

transforming this into an integral taken through all space, we shall prove
that

m( .................. (384),

the integration being through all space.

The integral on the left can be written as

Man ,

.an an\ , ,
a^ +b ^+ c

^)
dxdydz >

and this, by Green's Theorem, may be transformed into

a +mb
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the latter integral being taken over a sphere at infinity. Now at infinity fl

is of the order of (cf. 67), while la + mb + nc vanishes, and dS is of

the order of r2
,
so that the surface integral vanishes on passing to the limit

r = oo . Also the volume integral vanishes since

^ +^+^-0<-\ i ^ T f>. V/ j

dx dy dz

and hence the theorem is proved.

Replacing a, b, c by their values, as given by equations (359), we find that

equation (384) becomes

jY|(a
2 + /3

2 + 7
2
) dxdydz + 4-rr

f/f(4
+ B/3 + Cy) dxdydz = . . .(385).

Both integrals are taken through all space, but since A B = C =

except in magnetic matter, we can regard the latter integral as being taken

only over the space occupied by magnetic matter. This integral is therefore

equal, by equation (383), to 2 W, so that equation (385) becomes

(386),

the integral being taken through 3,11 space.

This expression is exactly analogous to that which has been obtained for

the energy of an electrostatic system, namely,

W =^ jjj(X*
+ F2 + Z*) dxdydz.

And, as in the case of an electrostatic system, equation (386) may be

interpreted as meaning that the energy may be regarded as spread through

the medium at a rate
^ (a

2
4- /3

2 + 7
2
) per unit volume.

TERRESTRIAL MAGNETISM.

452. The magnetism of the earth is very irregularly distributed and is

constantly changing. The simplest and roughest approximation of all to the

state of the earth's magnetism is obtained by regarding it as a bar magnet,

possessing two poles near to its surface, the position of these in 1906 being
as follows :

North Pole 7030'N., 9740/ W.

South Pole* 73 39' S., 146 15' E.

Another approximation, which is better in many ways although still

very rough, is obtained by regarding the earth as a uniformly magnetised

sphere.
*

Sir E. Shackleton gives the position of the South Pole in 1909 as 72 25' S., 155 16' E.
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With the help of a compass-needle, it will be possible to find the

direction of the lines of force of the earth's field at any point. It will

also be possible to measure the intensity of this field, by comparing it with

known magnetic fields, or by measuring the force with which it acts on

a magnet of known strength.

453. At any point on the earth, let us suppose that the angle between

the line of magnetic force and the horizontal is 0, this being reckoned

positive if the line of force points down into the earth, and let the horizontal

projection of the line of force make an angle 8 with the geographical
meridian through the point, this being reckoned positive if this line points
west of north. The angle 6 is called the dip at the point, the angle 8 is

called the declination.

Let H be the horizontal component of force, then the total force may be

regarded as made up of three components :

X=Hcos8, towards the north,

Y = H sin S, towards the west,

Z H tan 0, vertically downwards.

If O is the potential due to the earth's field at a point of latitude I,

longitude X, and at distance r from the centre, we have (cf. equations (331))

ian i an .30
rajm-A .

--
;ry ,

I -
; ;r ,

fj .......... I OO I I.

r dl rcosld\ dr

Analysis of Potential of Earth's field.

454. Since H is the potential of a magnetic system, the value of Q in

regions in which there is no magnetisation must (by 408) be a solution of

Laplace's equation, and must therefore (by 233) be capable of expansion in

the form

(SQ

'

+ Sl'r + St'r* + ...) ........(388),

in which Slt S3 ,
... S '

t $/, $2', ... are surface harmonics, of degrees indicated

by the subscripts.

At the earth's surface, the first term is the part of the potential which

arises from magnetism inside the earth, while the second term arises from

magnetism outside.

The surface harmonic Sn can, as in 275, be expanded in the form
m=n

Sn = S P'n (sin I) (A Ht m cos m\ + BH)m sin raX),
t=0

so that fi can be put in the form
= <*> m n (]Pm (gin 1}= 2 2 ]-* \+1

'

(A nfin cos m\ + BntJn sin m\)"
w=0 (

+ rnPn (sin I) (A'n>m cos m\ + B'
1ltm sin ra\)t .

J. 26
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H^nce from equations (387) we obtain the values of X, F, Z at any point
in terms of the longitude and latitude of the point and the constants such

as -^?i,m) -t>n,tn>
" n,m> -t* n,m>

By observing the values of X, F, Z at a great number of points, we
obtain a system of equations between the constants A n>m etc., and on

solving these we obtain the actual values of the constants, and therefore

a knowledge of the potential as expressed by equation (388).

If the magnetic field arose entirely from magnetism inside the earth,

we should of course expect to find $/ == $2

' =
. . .
=

0, while if the magnetic
field arose from magnetism entirely outside the earth, we should find

455. The results actually obtained are of extreme interest. The mag-
netic field of the earth, as we have said, is constantly changing. In addition

to a slow, irregular, and so-called
"
secular

"
change, it is found that there

are periodic changes of which the periods are, in general, recognisable as

the periods of astronomical phenomena. For instance there is a daily

period, a yearly period, a period equal to the lunar month, a period of

about 26J days (the period of rotation of the inner core of the sun*),
a period of about 11 years (the period of sun-spot variations), a period of

19 years (the period of the motion of the lunar nodes), and so on. Thus

the potential can be divided up into a number of periodic parts and a

residual constant, or slowly and irregularly changing, part. All the periodic

parts are extremely small in comparison with the latter. It is found, on

analysing the potentials of these different parts of the field, that the constant

field arises from magnetisation inside the earth, while the daily variation

arises mainly from magnetisation outside the earth. The former result

might have been anticipated, but the latter could not have been predicted
with any confidence. For the variation might have represented nothing
more than a change in the permanent magnetism of the earth due to the

cooling and heating of the earth's mass, or to the tides in the solid matter of

the earth produced by the sun's attraction.

This daily variation is not such as could be explained by the magnetism
of the sun itself; Chreef has found that it cannot be explained by the

cooling and heating either of the earth's mass, or of the atmosphere as

suggested by Faraday. SchusterJ, who has analysed the daily-varying
terms in the potential, and Balfour Stewart have suggested that the cause of

this variation is to be found in the field produced by electricity induced in

* The outer surface of the sun is not rigid, and rotates at different rates in different latitudes.

Thus it is impossible to discover the actual rate of rotation of the inner core except by such
indirect methods as that of observing periods of magnetic variation.

t Roy. Soc. Phil. Trans., 202, p. 335. n

Roy. dec. Phil. Trans., 1889, p. 467.
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the upper strata of the atmosphere, as they move across the earth's magnetic

field, a suggestion which has received a large amount of experimental

confirmation*. In addition to this field produced by external sources,

Schuster finds that there is a smaller field, roughly proportional to the former,

having its source inside the earth. This he attributes to the magnetic action

of electric currents induced in the earth by the atmospheric currents already

mentioned.

456. The non-periodic part of the earth's field, since it is found to arise

entirely from magnetism inside the earth, has a potential of the form

iSf iSf n=<x m=n f Pm fn'n A
' ;

n f Pm fn'n A )

f '^f
;

(An,m cos m\ + Bn
,m sin m\)

Q (
r )

in which the values of the coefficients may be obtained in the manner

already explained.

This method of analysing the earth's field is due to Gauss, who calculated

the coefficients, with such accuracy as was then possible, for the year 1830.

The most complete analysis of the field which now exists has been calculated

by Neumayer for the year 1885, using observations of the field at 1800

points on the earth's surface.

The first few coefficients obtained by Neumayer are as follows :

M = -0248,

^=-0603,
A, 2

= -
'0057,A --007QA ~

= -0130,

= -0279, A 3
= --0033,

4,0
344

-J D '_ .mio D
'

= .

0071j jB4

'

3 =-o051, 44= -0010.

457. The simplest approximation is of course obtained by ignoring all

harmonics beyond the first. This gives as the magnetic potential

H = -M
lj0 /?(sin I) + j??

1

(sin I) (A lyl
cos \ + B

lilL
sin

= i
{'3157

sin 1 4- cos I ('0248 cos X - '0603 sin
X)|

.

The expression in brackets is necessarily a biaxial harmonic of order unity

(cf. 276); it is easily found to be equal to '3224 cos 7, where 7 is the

angular distance of the point (I, X) from the point

lat. 78 20' N., long. 67 17' W (389).

*
See, for instance, a paper by van Bemmelen, Konink. Akad. Wetenschappen (Amsterdam),

Versl. 12, p. 313, in which it is shewn that the field nf daily variation may be regarded roughly
as revolving around the pole of the Aurora Borea if M N., 80 W.).

262
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I

The potential is now II = "3224

which is the potential of a uniformly magnetised sphere, having as direction

of magnetisation the radius through the point ( 415). Or again, it is the

potential of a single magnetic particle at the centre of the earth, pointing

in this same direction. It is naturally impossible to distinguish between

these two possibilities by a survey of the field outside the earth. Green's

theorem has already shewn that we cannot locate the sources of a field

inside a closed surface by a study of the field outside the surface.
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EXAMPLES.

1. Two small magnets float horizontally on the surface of water, one along the

direction of the straight line joining their centres, and the other at right angles to it.

Prove that the action of each magnet on the other reduces to a single force at right angles

to the straight line joining the centres, and meeting that line at one-third of its length

from the longitudinal magnet.

2. A small magnet ACB, free to turn about its centre C, is acted on by a small fixed

magnet PQ. Prove that in equilibrium the axis ACB lies in the plane PQC, and that

tan 6 = -
% tan 6', where 6, & are the angles which the two magnets make with the line

joining them.

3. Three small magnets having their centres at the angular points of an equilateral

triangle ABC, and being free to move about their centres, can rest in equilibrium with

the magnet at A parallel to BC, and those at B and C respectively at right angles to A B
and A C. Prove that the magnetic moments are in the ratios

V3 : 4 : 4.

4. The axis of a small magnet makes an angle $ with the normal to a plane. Prove

that the line from the magnet to the point in the plane where the number of lines of

force crossing it per unit area is a maximum makes an angle 6 with the axis of the

magnet, such that

2 tan 6= 3 tan 2 (<-0).

5. Two small magnets lie in the same plane, and make angles 0, & with the line

joining their centres. Shew that the line of action of the resultant force between them
divides the line of centres in the ratio

tan 0'+ 2 tan 6 : tan + 2 tan &.
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6. Two small magnets have their centres at distance r apart, make angles 6, & with

the line joining them, and an angle e with each other. Shew that the force on the first

magnet in its own direction is

(5 cos
2 6 cos ff- cos & - 2 cos * cos 0).

Shew that the couple about the line joining them which the magnets exert on one

another is

mm' ,

j-
d sin e,

where d is the shortest distance between their axes produced.

7. Two magnetic needles of moments M, M' are soldered together so that their

directions include an angle a. Shew that when they are suspended so as to swing freely

in a uniform horizontal magnetic field, their directions will make angles 6, & with the

lines of force, given by
sin 6 sin & sin a

M' M

8. Prove that if there are two magnetic molecules, of moments M and M'
,
with their

centres fixed at J'and B, where AB=r, and one of the molecules swings freely, while the

other is acted on by a given couple, so that when the system is in equilibrium this

molecule makes an angle 6 with AB, then the moment of the couple is

fMM' sin 20/r
3
(3 cos

2 + V)\

where there is no external field.

9. Two small equal magnets have their centres fixed, and can turn about them in a

magnetic field of uniform intensity ff, whose direction is perpendicular to the line r

joining the centres. Shew that the position in which the magnets both point in the

direction of the lines of force of the uniform field is stable only if

10. Two magnetic particles of equal moment are fixed with their axes parallel to the

axis of z, and in the same direction, and with their centres at the points a, 0, 0. Shew
that if another magnetic molecule is free to turn about its centre, which is fixed at the

point (0, y, z), its axis will rest in the plane #=0, and will make with the axis of z the

angle

Examine which of the two positions of equilibrium is stable.

11. Prove that there are four positions in which a given bar magnet may be placed
so as to destroy the earth's control of a compass-needle, so that the needle can point

indifferently in all directions. If the bar is short compared with its distance from the

needle, shew that one pair of these positions are about 1^ times more distant than the

other pair.

12. Three small magnets, each of magnetic moment /z, are fixed at the angular points
of an equilateral triangle ABC, so that their north poles lie in the directions AC, AB, BC
respectively. Another small magnet, moment

/*',
is placed at the centre of the triangle,

and is free to move about its centre. Prove that the period of a small oscillation is the

same as that of a pendulum of length /63
^/V

r

351/x/x', where 6 is the length of a side of the

triangle, and /the moment of inertia of the movable magnet about its centre.



406 Permanent Magnetism [CH. xi

13. Three magnetic particles of equal moments are placed at the corners of an

equilateral triangle, and can turn about those points so as to point in any direction in the

plane of the triangle. Prove that there are four and only four positions of equilibrium
such that the angles, measured in the same sense of rotation, between the axes of the

magnets and the bisectors of the corresponding angles of the triangle are equal. Also

prove that the two symmetrical positions are unstable.

14. Four small equal magnets are placed at the corners of a square, and oscillate

under the actions they exert on each other. Prove that the times of vibration of the

principal oscillations are

2
3(2 + l/2^2)J

'

MWP 1*

(3 -1/2V2)J
'

/
77

{ 3^ j

'

where m is the magnetic moment, and J/fc2 the moment of inertia, of a magnet, and d is a

side of the square.

15. A system of magnets lies entirely in one plane and it is found that when the

axis of a small needle travels round a contour in the plane that contains no magnetic

poles, the needle turns completely round. Prove that the contour contains at least one

equilibrium point.

16. Prove that the potential of a body uniformly magnetised with intensity / is, at

any external point, the same as that due to a complex magnetic shell coinciding with the
surface of the body and of strength /#, where x is a coordinate measured parallel to the

direction of magnetisation.

17. A sphere of hard steel is magnetised uniformly in a constant direction and a

magnetic particle is held at an external point with the axis of the particle parallel to the

direction of magnetisation of the sphere. Find the couples acting on the sphere and on
the particle.

18. A spherical magnetic shell of radius a is normally magnetised so that its strength
at any point is Stt where St is a spherical surface harmonic of positive order i. Shew
that the potential at a distance r from the centre is

i+l />
'

i /a\ i+l
477

27+1
Si

(r)
when

19. If a small spherical cavity be made within a magnetised body, prove that the

components of magnetic force within the cavity are

fl+ ffl,

20. If the earth were a uniformly magnetised sphere, shew that the tangent of the

dip at any point would be equal to twice the tangent at the magnetic latitude.

21. Prove that if the horizontal component, in the direction of the meridian, of the
earth's magnetic force were known all over its surface, all the other elements of its

magnetic force might be theoretically deduced.
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22. From the principle that the line integral of the magnetic force round any circuit

ordinarily vanishes, shew that the two horizontal components of the magnetic force at any
station may be deduced approximately from the known values for three other stations

which lie around it. Shew that these six known elements are not independent, but must

satisfy one equation of condition.

23. If the earth were a sphere, and its magnetism due to two small straight bar

magnets of the same strength situated at the poles, with their axes in the_same direction

along the earth's axis, prove that the dip d in latitude X would be given by

24. Assuming that the earth is a sphere of radius a, and that the magnetic potential
is represented by

shew that fl is completely determined by observations of horizontal intensity, declination

and dip at four stations, and of dip at four more.

25. Assuming that in the expansion of the earth's magnetic potential the fifth and

higher harmonics may be neglected, shew that observations of the resultant magnetic
force at eight points are sufficient to determine the potential everywhere.

26. Assuming that the earth's magnetism is entirely due to internal causes, and that

in latitude X the northerly component of the horizontal force is A cos X + B cos3
X, prove

that in this latitude the vertical component reckoned downwards is



CHAPTER XII

INDUCED MAGNETISM

PHYSICAL PHENOMENA.

458. REFERENCE has already been made to the well-known fact that

a magnet will attract small pieces of iron or steel which are not themselves

magnets. Here we have a phenomenon which at first sight does not seem

to be explained by the law of the attractions and repulsions of magnetic

poles. It is found, however, that the phenomenon is due to a magnetic
" induction

"
of a kind almost exactly similar to the electrostatic induction

already discussed. It can be shewn that a piece of iron or steel, placed in

the presence of a magnet, will itself become magnetised. Temporarily, this

piece of iron or steel will be possessed of magnetic poles of its own, and the

system of attractions and repulsions between these and the poles of the

original permanent magnet will account for the forces which are observed

to act on the metal.

It has, however, been seen that pairs of corresponding positive and

negative poles cannot be separated by more than molecular distances, so

that we are led to suppose that each particle of the body in which magnetism
is induced must become magnetised, the adjacent poles neutralising one

another as in a permanent magnet.

Taking this view, it will be seen that the attraction of a magnet for an

unmagnetised body is analogous to the attraction of an electrified body for

a piece of dielectric ( 197), rather than to its attraction for an uncharged
conductor. The attraction of a charged body for a fragment of a dielectric

has been seen to depend upon a molecular phenomenon taking place in the

dielectric. Each molecule becomes itself electrified on its opposite faces, with

charges of opposite sign, these charges being equal and opposite so that the

total charge on any molecule is nil. In the same way, when magnetism is

induced in any substance, each molecule of the substance must be supposed to

become a magnetic particle, the total charge of magnetism on each particle

being nil. It follows that the attraction of a magnet for a non-magnetic

body is merely the aggregate of the attractive forces acting on the different

individual particles of the body.

459. Confirmation of this view is found in the fact that the intensity

of the attraction exerted by a magnet on a non-magnetised body depends on
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the material of the latter. The significance of this fact will, perhaps, best be

realised by comparing it with the corresponding fact of electrostatics. When
an uncharged conductor is attracted by a charged body, the phenomena in

the former body which lead to this attraction are mass-phenomena : currents

of electricity flow through the mass of the body until its surface becomes

an equipotential. Thus the attraction depends solely upon the shape of

the body, and not upon its structure. On the other hand, the phenomena
which lead to the attraction of a fragment of dielectric are, as we have seen,

molecular phenomena. They are conditioned by the shape and arrangement
of the molecules, with the result that the total force depends on the nature

of the dielectric material.

All magnetic phenomena occurring in material bodies must be molecular,

as a consequence of the fact that corresponding positive and negative poles

cannot be separated by more than molecular distances. Hence we should

naturally expect to find, as we do find, that all magnetic phenomena in

material bodies, and in particular the attraction of unmagnetised matter

by a magnet, would depend on the nature of the matter. There would be

a real difficulty if the attraction were found to depend only on the shape
of the bodies.

460. The amount of the action due to magnetic induction varies

enormously more with the nature of the matter than is the case with the

corresponding electric action. Among common substances the phenomenon
of magnetic induction is not at all well-marked except in iron and steel.

These substances shew the phenomenon to a degree which appears very

surprising when compared with the corresponding electrostatic phenomenon.
After these substances, the next best for shewing the phenomena of induction

are nickel and cobalt, although these are very inferior to iron and steel. It

is worth noticing that the atomic weights of iron, nickel and cobalt are very
close together*, and that the three elements hold corresponding positions in

the table of elements arranged according to the periodic law.

It has recently been found that certain rare metals shew magnetic
induction to an extent comparable with iron, and that alloys can be formed

to shew great powers of induction although the elements of which these

alloys are formed are almost entirely non-magneticf.

It appears probable that all substances possess some power of magnetic
induction, although this is generally extremely feeble in comparison with

that of the substances already mentioned. In some substances, the effect

is of the opposite sign from that in iron, so that a fragment of such matter

is repelled from a magnetic pole. Substances in which the effect is of the

58'3, cobalt= 58-56.

f For an account of the composition and properties of Heusler's alloys, see a paper by
J. C. McLennan, Phys. Review, Vol. 24, p. 449.
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same kind as in iron are called paramagnetic, while substances in which the

effect is of the opposite kind are called diamagnetic.

The phenomenon of magnetic induction is much more marked in para-

magnetic, than in diamagnetic, substances. The most diamagnetic substance

known is bismuth, and its coefficient of susceptibility ( 461, below) is only

about ^ of that of the most paramagnetic samples of iron.

Coefficients of Susceptibility and Permeability.

461. When a body which possesses no permanent magnetism of its own

is placed in a magnetic field, each element of its volume will, for the time it

remains under the influence of the magnetic field, be a magnetic particle.

If the body is non-crystalline, the direction of the induced magnetisation at

any point will be that of the magnetic force at the point. Thus if H denote

the magnetic force at any point, we can suppose that the induced magnetism,
of an intensity /, has its direction the same as that of H.

Thus if a, ft, 7 are the components of magnetic force, and A, B, C the

components of induced magnetisation, we shall have equations of the form

A = tea

(390),

the quantity K being the same in each equation because the directions of /
and H are the same.

The quantity K is called the magnetic susceptibility.

If the body has no permanent magnetisation, the whole components of

magnetisation are the quantities A, B, C given by equations (390), and the

components of induction are given (cf. equations (359)) by

a = a. + 47rJ. = a (1 +

c = 7 -f 47r(7 = 7(1+
If we put p = 1+4 .............................. (391),

we have a = pa. \

&=Vf|
..............................(392),

c = w)
and

fju
is called the magnetic permeability.

462. The quantities K and /* are by no means constant for a given
substance. Their value depends largely upon the physical conditions,

particularly the temperature, of the substance, upon the strength of the

magnetic field in which the substance is placed, and upon the previous

magnetic experiences of the substance in question.
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We pass to the consideration of the way in which the magnetic coefficients

vary with some of these circumstances. As K. and p are connected by a simple

relation (equation (391)), it will be sufficient to discuss the variations of one

of these quantities only, and the quantity //,
will be the most convenient for

this purpose. Moreover, as the phenomenon of induced magnetisation is

almost insignificant in all substances except iron and steel, it will be sufficient

to consider the magnetic phenomena of these substances only.

463. Dependence of /JL
on H. The way in which the value of

//, depends
on H is, in its main features, the same for all kinds of iron. For small forces,

/JL
is a constant, for larger forces /A increases, finally it reaches a maximum,

and after this decreases in such a way that ultimately fiH approximates to

a constant value, known as the "saturation" value. This is represented

graphically in a typical case in fig. 113, which represents the results obtained

by Ewing from experiments on a piece of iron wire.

= 15000

= 10000

/i H=5000

10

FIG. 113.

15 20

The abscissae represent values of H, the ordinate of the thick curve the

value of pH, and the ordinate of the thin curve the value of /A. The corre-

sponding numerical values are as follows :

H
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464. Retentiveness and Hysteresis. It is found that after the magnetising
force is removed from a sample of iron, the iron still retains some of its mag-
netism. Here we have a phenomenon similar to the electrostatic phenomenon
of residual charge already described in 397.

Fig. 114 is taken from a paper by Prof. Ewing (Phil. Trans. Roy. Soc.

1885). The abscissae represent values of H, and ordinates values of B,

the induction. The magnetic field was increased from H to H=22,
and as H increased the value of B increased in the manner shewn by the

curve OP of the graph. On again diminishing H from H 22 to H 0, the

graph for B was found to be that given by the curve PE. Thus during this

operation there was always more magnetisation than at the corresponding

stage of the original operation, and finally when the inducing field was

entirely removed, there was magnetisation left, of intensity represented by
OE. The field was then further decreased from H = to H = -2Q

)
and

then increased again from H = 20 to H = 22. The changes in B are

shewn in the graph.

FIG. 114.

465. Dependence of fj,
on temperature. As has already been said, the

value of
fju depends to a large extent on the temperature of the metal. In

general, the value of
//, continually increases as the temperature is raised, this

increase being slow at first but afterwards more rapid, until a temperature
known as the "

temperature of recalescence
"

is reached. This temperature
has values ranging from 600 to 700 for steel and from 700 to 800 for iron.

This temperature takes its name from the circumstance that a piece of metal

cooling through this temperature will sink to a dull glow before reaching it,

and will then become brighter again on passing through it.

After passing the temperature of recalescence, the value of
/z,

falls with

extreme rapidity, and at a temperature only a few degrees above this

temperature, iron appears to be almost completely non-magnetic.
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For paramagnetic substances, it appears to be a general law that the

susceptibility K varies inversely as the absolute temperature (Curie's Law).

MATHEMATICAL THEORY.

466. If n is the magnetic potential, supposed to be defined at points

inside magnetic matter by equation (348), we have, as in equations (341)

(cf. 430), a -j |~ etc., so that
ox

b= - c = -
ox *dy 02

The quantities a, 6, c, as we have seen ( 434), satisfy

?? +^+^ = ...(393)
ox oy oz

at every point, and
rr

(394),

where the integration is taken over any closed surface. In terms of the

potential, equation (393) becomes

i^^^Ulf 3J*\_ ... (395)ox \ ox ) oy \ dy ) dz \ oz J

while equation (394) becomes

rr anV^=0 (396).

If
IJL

is constant throughout any volume, equation (395) becomes

vsn = o.

Thus inside a mass of homogeneous non-magnetised matter, the magnetic

potential satisfies Laplace's Equation.

467. At a surface at which the value of /* changes abruptly we may
take a closed surface formed of two areas fitting closely about an element dS
of the boundary, these two areas being on opposite sides of the boundary.
On applying equation (396), we obtain

where /^, //,2
are the permeabilities on the two sides, and ^ ,

-- denote
dz/j ov2

differentiations with respect to normals to the surface drawn into the two
media respectively.

Equations (397) and (395) (or (396)), combined with the condition that

n <must be continuous, suffice to determine n uniquely. The equations
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satisfied by H, the magnetic potential, are exactly the same as those which

would be satisfied by V, the electrostatic potential, if
yu,

were the Inductive

Capacity of a dielectric. Thus the law of refraction of lines of magnetic
induction is exactly identical with the law of refraction of lines of electric

force investigated in 138, and figures (43) and (78) may equally well be

taken to represent lines of magnetic induction passing from one medium to

a second medium of different permeability.

468. At any external point Q, the magnetic potential of the magnetisation
induced in a body in which

//,
and K have constant values is, by equation (342),

f[(\
A 1

(!JJJ (
vx \r

B
j> (!) + o 1

(1dy \rj dz \r

fffjan a /i\ an a /i\ an a /i\) , , , /Q04A= K If I VS^'5" "+^-5- ~
) *" -5- 5~ (

~
If dxdydz . . .(398).

JJJ 18 aa? \r/ dy dy \rj dz dz \r)\

Transforming by Green's Theorem,

an an a

shewing that the potential is the same if there were a layer of magnetic

matter of surface density
- K

^ spread over the surface of the body. This

is Poisson's expression for the potential due to induced magnetism.

We can also transform equation (398) into

shewing that the potential at any external point Q of the induced magnetism
is the same as if there were a magnetic shell of strength n coinciding
with the surface of the body.

Body in which permanent and induced magnetism coexist.

469. If a permanent magnet has a permeability different from unity, we
shall have a magnetisation arising partly from permanent and partly from

induced magnetism. If K is the susceptibility and / the intensity of the

permanent magnetisation at any point, the components of the total magnet-
isation at any point will be

A =Il + KOi, etc............................(401),
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and the components of induction are

a = a + 4,-n-A = 4>7rll + /ma, etc...................(402).

For such a substance, it is clear that equations (395) and (396) will not

in general be satisfied.

ENERGY OF A MAGNETIC FIELD.

470. To obtain the energy of a magnetic field in which both permanent
and induced magnetism may be present, we return to the general equation

obtained in 451,

..................(403).

On substituting for a, b, c from equations (402), this becomes

4>7r
fffl (la + m/3 + ny) dxdydz + IJL (a

2 + 2 + 7
2

) dxdydz = . . .(404).

Whether or not induced magnetism is present, it is proved, in 448, that the

energy of the field is

wW = i , "\ 7 j j7 (I ^- + m^ + n^-\ dxdydz,
V fa ty fo/

where the integral is taken through all space. This is equal to
^

times the

first term in equation (404). Thus

(405).

This could have been foreseen from analogy with the formula

Y* +Z^ dxdydz,

which gives the energy of an electrostatic field.

From formula (405) we see that the energy of a magnetic field may be

u,H2

supposed spread throughout the medium, at a rate ^ per unit volume.

MECHANICAL FORCES IN THE FIELD.

471. The mechanical forces acting on a piece of matter in a magnetic
field can be regarded as the superposition of two systems first, the forces acting
on the matter in virtue of its permanent magnetism (if any), and, secondly,
the forces acting on the matter in virtue of its induced magnetism (if any).

The problem of finding expressions for the mechanical forces in a magnetic
field is mathematically identical with that of finding the forces in an electro-

static field. This is the problem of which the solution has already been
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given in 196. The result of the analysis there given may at once be

applied to the magnetic problem.

In equation (117), p. 175, we found the value of H, the ^'-component of

the mechanical force per unit volume, in the form

dx STT dx dx \&TT 9r /

To translate this result to the magnetic problem, we must regard p as

specifying the density of magnetic poles, R must be replaced by H, the

magnetic intensity, and K by /JL,
the magnetic permeability. Also the

electrostatic potential V must be replaced by the magnetic potential XI. We
then have, as the value of H in a magnetic field,

Ti ~\ .\

(406).

Clearly the first term in the value of H is that arising from the per-

manent magnetism of the body, while the second and third terms arise from

the induced magnetism. The first term can be transformed in the manner

already explained in the last chapter. It is with the remaining terms that

we are at present concerned. These will represent the forces when no per-

manent magnetism is present. Denoting the components of this force by

E', H', Z', we have

(407).

472. This general formula assumes a special form in a case which is of

great importance, namely when the magnetic medium is a fluid.

All liquid magnetic media in which the susceptibility is at all marked

consist of solutions of salts of iron, and the magnetic properties of the liquid

arise from the presence of the salts in solution. According to Quincke, the

solution having the greatest susceptibility is a solution of chloride of iron in

methyl alcohol, and for this the value of
JJL

1 is about yoW*' ^n sucn a

liquid, the field arising from the induced magnetism will be small compared
with that arising from the original field, so that the magnetisation of any

single particle of the salt in the solution may be regarded as produced

entirely by the original field. Hence we have conditions similar to those

which obtain electrostatically in a gas. The induced field may be regarded

simply as the aggregate of the fields arising from the different particles of

the magnetic medium, and is therefore jointly proportional fco the density of

these particles and to the strength of the inducing field. The latter fact

shews that, for a given density of the medium, /JL ought to be independent of

H, a result to which we shall return later. The former fact shews that, as

*
Of. G. T. Walker,

" Aberration "
(Cambridge Univ. Press, 1900), p. 76.
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the density r changes, /JL
1 ought to be proportional to T a result analogous

to the result that K 1 is proportional to the density in a gas. It has been

found experimentally by Quincke* that
//,

1 is approximately proportional

to T.

In gases we have conditions precisely similar to those which obtain when

a gas is placed in an electrostatic field. Hence p 1 must, for_ a_gas, be

proportional to r, for exactly the same reason for which K 1 is proportional
to T. This result also has been verified by Quincke f.

Thus we may say that for fluid media, whether liquid or gaseous, //,
1

is, in general, proportional to r, where T is the density of the magnetic liquid,

in the case of a liquid in solution, or of the gas itself, in the case of a gas.

473. If we assume the relation

A6-l = cr ..............................(408),

where c is a constant, we find that expression (407) may be put in the

simpler form

shewing that the whole mechanical force is the same as would be set up by a

hydrostatic pressure at every point of the medium of amount
^

H 2
.

IfH varies from point to point of the field, the effect of this pressure will

clearly be to urge the medium to congregate in the more intense parts of the

field. This has been observed by MatteucciJ for a medium consisting of

drops of chloride of iron dissolved in alcohol placed in a medium of olive oil.

The drops of solution were observed to move towards the strongest parts of

the field.

Magnetostriction.

474. If a liquid is placed in a magnetic field, it yields under the

influence of the mechanical forces acting upon it, so that we have a

phenomenon of magnetostriction, analogous to the phenomenon of electro-

striction already explained ( 203). Clearly the liquid will expand until the

pressure is decreased by an amount
-^

H 2 at each point, the new pressure

and the mechanical forces resulting from the magnetic field now producing

equilibrium in the fluid. By measuring the expansion of a liquid placed in

a magnetic field Quincke has been able to verify the agreement between

theory and experiment.

* Wied. Ann. 24, p. 347. t Wied. Ann. 34, p. 401.

J Comptes Rendus, 36, p. 917.

j. 27
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MOLECULAR THEORIES.

Poissoris Molecular Theory of Induced Magnetism.

475. In Chapter v it was found possible to account for all the electro-

static properties of a dielectric by supposing it to consist of a number of

perfectly conducting molecules. Poisson attempted to apply a similar

explanation to the phenomenon of magnetic induction.

Poisson's theory can, however, be disproved at once, by a consideration of

the numerical values obtained for the permeability //,.
This quantity is

analogous to the quantity K of Chapter V, so that its value may be estimated

in terms of the molecular structure of the magnetic matter. The fact with

respect to which Poisson's theory breaks down is the existence of substances

(namely, different kinds of soft iron) for which the value of
//,

is very large.

To understand the significance of the existence of such substances, let us

consider the field produced when a uniform infinite slab of such a substance

is placed in a uniform field of magnetic force, so that the face of the slab is

at right angles to the lines of force. If the value of
//,

is very large, the fall

of potential in crossing the slab is very small. Throughout the supposed

perfectly-conducting magnetic molecules the potential would, on Poisson's

theory, be constant, so that the fall of potential could occur only in the

interstices between the molecules. In these interstices (cf. fig. 46), the fall of

potential per unit length would be comparable with that outside the slab.

Hence a very large value of
JJL

could be accounted for only by supposing the

molecules to be packed together so closely as to leave hardly any interstices.

Samples of iron can be obtained for which
//,

is as large as 4000
;

it is known,

from other evidence, that the molecules of iron are not so close together that

such a value of
/-t

could be accounted for in the manner proposed by Poisson.

It is worth noticing, too, that Poisson's theory does not seem able, without

modification, to give any reasonable account of the phenomena of saturation,

hysteresis, etc.

Weber s Molecular Theory of Induced Magnetism.

476. A theory put forward by Weber shews much more ability than

the theory of Poisson to explain the facts of induced magnetism.

Weber supposes that, even in a substance which shews no magnetisation,

every molecule is a permanent magnet, but that the effects of these different

magnets counteract one another, owing to their axes being scattered at

random in all directions. When the matter is placed in a magnetic field

each molecule tends, under the influence of the field, to set itself so that

its axis is along the lines of force, just as a compass-needle tends to set

itself along the lines of force of the earth's magnetic field. The axes of the
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molecules no longer point in all directions indifferently, so that the magnetic
fields of the different molecules no longer destroy one another, and the body
as a whole shews magnetisation. This, on Weber's theory, is the magnetisa-
tion induced by the external field of force.

Weber supposes that each molecule, in its normal state, is in a position
of equilibrium under the influence of the forces from all the neighbouring

molecules, and that when it is moved out of this position by the action of

an external magnetic field, the forces from the other molecules tend to

restore it to its old position. It is, therefore, clear that so long as the

external field is small, the angle through which each axis is turned by the

action of the field will be exactly proportional to the intensity of the field,

so that the magnetisation induced in the body will be just proportional to

the strength of the inducing field. In other words, for small values of H,

fji
must be independent of H.

There is, however, a natural limit imposed upon the intensity of the

induced magnetisation. Under the influence of a very intense field all the

molecules will set themselves so that their axes are along the lines of force.

The magnetisation induced in the body is now of a quite definite intensity,

and no increase of the inducing field can increase the intensity of the

induced magnetisation beyond this limit. Thus Weber's theory accounts

quite satisfactorily for the phenomenon of saturation, a phenomenon which

Poisson's theory was unable to explain.

477. In connection with this aspect of Weber's theory, some experi-

ments of Beetz are of great importance. A narrow line was scratched in

a coat of varnish covering a silver wire. The wire was placed in a solution

of a salt of iron, arranged so that iron could be deposited electrolytically

on the wire at the points at which the varnish had been scratched away.
The effect was of course to deposit a long thin filament of iron along the

scratch. If, however, the experiment, was performed in a magnetic field

whose lines of force were in the direction of the scratch, it was found not

only that the filament of iron deposited on the wire was magnetised, but

that its magnetisation was very intense. Moreover, on causing a powerful

magnetising force to act in the same direction as the original field, it was

found that the increase in the intensity of the induced magnetisation was

very small, shewing that the magnetisation had previously been nearly at

the point of saturation.

Now if, as Weber supposed, the molecules of iron were already magnets
before being deposited on the silver wire, then any magnetic force sufficient

to arrange them in order on the wire ought to have produced a filament in

a state of magnetic saturation, while if, as Poisson supposed, the magnetism
in the molecules was merely induced by the external magnetic field, then

the magnetisation of the filament ought to have been proportional to the

272
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original field, and ought to have disappeared when the field was destroyed.

Thus, as between these two hypotheses, the experiments decide conclusively

for the former.

478. Weber's theory is illustrated by the following analysis.

Consider a molecule which, in the normal state of the matter, has

its axis in the direction OP, and let

the field of force from the neigh-

bouring molecules be a field of in-

tensity D, the direction of the lines

of force being of course parallel to

OP. Now let an external field of

intensity H be applied, its direction

being a direction OA making an

angle a with OP. The total field

acting on the molecule is now com-

pounded of D along OP and H
along OA. FlG - 115 '

In fig. 115, let SO, OP represent H and D in magnitude and direction,

then SP will represent the resultant field, so that the new direction of the

axis of the molecule will be SP. Suppose that there are n molecules per

unit volume, each of moment m. Originally, when the axes of the molecules

were scattered indifferently in all directions, the number for which the

angle a had a value between a and a + da was \n sin ada. These molecules

now have their axes pointing in the direction SP, and therefore making an

angle PSA (= 0, say) with the direction of the external magnetic field. The

aggregate moment of all these molecules resolved in the direction of OA is

accordingly

mn sin a cos da,

and on integration the aggregate moment of all the molecules per unit

volume, which is the same as the intensity of the induced magnetisation /,

is given by

=
1 Jmnsinacos 6 da. (409).

If R is the value of SP, measured on the same scale on which SO and OP
represent H and D respectively, then

R* = H* + D*- 2HD cos a,

so that, on changing the variable from a to R, we must have the relation,

obtained by differentiation of the above equation,

j
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We also have cos =

so that equation (409) becomes

{-**/

2RH

dR.

In
fig. 115 the limits of integration for R are R = D + H and R D H.

If, however, H > D, then the point S falls outside the circle APB and the

limits for R are # = D + H and R = H - D.

On integrating, we find as the values of /,

when X < D, I f mn -^
,

X>D,

X = oo
,

/ = wm ( 1 - :

/ = raw.

FIG. 116.

In fig. 116, the abscissae represent values of H, the ordinates of the

thick curve the values of J, and the ordinates of the dotted curve the

values of B or /j,H, drawn on one-tenth of the vertical scale of the graph
for /.

Maxwell's Molecular Theory of Induced Magnetism.

479. It will be seen that Weber's theory fails to account for the

increase in the value of
/*.

before / reaches its maximum, and also that

it gives no account of the phenomenon of retentiveness. Maxwell has

shewn how the theory may be modified so as to take account of these

two phenomena. He supposes that, so long as the forces acting on the

molecules are small, the molecules experience small deflexions as imagined

by Weber, but that as soon as these deflexions exceed a certain amount,

the molecules are wrenched away entirely from their original positions of
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equilibrium, and take up positions relative to some new position of equi-

librium. It might be, for instance, that

originally the molecule had two possible

positions of equilibrium, OP and OQ in

fig. 117. Suppose the molecule to be in

position OP and to be acted upon by a

gradually increasing force in some direc-

tion OA. At first the molecule will turn
ElGt 117<

from the position OP towards OA. But it may be that, as soon as the

molecule passes some position OR, it suddenly swings round and takes

up a position in which it must be regarded as being deflected from the

position of equilibrium OQ and not from OP. Let its new position be

OS, then the deflexion produced is the angle SOP instead of the angle

ROP which would be given by Weber's theory. In this way Maxwell

suggested it might be possible to account for the induced magnetisation

increasing more rapidly than the inducing force, i.e. for
//, increasing with H.

If the magnetising force is now removed, the molecule in the position

OS will not return to its original position OP, but to the position OQ. It

will therefore still have a deflexion QOP, called by Maxwell its
"
permanent

set," and this will account for the " retentiveness
"
of the substance.

No molecular theory of this kind can, however, be regarded as at all

complete. We shall return to the discussion of molecular theories of mag-
netism in the next chapter.
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EXAMPLES.
1. A small magnet is placed at the centre of a spherical shell of radii a and b.

Determine the magnetic force at any point outside the shell.

2. A system of permanent magnets is such that the distribution in all planes parallel

to a certain plane is the same. Prove that if a right circular solid cylinder be placed in

the field with its axis perpendicular to these planes, the strength of the field at any point
inside the cylinder is thereby altered in a constant ratio.

3. A magnetic particle of moment m lies at a distance a in front of an infinite block

of soft iron bounded by a plane face, to which the axis of the particle is perpendicular.
Find the force acting on the magnet, and shew that the potential energy of the system is
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4. The whole of the space on the negative side of the yz plane is filled with soft iron,

and a magnetic particle of moment in at the point (a, 0, 0) points in the direction

(cos a, 0, sin a). Prove that the magnetic potential at the point #, y, z inside the iron is

2m z sin a - (a
-
x] cos a

SC A small magnet of moment M is held in the presence of a very large fixed mass of

soft iron of permeability p,
with a very large plane face : the magnet is at_a distance a

from the plane face and makes an angle 6 with the shortest distance from it to the plane.

Shew that a certain force, and a couple

(JJL

-
1)M2 sin 6 cos 0/8 (/*+ 1) a

3
,

are required to keep the magnet in position.

6. A small sphere of radius b is placed near a circuit which, when carrying unit

current, would produce a field of strength H at the point where the centre of the sphere is

placed. Shew that if K is the coefficient of magnetic induction for the sphere, the presence

of the sphere increases the self-induction of the wire by, approximately,

(3+ 47TK)
2

7. If the magnetic field within a body of permeability /t
be uniform, shew that any

spherical portion can be removed and the cavity filled up with a concentric spherical

nucleus of permeability m and a concentric shell of permeability p.2 without affecting the

external field, provided p lies between m and /z2 ,
and the ratio of the volume of the nucleus

to that of the shell is properly chosen. Prove also that the field inside the nucleus is

uniform, and that its intensity is greater or less than that outside according as
/u

is greater

or less than
fjL l

.

8. A sphere of radius a has at any point (#, y, z) components of permanent magneti-
sation (P#, Qy, 0), the origin of coordinates being at its centre. It is surrounded by a

spherical shell of uniform permeability /*,
the bounding radii being a and b. Determine

the vector potential at an outside point.

9. A sphere of soft iron of radius a is placed in a field of uniform magnetic force

parallel to the axis of z. Shew that the lines of force external to the sphere lie on surfaces

of revolution, the equation of which is of the form

r being the distance from the centre of the sphere.

10. A sphere of soft iron of permeability /z
is introduced into a field of force in which

the potential is a homogeneous polynomial of degree n in x
t y, z. Shew that the potential

inside the sphere is reduced to

of its original value.

11. If a shell of radii a, b is introduced in place of the sphere in the last question,

shew that the force inside the cavity is altered in the ratio

12. An infinitely long hollow iron cylinder of permeability /i,
the cross-section being

concentric circles of radii
, Z>, is placed in a uniform field of magnetic force the direction
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of which is perpendicular to the generators of the cylinder. Shew that the number of

lines of induction through the space occupied by the cylinder is changed by inserting the

cylinder in the field, in the ratio

13. A cylinder of iron of permeability p. has for cross-section the curve

where e
2 may be neglected. Find the distribution of potential when the cylinder is placed

in a field of force of which the potential before the introduction of the cylinder was

14. An infinite elliptic cylinder of soft iron is placed in a uniform field of potential

Xx+Yy\ the equation of the cylinder being

the induced magnetism at any internal point is

y y
-(Xx+Yy\ the equation of the cylinder being z +^= l. Shew that the potential of

15. A solid elliptic cylinder whose equation is =a given by

x+ iy
= c cosh (+irj)

is placed in a field of magnetic force whose potential is A(x2 -y2
). Shew that in the

space external to the cylinder the potential of the induced magnetism is

-%Ac* cosech 2 (a+/3) sin 4ae2(a~^~ f) cos 2ij,

where coth 2/3 is the permeability.

16. A solid ellipsoid of soft iron, semi-axes
, b, c and permeability /x,

is placed in a

uniform field of force X parallel to the axis of #, which is the major axis. Verify that the

internal and external potentials of the induced magnetisation are

rwhere A l
= I

Jo

and X is the parameter of the confocal through the point considered.

17. A unit magnetic pole is placed on the axis of z at a distance / from the centre of

a sphere of soft iron of radius a. Shew that the potential of the induced magnetism at

any external point is

1
p.
-I a? \ \ t"

+1
dtd6

-Her cos j

where 2, or are the cylindrical coordinates of the point. Find also the potential at an

internal point.

18. A magnetic pole of strength m is placed in front of an iron plate of permeability

p. and thickness c. If this pole be the origin of rectangular coordinates #, y, and if x be

perpendicular and y parallel to the plate, shew that the potential behind the plate is

given by

where



CHAPTER XIII

THE MAGNETIC FIELD PRODUCED BY ELECTRIC CURRENTS

EXPERIMENTAL BASIS.

480. So far the subjects of electricity and magnetism have been developed
as entirely separate groups of physical phenomena. Although the mathe-

matical treatment in the two cases has been on parallel lines, we have not

had occasion to deal with any physical links connecting the two series of

phenomena.

The first definite link of the kind was discovered by Oersted in 1820.

Oersted's discovery was the fact that a current of electricity produced a

magnetic field in its neighbourhood.

The nature of this field can be investigated in a simple manner. We
first double back on itself a wire in which ^

a current is flowing (fig. 118, 1). It is

found that no magnetic field is produced.

Next we open the end into a small

plane loop PQRS (fig. 118, 2). It is found

that at distances from the loop which are

great compared with its linear dimensions,

such a loop exercises the same magnetic
forces as a magnetic particle of which the

axis is perpendicular to the plane PQRS,
and the moment is jointly proportional to the strength of the current and
to the area PQRS. The single current flowing in the circuit OPQRST is

obviously equivalent to two currents of equal strength, the one flowing in

the circuit OPST obtained by joining the points P and S, and the other

flowing in the closed circuit PQRSP. The former current is shewn, by
the preliminary experiment, to have no magnetic effects, so that the whole

magnetic field may be ascribed to the small closed circuit PQRS.

(2)

FIG. 118.
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481. Instead of regarding this field as due to a particle of moment jointly

proportional to the area PQRS and to the current-strength, we may regard

it as due to a small magnetic shell, coinciding with the area PQRS, and of

strength simply proportional to the current flowing in PQRS.

482. Next, let us consider the current flowing in a closed circuit of any

shape we please, and not necessarily in

one plane. Let us cover in the closed

circuit by an area of any kind having the

circuit for its boundary, and let us cut

up this area into infinitely small meshes

by two systems of lines. A current of

strength i flowing round the boundary

circuit, is exactly equivalent to a current

of strength i flowing round each mesh in

the same direction as the current in the

boundary. For, if we imagine this latter

system x
of currents in existence, any line

such as AB in the interior will have two currents flowing through it, one

from each of the two meshes which it separates, and these currents will

be equal but in opposite directions. Thus all the currents in the lines

which have been introduced in the interior of the circuit annihilate one

another as regards total effect, while the currents in those parts of the

meshes which coincide with the original circuit just combine to reproduce
the original current flowing in this circuit.

Thus the original circuit is equivalent, as regards magnetic effect, to a

system of currents, one in each mesh. By taking the meshes sufficiently

small, we may regard each mesh as plane, so that the magnetic effect of a

current circulating in it is known : the magnetic effect of the current in a

single mesh is that of a magnetic shell of strength proportional to the current

and coinciding in position with the mesh. Thus, by addition, we find that

the whole system of currents produces the same magnetic effects as a single

magnetic shell coinciding with the surface of which the original current-

circuit is the boundary, and of strength proportional to the current. This

shell, then, produces the same magnetic effect as the original single current.

The magnetic shell is spoken of as the "
equivalent magnetic shell."

Tlius we have obtained the following result :

" A current flowing in any closed circuit produces the same magnetic field

as a certain magnetic shell, known as the
'

equivalent magnetic shell.' This

shell may be taken to be any shell having the circuit for its boundary, its

strength being uniform and proportional to that of the current."
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Law of Signs. If an observer is imagined to stand on that side of the
"
equivalent magnetic shell

"
which contains the negative poles, the current

flows round him in the same direction as that in which the sun moves round

an observer standing on the earth's surface in the northern hemisphere.

We can also state the law by saying that to drive an ordinary right-

handed screw (e.g. a cork-screw) in the direction

of magnetisation of the shell, the screw would

current.

/^have to be turned in the direction of the

Current
The law of signs expresses a fact of nature, not a +

mathematical convention. At the same time, it must be

noticed that the law does not express that nature shews

any preference in this respect for right-handed over left-

1-,, m ,. i Direction of Magnetisationhanded screws. Two conventions have already been made *
e(lui^a ient sheu

in deciding which are to be called the positive directions

of current and of magnetisation, and if either of these

conventions had been different, the word "
right-handed

"
in the law of signs would have

had to be replaced by "left-handed."

483. Since, by 346, any system of currents can be regarded as the

superposition of a number of simple closed currents, it follows that the

magnetic field produced by any system of currents can always be regarded as

that produced by a number of magnetic shells, each of uniform strength.

Electromagnetic Unit of Current.

484. If i is the strength of the current flowing in a circuit, and
</>

the

strength of the equivalent magnetic shell, then

< = ki,

where & is a constant, which is positive if the law of signs just stated has

been obeyed in determining the signs of
</>
and i.

In the system of units known as Electromagnetic, we take k = 1, and

define a unit current as one such that the equivalent magnetic shell is of

unit strength. The strength of a current, in these units, is therefore

measured by its magnetic effects. Obviously the strength measured in this

way will be entirely different from the strength measured by the number of

electrostatic units of electricity which pass a given point. This latter method

of measurement is the electrostatic method. -A full discussion of systems of

units will be given later
( 584); at present it may be stated that a current

which is of unit strength when measured electromagnetically in c.G.S. units is

of strength 3 x 1010

(very approximately) when measured electrostatically. The

practical unit of current, the ampere, is, as already stated, equal to 3 x 109

electrostatic units of current, so that the electromagnetic unit of current is

equal to 10 amperes.
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A unit charge of electricity in electromagnetic units will be the amount

of electricity that passes a fixed point per unit time in a circuit in which an

electromagnetic unit of current is flowing. It is therefore equal to 3 x 1010

electrostatic units.

WORK DONE IN THREADING A CIRCUIT.

485. In fig.
121 let the thick line represent a circuit in which a current

is flowing, and let the thin line through .......... ..

the point P represent the outline of /' NN

any equivalent magnetic shell, P
being any point in the shell. Let us

imagine that we thread the circuit by j

any closed path beginning and ending
at P, this path being represented by
the dotted line in the figure. At every \
point of this path except P, we have a ""- ...........

'''

? 11 i f^ - f FlG - 121.
full knowledge of the magnetic forces.

It will be convenient to regard the shell as having a definite, although

infinitesimal, thickness at P. Let P+) P_ denote the points in

which the path intersects the positive and negative faces of the

shell. Then we may say that the forces are known at all points of

the path, except over the small range P+P- .

The original current can, however, be represented by any
number of equivalent magnetic shells, for any shell is capable of

representing the current, provided only it has as boundary the

circuit in which the current is flowing.

Let any other equivalent shell cut the path in the points Q+Q-. From
our knowledge of the forces exerted by this shell, we can determine the

forces exerted by the current at all points of the path except those within

the range of Q+Q__ In particular we can determine the forces over the range
P^P-, and it is at once obvious that on passing to the limit and making the

range Q P_ infinitesimal, the forces at the points P+ , P., and at all points on the

infinitesimal range P+ P_ must be equal. Obviously the forces are also finite.

The work done on a unit pole in taking it round the complete circuit

from P. back to P., is accordingly the same as that done in taking it from P.

round the path to P+ . This can be calculated by supposing the forces to be

exerted by the first equivalent shell, for the path is entirely outside this

shell. If the potential due to the shell is OP at P^. and is ftp_
at P., the

work done is H fl .P

Now H, the potential of the shell at any point, is, as we know ( 419),

equal to iw, where o> is the solid angle subtended vby the shell and i is the
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current, measured in electromagnetic units. The change in the solid angle

as we pass from R. to P+ is, as a matter of geometry, equal to 4?r. Thus

n
p+
- flp _

= 47ri .... .....................(410).

The work done in taking a unit pole round the path described is accord-

ingly

MAGNETIC POTENTIAL OF A FIELD DUE TO CURRENTS.

486. Let us fix upon a definite equivalent shell to represent a current of

strength i. Let us bring a unit pole from in-

finity to any point A, by a path which cuts

the equivalent shell in points P, Q,...Z. For

simplicity, let us at first suppose that at each

of these points the path passes from the

positive to the negative side of the shell, and

let the points on the two sides of the shell be

denoted, as before, by P+ , _; Q+, Q_; and FlG - 123 -

so on.

Then, if fl denotes the magnetic potential due to the equivalent shell,

the work done in bringing the unit pole from infinity to JFJ. will be OP . In

the limit P+ and R. are coincident, so that the work in taking the unit pole

on from P^. to PL is infinitesimal. In taking it from P_ to Q+ work is done of

amount H^ flp_,
from Q+ to Q_, the work is infinitesimal, and so on, until

ultimately we arrive at A. Thus the total work done in bringing the unit

pole to A is

n
p+
+ (ng+

- np ) + (ft*+
- ng_) + . . . + (i^ - n*_),

or, rearranging, is

&A + (np+
- np _) + (nQ+

- n
g _) + ....

Now each of the terms HP Hp ,
1
Q

Xl
g ,

etc. is equal by equation

(410) to 4-73-1, so that if n is the number of these terms, the whole expression
is equal to

1A + Garni.

Replacing HA by iw, where is the solid angle subtended by the shell at

A, we find for the potential at A due to the electric current

(w + 47m)t ..............................(411).

If the path cuts the equivalent shell n times in the direction from + to
,

and m times in the opposite direction, the quantity n must be replaced by
n m.

Expression (411) shews that the potential at a point is not a single-valued

function of the coordinates of the point. The forces, which are obtained by
differentiation of this potential, are, however, single-valued.
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Current in infinite straight wire.

487. As an illustration of the results obtained, let us consider the

magnetic field produced by a current flowing in a straight wire which is of

such great length that it may be regarded as infinite, the return current

being entirely at infinity.

Let us take the line itself for axis of z. Any semi-infinite plane termi-

nated by this line may be regarded as an equivalent magnetic shell. Let us

fix on any plane and take it as the plane of xz.

Consider any point P such that OP, the shortest distance from P to

the axis of z, makes an angle 6 with Ox. The cone

through P which is subtended by the semi-infinite

plane Ox, is bounded by two planes one a plane

through P and the axis of z
; the other a plane through

P parallel to the plane zOx. These contain an angle

IT 6, so that the solid angle subtended by the plane

zOx at P is 2 (TT 0). Giving this value to o> in

formula (411), we obtain as the magnetic potential at P
H =

{2 (TT
-

0) + 4??7r} i.

r)O
Since -~- = it is clear that there is no radial magnetic force, and the

force at any point in the direction of 6 increasing

FIG. 124.

This result is otherwise obvious. If the work done in taking a unit pole
round a circle of circumference 2-Trr is to be 4?, the tangential force at

every point must be .

488. This result admits of a simple experimental confirmation.

Let PQR be a disc suspended in such a way that the only motion of

which it is capable is one of pure rotation about a

long straight wire in which a current is flowing.

On this disc let us suppose that an imaginary unit

pole is placed at a distance r from the wire. There

will be a couple tending to turn the disc, the

2i
moment of this couple being x r or 2 Similarly

if we place a unit negative pole on the disc there is

a couple 2i.

On placing a magnetised body on the disc, there

will be a system of couples consisting of one of

moment 2i for every positive pole and one of moment
2i for every negative pole. Since the total charge

FIG. 125.
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in any magnet is nil, it appears that the resultant couple must vanish, so

that the disc will shew no tendency to rotate. This can easily be verified.

Circular Current.

489. Let us find the potential due to a current of strength i flowing in a

circle of radius a. The equivalent magnetic shell may be supposed to be a

hemisphere of radius a bounded by this circle.

The potential at any point on the axis of the circle can readily be found.

For at a point on the axis distant r from the centre

of the circle, the solid angle t subtended by the

circle is given by

co = ZTT (1
- cos a)

= 2-n- (1
- ,-

V Va2 +

so that the potential at this point is

Va2 + r2
,

This expression can be expanded in powers of r

by the binomial theorem. We obtain the following

expansions :

if r < a,

FIG. 126.

if r > a,

1 a?

2. 4. ..2n

/r\m+1

W (412),

.(413).

From this it is possible to deduce the potential at any point in space.

Let us take spherical polar coordinates, taking the centre of the circle as

origin, and the axis of the circle as the initial line 6 = 0. Inside the sphere
r = a, the potential is a solution of V 2 fl = which is symmetrical about the

axis 6 = 0, and remains finite at the origin. It is therefore capable of

expansion in the form

fl = %Anr
nPn (cos 0).

o

Along the axis we have 6 = 0, so that this assumed value of O becomes

and the coefficients may be determined by comparison with equation (412).
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Thus we obtain for the potentials,

n = 2-iri jl
- - % (cos 0) + \-PA (cos 0)

- ...

i q o i /~.\

+ (- 1 >"
+1

-fe?k"
when r < a, and

when r > a.

^,3

At points so near to the origin that may be neglected, the potential is

f r \ f z\
ZTTI 1 - - cos 6 = 2-m 1 - -

,

\ a J \ aJ

nd

parallel to the axis.

where z = r cos 0, and the magnetic force is a uniform force
-^

=

Solenoids.

490. A cylinder, wound uniformly with wire through which a current

can be sent, is called a "solenoid." .

Consider first a circular cylinder of radius a and

height h, having a wire coiled round it at the uniform

rate of n turns per unit length, the wire carrying a

current i. Let z be a coordinate measuring the

distance of any cross-section from the base of the

solenoid. Then the small layer between z and z 4- dz, <

being of thickness dz, will contain ndz turns of wire.

The currents flowing in all these turns may be re-

garded as a single current nidz flowing in a circle, this circle being of radius

a and at distance z from the base of the solenoid. The magnetic potential

of this current may be written down from the formula of the last section, and

the potential of the whole solenoid follows by integration.

491. Endless Solenoid. In the limiting case in which the solenoid is of

infinite length (or in which the ends are so far away that the solenoid may
be treated as though it were of infinite length), the field can be determined

in a simpler manner.

Consider first the field outside the solenoid. In taking a unit pole round

any path outside the solenoid which completely surrounds the solenoid, the

work done is, by 485, 4?n. The current flowing per unit length of the
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solenoid is ni. In general we are concerned with cases in which this is finite

n being very large and i being very small. The quantity 4?n may accordingly
be neglected, and we can suppose that the work done in taking unit pole
round the solenoid is zero.

It follows that the force outside the solenoid can have no component at

right angles to planes through the axis, and clearly, by a similar argument,
the same must be true inside the solenoid. Hence the lines of induction

must lie entirely in the planes through the axis of the

solenoid. From symmetry, there is no reason why
the lines of induction at any point should converge

towards, rather than diverge from, the axis, or vice

versa. Hence the lines of induction will be parallel

to the axis, and the force at every point will be entirely

parallel to the axis.

Let the lines PQR, P'Q'R' in fig. 128 be radii

meeting the axis, the lines PP', QQ\ RR' being

parallel to the axis and each of length e. Let the

magnetic forces along these lines be Fl} F2 and F3

respectively.

In taking unit pole round the closed path PP'Q'QP the work done is

e-e,
and since this must vanish, we must have J%= E2 . Hence the

*

force at all

points outside the solenoid must be the same
;

it must be the same as the

force at infinity and must consequently vanish. Thus there is no force at all

outside the solenoid.

In taking unit pole round the closed path PP'R'RP, the work done is

7e, and this must be equal to 47rm'e, so that we must have F3 = 4?rm'. Thus

the force at any point inside the solenoid is a force 4>7rni parallel to the axis.

Thus the field of force arising from an infinite solenoid consists of a

uniform field of strength 4>7rni inside the solenoid, there being no field at all

outside. The construction of a solenoid accordingly supplies a simple way of

obtaining a uniform magnetic field of any required strength.

FIG. 128.

GALVANOMETERS.

492. A galvanometer is an instrument for measuring the strength of an

electric current, the method of measurement usually being to observe the

strength of the magnetic field produced by the current by noting its action

on a small movable magnet.

There are naturally various classes and types of galvanometers designed
to fulfil various special purposes.

j. 28
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The Tangent Galvanometer.

493. In the tangent galvanometer the current flows in a vertical

circular coil, at the centre of which a small magnetic needle is pivoted

so as to be free to turn in a horizontal plane.

Before use, the instrument is placed so that the plane of the coil contains

the lines of magnetic force of the earth's field. The needle accordingly rests

in the plane of the coil. When the current is allowed to flow in the coil

a new field is originated, the lines of force being at right angles to the

plane of the coil, and the needle will now place itself so as to be in equi-

librium under the field produced by the superposition of the two fields the

earth's field and the field produced by the current.

As the needle can only move in a horizontal plane, we need consider

only the horizontal components of the two fields. Let H, as usual, denote

the horizontal component of the earth's field. Let i be the current flowing
in the coil, measured in electromagnetic units, let a be the radius and let n

be the number of turns of wire. Near the centre of the coil the field

produced by the current is, by 489, a uniform field at right "angles, to

the plane of the coil, of intensity
- -. The total

horizontal field is therefore compounded of a field of

strength H in the plane of the coil, and a field of

strength
- - at right angles to it.

lirin

The resultant will make an angle 6 with the plane
of the coil, where

FIG. 129.

(416),

and the needle will set itself along the lines of force of the field. Thus the

needle will, when in equilibrium, make an angle with the plane of the

coil, where is given by equation (416). If we observe 6 we can determine
i from equation (416). We have

* =
^tan0 .............................. (417),

where G is a constant, known as the galvanometer constant, its value

, . ZTTH
being.

The instrument is called the tangent galvanometer from the circum-

stance that the current is proportional to the tangent of the angle d.



493, 494] Galvanometers 435

The tangent galvanometer has the advantage that all currents, no matter

how small or how great, can be measured without altering the adjustment
of the instrument. A disadvantage is that the readings are not very sensi-

tive when the currents to be measured are large only a very small change
in the reading is produced by a considerable change in the current. Let

the current be increased by an amount di, and let the corresponding change
in 6 be dO

} then from equation (417),

7/3

so that if i is large, -p
is small. Thus, although the instrument may be

used for the measurement of large currents, the measurements cannot be

effected with much accuracy.

A second defect of the instrument is caused by the circumstance that

the field produced by the current is not absolutely uniform near the centre

of the coil. If a is the radius of the coil, and b the distance of either pole

of the magnet from its centre, the poles will be in a part of the field in

which the intensity differs from that at the centre of the coil by terms of

b3

the order of . For instance, if the magnet is one inch long, while the

coil has a diameter of 10 inches, the intensity of the field will be different

from that assumed, by terms of the order of (TV)
3

>
so that the reading will be

subject to an error of about one part in a thousand.

By replacing the single coil of the tangent galvanometer by two or more

parallel coils, it is possible to make the field, in the region in which the

magnet moves, as uniform as we please. It is therefore possible, although
at the expense of great complication, to make a tangent galvanometer which

shall read to any required degree of accuracy.

The Sine Galvanometer.

494. The sine galvanometer differs from the tangent galvanometer in

having its coil adjusted so that it can be turned about a vertical axis.

Before the current is sent through the coil, the instrument is turned until

the needle is at rest in the plane of the coil. The coil is then in the direc-

tion of the earth's field at the point.

As soon as a current is sent through the coil, the needle is deflected, as

in the tangent galvanometer. The coil is now slowly turned in the direction

in which the needle has moved, until it overtakes the needle, and as soon

as the needle is again at rest in the plane of the coil, a reading is taken,

giving the angle through which the coil has been turned. Let be this

angle, then the earth's field may be resolved into components, H cos 6 in

282
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the plane of the coil and H sin 6 at right angles to this plane. Since the

needle rests in the plane of the coil, the latter component must be just

neutralised by the field set up by the current, this being, as we have seen,

entirely at right angles to the plane of the coil. We accordingly have

a

so that we must have

i = ^smO ........................(418),
Cr

where G, the galvanometer constant, has the same meaning as before.

This instrument has the disadvantage that it cannot be used to measure

currents greater than ~- . It is, however, sensitive over the whole range

through which it can be used : if d6 is the increase in caused by a change
di in i, we have

dd
-jj

sec 6 di,

so that the greater the current the more sensitive the instrument.

The great advantage of this form of galvanometer, however, is that when
the reading is taken the magnet is always in the same position relative

to the field set up by the current in the coil. Thus the deviations from

uniformity of intensity at the centre of the field do not produce any error

in the readings obtained: they result only in the galvanometer constant

having a value different from that which it has so far been supposed to

have. But when once the right value has been assigned to the constant G,

equation (418) will be true absolutely, no matter how large the movable

needle may be in comparison with the coil.

Other galvanometers.

495. There are various other types of galvanometers in use to serve

various purposes other than the exact measurement of a current. For full

descriptions of these the reader may be referred to books treating the

theory of electricity and magnetism from the more experimental side. The

following may be briefly mentioned here:

I. The D'Arsonval Galvanometer. This instrument is typical of a class

of galvanometer in which there is no moving needle, the moving part being
the coil itself, which is free to turn in a strong magnetic field. The coil

is suspended by a torsion fibre between the poles of a powerful horseshoe

magnet. When a current is sent through the coil, the coil itself produces
the same field as a magnetic shell, and so tends to set itself across the
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lines of force of the permanent magnet, this motion being resisted by no

forces except the torsion of the fibre.

II. TJie Mirror Galvanometer. This is a galvanometer originally designed

by Lord Kelvin for the measurement of the small currents used in the trans-

mission of signals by submarine cables. The design is, in its main outlines,

identical with that of the tangent galvanometer, but, to make the instrument

as sensitive as possible, the coil is made of a great number of turns of fine

wire, wound as closely as possible round the space in which the needle

moves, and the needle is suspended as delicately as possible by a fine

torsion-thread. To make the instrument still more sensitive, permanent

magnets can be arranged so as to neutralize part of the intensity of the

earth's field. The instrument is read by observing the motion of a ray of

light reflected from a small mirror which moves with the needle : it is from

this that the instrument takes its name. In the most sensitive form of this

instrument a visible motion of the spot of light can be produced by a current

of 10~10

amperes.

III. The Ballistic Galvanometer. This instrument does not measure

the current passing at a given instant, but the total flow of electricity

which passes during an infinitesimal interval. If the needle is at rest in

the plane of the coil, a current sent through the coil will establish a

magnetic field tending to turn the needle out of this plane. So long as

the needle is approximately in the plane of the coil, the couple acting on

the needle will be proportional to the current in the coil : let it be denoted

by ci, where i is the current.

Then if o> is the angular velocity of the needle at any instant, we shall

have an equation of the form

72 damkz

-j-
=

ci,
at

where mk2
is the moment of inertia of the needle. Integrating through the

small interval of time during which the current may be supposed to flow,

we obtain

[ idt.

Here II is the angular velocity with which the needle starts into motion,

and I idt is the total current which passes through the coil. Thus the total

flow Iidt can be obtained by measuring fl, and this again can be obtained by

observing the angle through which the needle swings before coming to rest

at the end of its oscillation.
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VECTOK-POTENTIAL OF A FIELD DUE TO CURRENTS.

496. From the formulae obtained in 446 for the vector-potential of a

uniform magnetic shell, we can at once write down expressions for the vector-

potential of a field due to currents.

For, by 483, the field due to any system of currents may be regarded as

the field due to a number of shells of uniform strength, so that the vector-

potential at any point will be the sum of the vector-potentials due to these

different shells. Hence if
</>, <', ... are the strengths of the various shells,

the vector-potential at any point P has components (cf. 446)

where the summation is over all the shells, and dx, ds' refer to an element of

the edge of a shell of strength <, this element being at a distance r from the

point P.

The equations just found may clearly be replaced by

-fi .(419),

H= -^d
J r ds

where ds is now an element of any wire or linear conductor in which a

current of strength i is flowing, and the integration is now along all the

conductors in the field.

By the use of equations (376), we may at once obtain the components of

magnetic force or induction at any point x', y', z in the forms
o TT o/^r
OJjL 0\JT

=
fy~'~8?

f. [8 (l\dz 8 fl\dy] ,= h l~-,
-

-j- -5-7
-
}-r-[dst

etc (420).
J [dy \rj ds dz \rj ds)

MECHANICAL ACTION IN THE FIELD.

Ampere's rule for the force from a circuit.

497. Let (x, y, z) be the position of any element ds of a circuit, and
let P be any point (x, y } z') in free space.

From equations (420) it follows that the magnetic force at P may be

regarded as made up of contributions from each element of the circuit such
that the contribution from the element ds at has components

.

j
8 /1\ dz d /1\ dy} ,

1 15^>
~

T-
-

5~'
-
\-T-\ds, etc., etc.

(dy \rj ds dz \rj ds)
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On putting r2 = (x
-

x')* + (y y'J + (z- z')*, and differentiating, these

components become

ids (y -y' dz^ _ z - z' dy\ ids
(z
- z' dx _ x x dz\ ^ (421)

T2
(

T* ds T ds
)

r2

} T ds r ds)

Let us denote -
,

- -,
- -

by llt ml} n1} these being the direction-

ciT r/?y CM z
cosines of the line OP, and let -y-, -]r , -j-ds ds ds

be denoted by 12) m 2 ,
nZ) these being the

direction-cosines of ds. Then the com-

ponents of force (421) become

ids
7

, />ioo\ FlG - 129a -

ZaW!) ...(422).

Clearly the resultant is a force at right angles both to OP and to ds, and

of amount

.(423),

where # is the angle between OP and ds.

Thus the total force at P may be regarded as made up of contributions

such as (423) from each element of the circuit. This is known as Ampere's
law.

Mechanical action on a circuit.

498. We are at present assuming the currents to be steady, so that

action and reaction may be supposed to be equal and opposite. It follows

that the force exerted by a unit pole at P upon the circuit of which the

element ds is part, may be regarded as made up of forces of amount

i sin 6

r2

per unit length, acting at right angles to OP and to ds. If we have poles of

strength m at P, m at P'} etc., the resultant force on the circuit may be

regarded as made up of contributions

im sin im sin 0'

o ) /o >
'

r2 r 2

per unit length. The resultant of these forces may be put in the form

iH sin x .............................. (424),

where H is the resultant magnetic intensity at of all the poles m, m', etc.,

and % is the angle between the direction of this intensity and ds. This

resultant force acts at right angles to the directions of // and of ds.
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A set of forces has now been obtained such that the resultant is the

resultant force acting on the circuit. It has not, however, been proved that

a force (424) will actually be exerted on the element of current at
;
the

total force on the circuit may be distributed between the different elements

in a great many ways, and equation (424) only gives one of these.

498 a. Let us now examine what is the most general type of force which

will account for the action exerted on the circuit. It will be sufficient to

consider the force exerted by a single pole, for a general magnetic field can

always be regarded as the superposition of fields produced by single poles.

Let H, H, Z be supposed to be the components of the force actually

exerted by a single pole at P (fig. 129 a) on an element ds at 0, measured per
unit length of the element ds, and let these differ from the particular forces

found in 498 (expression (422)) by H ,
H

,
Z

,
so that

n

%=- - (m^z m^) + So, etc (425).

The component of force in the direction I, m, n is IH + raH + nZ, and the

value of this integrated round the circuit must be the same as that of

I (w^ m^n^) ...

integrated round the circuit. We must accordingly have

+ nZ ) ds = 0.

It follows that E + mH + nZ must be of the form ~-
,
where <> is of

OS

course a linear function of I, m, n. In order that the resulting force H, H, Z

may be independent of the particular set of axes to which it is referred, $
must be of the form

where ty is a function of x, y, z only.

We must accordingly have

so that Ho = grJ- , etc., and equations (425) become
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The first terms compound to give the force already found, which is per-

pendicular to r and ds. The last terms give the force arising from a potential

?~ . Since ^r can depend only on r and ds, this latter force must necessarily
OS

. be in the plane determined by the two lines r and ds, so that the whole force

must have a component out of the plane of r and ds. It is almost incon-

ceivable that such a force could be the result of pure action at a distance, so

that we are led to attribute the forces acting on a circuit conveying a current

to action through the medium.

Action between two circuits.

499. Before leaving this question, however, mention must be made of

various attempts to resolve the forces between two circuits into forces between

pairs of elements.

If the currents, say of strengths i, i'
,
are replaced by their equivalent shells,

the mutual potential energy of these shells is, by 423, 446,

TIT / ff cos e j 7 /W = - ^^ M dsds
,

where e is the angle between the two elements ds, ds' and r is their distance

apart. The forces tending to move the circuits in any specified way may be

obtained by differentiation.

It is obvious that these forces can be accounted for if we suppose the

elements dsds to act on one another with forces of which the mutual poten-
tial energy is

ii' cos e 7 7 ,

dsds .

r

This, however, is not the most general way of decomposing the resultant

force. Obviously we shall get the same form for W if we assume for the

mutual potential energy of the two elements

.., , , , /cos e 92
<f> \- n dsds' + -^-, ,

V r dsdsj

where $ is any single valued function of position of the elements ds, ds'.

Clearly </>
must have the physical dimensions of a length. Following Helm-

holtz, let us take $ = KT, where K is a constant, as yet undetermined. We
have

82
/ \ (i d

,

8
,

d \ (ii
d ' a / d \

^r> (r) = (
l 5" + m ^~ + n 5" r o~/ + m o~/ + ^ a-? r-

9^35
v

v a^ a^/ 9*/ \ a^ a^ a//

XT 3r a?
'

Now /
=

,

c;a? r

a
sr 1

, (aj-aO
1

so that S-TT^ = - - + }L

-^-
Z

.

= (a?
- ^) (y

f -
y)

r3
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92r cos 6 cos & cos e
Hence =r^r~/

=
>

dsds r

where 6, 6' are the angles between r and ds, ds' respectively, arid e as before

is the angle between ds, ds', so that

cos e = cos 6 cos 6' + sin 6 sin & cos
(</> <'),

where <, </>'
are the azimuths of ds, ds'.

From this last equation, we have

sin sin 0' cos
(</>

-
<fr')" ~~

and the mutual potential energy w of the two elements now assumes the form

. ., 7 7 , /cos e d2r \w = ii dsds ( h K ,
1

11 u/SCLS , *
f. t ,_. \ /i /i/ /i /\i= -

(cos cos + (1 /c)
sin sin cos

((/> 9 )}.

From this value of w the system of forces can be found in the usual way.
The forces acting on the element ds will consist of

/*

(a) a repulsion ^- along the line joining ds and ds,

(b) a couple ^ tending to increase 0,

(c) a couple ^-r tending to increase <f>.

(j(b

If we take A; = 1 we obtain a system of forces originally suggested by

Ampere. We have
ii'dsds' Q Q/w = - cos cos

,

so that the forces are

Ofds ds'

(a) a repulsion cos cos 9' along the line joining ds and ds',

/7\ ii'dsds' ~ /v T /i

(b) a couple sin cos tending to increase 0,

and couple (c) vanishes.

If we take K = f ,
we obtain a system of forces derivable from the energy-

function
n n y-7 O /Y O

w = - (sin sin 9' cos (6 d>') 2 cos cos
/

l,
JA* 1. \ / r / '

which is the same as the energy-function of two magnetic particles of strengths

ids and i'ds, multiplied by Jr
2
. Thus force (a) is Jr

2 times the correspond-

ing forces for the magnetic particles, while couples (b) and (c) are Jr
2 times

the corresponding couples.
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500. There are of course innumerable other possible systems of forces,

but none of these seem at all plausible, so that we are almost compelled to

give up all attempts at explaining the action between the circuits by theories

of action at a distance. We accordingly attempt to construct a theory on

the hypothesis that the forces result from the transmission of stresses by the

medium. This in turn compels us to assume that the energy of the system
of currents resides in the medium.

ENERGY OF A SYSTEM OF CIRCUITS CARRYING CURRENTS.

501. The energy of a magnetic field, as we have seen ( 470), is

.................. (426).

If the energy resides in the medium, this expression may be regarded as

the energy of the field, no matter how this field is produced. If the field is

produced wholly by currents, expression (424) may be regarded as the energy
of the system of currents. As we shall now see, it can be transformed in a

simple way, so as to express the energy of the field in terms of the currents

by which the field is produced.

The integral through all space, as given by expression (424), may be

regarded as the sum of the integrals taken over all the tubes of induction by
which space is filled. The lines of induction, as we have seen, will be closed

curves, so that the tubes are closed tubular spaces.

If ds is an element of length, and dS the cross-section at any point, of a

tube of unit strength, we may replace dxdydz by dSds, and instead of inte-

grating with respect to dS we may sum over all tubes. Thus expression (424)

becomes

where the summation is over all unit tubes of induction. If H* a2 + /3
2 + 7

2
,

we have, by the definition of a unit tube, fjuHdS = 1, so that

fju (a
2 + 2 + 7

2

) dS = pH2dS = H,

and the integral becomes

Now I Hds is the work performed on a unit pole in taking it once round

the tube of induction, and this we know is equal to 47r2'^, where S'l is the

sum of all the currents threaded by the tube, taken each with its proper

sign. Thus the energy becomes

1-2(2';).
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This indicates that for every time that a unit tube threads a current i,

a contribution \i is added to the energy. Thus the whole energy is

(426a),

where the summation is over all the currents in the field, and JV is the

number of unit tubes which thread the current i.

502. We have seen that a shell of strength < is equivalent, as regards

the field produced at all external points, to a current i, if
<f>
= i. The energy

of a system of currents has however been found to be \%iN, whereas the

energy of a system of shells was found ( 450) to be

(4266).

The difference of sign can readily be accounted for. Let us consider a

single shell of strength 0, and let dS be an element of area, and dn an element

of length inside the shell measured normally to the shell. At any point just

outside the shell, let the three components of magnetic force be a, ft, 7, the

first being a component normal to the shell, and the others being components
in directions which lie in the shell. On passing to the inside of the shell, the

normal induction is discontinuous owing to the permanent magnetism which

must be supposed to reside on the surface of the shell. Thus inside the shell,

we may suppose the components of force to be S + , /3, 7, where
//,

is the
f*

permeability of the matter of which the shell is composed, and S is the

force originating from the permanent magnetism 'of the shell.

The contribution to the energy of the field which is made by the space

inside the shell is

where the integral is taken throughout the interior of the shell
;
or

This can be regarded as the sum of three integrals,

(iii)

.(427).
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On reducing the thickness of the shell indefinitely, S becomes infinite, for

at any point of the shell,

Sdn = (difference of potential between the two forces of shell)

= -
47T</>,

so that S becomes infinite when the thickness vanishes.

Thus on passing to the limit, the first integral

becomes infinite. This quantity is, however, a constant, for it represents the

energy required to separate the shell into infinitesimal poles scattered at

infinity.

The second integral vanishes on passing to the limit, and so need not be

further considered.

The third integral can be simplified. We have

Now I Sdn = 47T0, while 1 1 adS is the integral of normal induction over

the shell, and may therefore be replaced by N, the number of unit tubes of

induction from the external field, which pass through the shell. Thus the

third integral is seen to be equal to

In calculating expression (424) when the energy is that of a system of

currents, the contribution from the space occupied by the equivalent mag-
netic shells is infinitesimal. Thus all the terms which we have discussed

represent differences between the energies of shells and of circuits.

Terms such as the first integrals of scheme (427) represent merely that

the energies are measured from different standard positions. In the case of

the shells, we suppose the shells to have a permanent existence, and merely
to be brought into position. The currents, on the other hand, have to be

created, as well as placed in position. Beyond this difference, there is an

outstanding difference of amount $N for each circuit, and this exactly
accounts for the difference between expressions (425) and (426).

503. Let us suppose that we have a system of circuits, which we shall

denote by the numbers 1, 2, Let us suppose that when a unit current

flows through 1, all the other circuits being devoid of currents, a magnetic
field is produced such that the numbers of tubes of induction which cross

circuits 1, 2, 3, ... are

"U ) -^12 > -^13
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Similarly, when a unit current flows through 2, let the numbers of tubes

of induction be

The theorem of 446 shews at once that

ete...................... (428).

If currents ij, i2) ... flow through the circuits simultaneously, and if the

numbers of tubes of induction which cut the circuits are Nlf N2 ,
Ns , ..., we

have

The energy of the system of currents is

(429).
..., etc.

.

= iZuii
8 + Zuitj, + JZai2 + ..................(430).

504. The energy required to start the single current i in circuit 1 will

be %Lu i?. We might expect to obtain the value of Zn from equation (428)

by making the two circuits ds and ds' coincide. It is, however, easily found

that the value of Ln ,
calculated in this way, is infinite.

This can be seen in another way. The energy of the current is

Near to the wire, at a small distance r from it, the force is
,
so that

a2 + fi* + 7
2 = 4ia

/r
8

. Thus the energy within a thin ring formed of coaxal

cylinders of radii rlt ra ,
bent so as to follow the wire conveying the current

will be

8-

where the integration with respect to r is from rx to r2 ,
that with respect

to 6 is from to 27r, and that with respect to s is along the wire. Integrat-

ing we find energy
i
2

log (r2/n)

per unit length, and on taking 7^ = 0, we see that this energy is infinite.

505. In practice, the circuits which convey currents are not of infini-

tesimal cross-section, and so may not be treated geometrically as lines in

calculating Zu . The current will distribute itself throughout the cross-

section of the wire, and the energy is readily seen to be finite so long as the

cross-section of the wire is finite.
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EXAMPLES.

/I. A current i flows in a very long straight wire. Find the forces and couples it

exejrts upon a small magnet.

Shew that if the centre of the small magnet is fixed at a distance c from the wire, it

has two free small oscillations about its position of equilibrium, of equal period

277 V 12^'

where J/F is the moment of inertia, and p the magnetic moment, of the magnet.

N
2. Two parallel straight infinite wires convey equal currents of strength i in opposite

directions, their distance apart being 2a. A magnetic particle of strength p. and moment
of inertia mk2 is free to turn about a pivot at its centre, distant c from each of the wires.

Shew that the time of a small oscillation is that of a pendulum of length I given by

J,
'3. Two equal magnetic poles are observed to repel each other with a force of 40 dynes

when at a decimetre apart. A current is then sent through 100 metres of thin wire

wound into a circular ring eight decimetres in diameter and the force on one of the poles

placed at the centre is 25 dynes. Find the strength of the current in amperes.

/4. Regarding the earth as a uniformly and rigidly magnetised sphere of radius a,

and denoting the intensity of the magnetic field on the equator by H, shew that a wire

surrounding the earth along the parallel of south latitude X, and carrying a current i

from west to east, would experience a resultant force towards the south pole of the

heavens of amount
SiraiH sin X cos2 X.

5. Shew that at any point along a line of force, the vector potential due to a current

in a circle is inversely proportional to the distance between the centre of the circle and

the foot of the perpendicular from the point on to the plane of the circle. Hence trace

the lines of constant vector potential.

6. A current i flows in a circuit in the shape of an ellipse of area A and length I.

Shew that the force at the centre is nil/A.
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7^ A current i flows round a circle of radius a, and a current i' flows in a very long

strVfight wire in the same plane. Shew that the mutual attraction is 47m' (sec a
-

1), where

a is the angle subtended by the circle at the nearest point of the straight wire.

8. If, in the last question, the circle is placed perpendicular to the straight wire with

iiVcentre at distance c from it, shew that there is a couple tending to set the two wires in

the same plane, of moment 2irii'a*lc or 27m 'c, according as c > or < a.

9. A long straight current intersects at right angles a diameter of a circular current,

and the plane of the circle makes an acute angle a with the plane through this diameter

and the straight current. Shew that the coefficient of mutual induction is

4?r {c sec a - (c
2 sec2 a - a?fy or 47rc tan fT 5 j i

according as the straight current passes within or without the circle, a being the radius of

the circle, and c the distance of the straight current from its centre.

10. Prove that the coefficient of mutual induction between a pair of infinitely long

straight wires and a circular one of radius a in the same plane and with its centre at a

distance b (> a} from each of the straight wires, is

11. A circuit contains a straight wire of length 2a conveying a current. A second

straight wire, infinite in both directions, makes an angle a with the first, and their

common perpendicular is of length c and meets the first wire in its middle point. Prove

that the additional electromagnetic forces on the first straight wire, due to the presence
of a current in the second wire, constitute a wrench of pitch

Two circular wires of radii a, b have a common centre, and are free to turn on an

insulating axis which is a diameter of both. Shew that when the wires carry currents

i, i'
t
a couple of magnitude

is required to hold them with their planes at right angles, it being assumed that b/a is so

small that its fifth power may be neglected.

V 13. Two circular circuits are in planes at right angles to the line joining their centres.

Shew that the coefficient of induction

-a^-^l^-g^,
where a, c are the longest and shortest lines which can be drawn from one circuit to the
other. Find the force between the circuits.

14. Two currents i, i' flow round two squares each of side a, placed with their edges
parallel to one another and at right angles to the distance o between their centres. Shew
that they attract with a force

A current i flows in a rectangular circuit whose sides are of lengths 2a, 26, and
thei/ircuit is free to rotate about an axis through its centre parallel to the sides of length
2a. Another current i' flows in a long straight wire parallel to the axis and at a distance
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d from it. Prove that the couple required to keep the plane of the rectangle inclined at

an angle $ to the plane through its centre and the straight current is

16. Two circular wires lie with their planes parallel on the same sphere, and carry

opposite currents inversely proportional to the areas of the circuits. A small magnet has

its centre fixed at the centre of the sphere, arid moves freely about it. Shew that it will

be in equilibrium when its axis either is at right angles to the planes of the circuits, or

makes an angle tan~ J

| with them.

17. An infinitely long straight wire conveys a current and lies in front of and parallel

to an infinite block of soft iron bounded by a plane face. Find the magnetic potential at

all points, and the force which tends to displace the wire.

18. A small sphere of radius b is placed in the neighbourhood of a circuit, which

when carrying a current of unit strength would produce magnetic force H at the point
where the centre of the sphere is placed. Shew that, if < is the coefficient of induced

magnetization for the sphere, the presence of the sphere increases the coefficient of self-

induction of the wire by an amount approximately equal to

19. A circular wire of radius a is concentric with a spherical shell of soft iron of radii

b and c. If a steady unit current flow round the wire, shew that the presence of the iron

increases the number of lines of induction through the wire by

approximately, where a is small compared with b and c.

20. A right circular cylindrical cavity is made in an infinite mass of iron of perme-

ability p..
In this cavity a wire runs parallel to the axis of the cylinder carrying a steady

current of strength /. Prove that the wire is attracted towards the nearest part of the

surface of the cavity with a force per unit length equal to

where d is the distance of the wire from its electrostatic image in the cylinder.

21. A steady current C flows along one wire and back along another one, inside a

long cylindrical tube of soft iron of permeability /z,
whose internal and external radii are

i and 2 >
^ne wires being parallel to the axis of the cylinder and at equal distance a on

opposite sides of it. Shew that the magnetic potential outside the tube will be

F=^ sin +~ sin
30+|f

sin 50+ ...,

M\ 2n
, ,v)-^ (/i _i )2

|.
where ^
Hence shew that a tube of soft iron, of 150 cm. radius and 5 cm. thickness, for which the

effective value of p. is 1200 C.G.S., will reduce the magnetic field at a distance, due to the

current, to less than one-twentieth of its natural strength.

j. 29
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\^ 22. A wire is wound in a spiral of angle a on the surface of an insulating cylinder of

radius a, so that it makes n complete turns on the cylinder. A current i flows through

the wire. Prove that the resultant magnetic force at the centre of the cylinder is

Zirin

along the axis.

23. A current of strength i flows along an infinitely long straight wire, and returns in

a parallel wire. These wires are insulated and touch along generators the surface of an

infinite uniform circular cylinder of material whose coefficient of induction is k. Prove that

the cylinder becomes magnetised as a lamellar magnet whose strength is 2irK/(l+2trjfc).

I 24. A fine wire covered with insulating material is wound in the form of a circular

disc, the ends being at the centre and the circumference. A current is sent through the

wire such that / is the quantity of electricity that flows per unit time across unit length

of any radius of the disc. Shew that the magnetic force at any point on the axis of the

disc is

2 TT7 (cosh
~ *

(sec a)
- sin a} ,

where a is the angle subtended at the point by any radius of the disc.

25. Coils of wire in the form of circles of latitude are wound upon a sphere and

produce a magnetic potential ArnPn at internal points when a current is sent through
them. Find the mode of winding and the potential at external points.

/ 26. A tangent galvanometer is to have five turns of copper wire, and is to be made so

tnat the tangent of the angle of deflection is to be equal to the number of amperes flowing
in the coil. If the earth's horizontal force is -18 dynes, shew that the radius of the coil

must be about 17*45 cms.

A given current sent through a tangent galvanometer deflects the magnet through
an angle 6. The plane of- the coil is slowly rotated round the vertical axis through the

centre of the magnet. Prove that if 6 > JTT, the magnet will describe complete revolu-

tions, but if 6 < TT, the magnet will oscillate through an angle sin" 1

(tan &} on each side of

the meridian.

,28. Prove that, if a slight error is made in reading the angle of deflection of a tangent

galvanometer, the percentage error in the deduced value of the current is a minimum if the

angle of deflection is JTT.

29. The circumference of a sine galvanometer is 1 metre : the earth's horizontal

letic force is '18 c.G.s. units. Shew that the greatest current which can be measured

by the galvanometer is 4*56 amperes approximately.

30. The poles of a battery (of electromotive force 2 '9 volts and internal resistance

4 bhms) are joined to those of a tangent galvanometer whose coil has 20 turns of wire and
is of mean radius 10 cms. : shew that the deflection of the galvanometer is approximately
45. The horizontal intensity of the earth's magnetic force is 1-8 and the resistance of

the galvanometer is 16 ohms.

31. A tangent galvanometer is incorrectly fixed, so that equal and opposite currents

givfe angular readings a and /3 measured in the same sense. Shew that the plane of the

coil, supposed vertical, makes an angle e with its proper position such that

2 tan =tan a-t-tan /3.

^2.
If there be an error a in the determination of the magnetic meridian, find the

true strength of a current which is i as ascertained by means of a sine galvanometer.
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33. In a tangent galvanometer, the sensibility is measured by the ratio of the incre-

ment of deflection to the increment of current, estimated per unit current. Shew that

the galvanometer will be most sensitive when the deflection is
,
and that in measuring

the current given by a generator whose electromotive force is E, and internal resistance

jR, the galvanometer will be most sensitive if there be placed across the terminals a shunt

of resistance

HRr

where r is the resistance of the galvanometer, and H is the constant of the instrument.

What is the meaning of the result if the denominator vanishes or is negative ?

// 34. A tangent galvanometer consists of two equal circles of radius 3 cms. placed on a

common axis 8 cms. apart. A steady current sent in opposite directions through the two

circles deflects a small needle placed on the axis midway between the two circles through
an angle a. Shew that if the earth's horizontal magnetic force be H in c.G.S. units, then

the strength of the current in C.G.S. units will be 125ZTtan a/367r.

\/ 35. A galvanometer coil of n turns is in the form of an anchor-ring described by the

revolution of a circle of radius b about an axis in its plane distant a from its centre.

Shew that the constant of the galvanometer

Q fg
=

/
cu2 u dn? u du (k=b/a)

<*> J o

= (8rc/3Pa) [(1 +P) E-(l-,

292



CHAPTER XIY

INDUCTION OF CURRENTS IN LINEAR CIRCUITS

PHYSICAL PRINCIPLES.

506. IT has been seen that, on moving a magnetic pole about in the

presence of electric currents, there is a certain amount of work done on the

pole by the forces of the field. If the conservation of energy is to be true of

a field of this kind, the work done on the magnetic pole must be represented

by the disappearance of an equal amount of energy in some other part of the

field. If all the currents in the field remain steady, there is only one store

of energy from which this amount of work can be drawn, namely the energy

of the batteries which maintain the currents, so that these batteries must,

during the motion of the magnetic poles, give up more than sufficient energy

to maintain the currents, the excess amount of energy representing work

performed on the poles. Or again, if the batteries supply energy at a

uniform rate, part of this energy must be used in performing work on the

moving poles, so that the currents maintained in the circuits will be less

than they would be if the moving poles were at rest.

Let us suppose that we have an imaginary arrangement by which addi-

tional electromotive forces can be inserted into, or removed from, each circuit

as required, and let us suppose that this arrangement is manipulated so as to

keep each current constant.

Consider first the case of a single movable pole of strength m and a single

circuit in which the current is maintained at a uniform strength i. If &> is

the solid angle subtended by the circuit at the position of the pole at any
instant, the potential energy of the pole in the field of the current is mico, so

that in an infinitesimal interval dt of the motion of the pole, the work per-

formed on the pole by the forces of the field is mi
-^

dt. The current which

has flowed in this time is idt, so that the extra work done by the additional

batteries is the same as that of an additional electromotive force m -jr .

dt
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Thus the motion of the pole must have set up an additional electromotive

force in the circuit of amount
m-^-, to counteract which the additional

electromotive forces are needed. The electromotive force ra^- which
dt

appears to be set up by the motion of the magnets is called the electromotive

force due to induction.

The number of tubes of induction which start from the pole of strength m
is 47rw, and of these a number ma) pass through the circuit. Thus if n is the

number of tubes of induction which pass through the circuit at any instant,

rjm
the electromotive force may be expressed in the form

-^-
.

So also if we have any number of magnetic poles, or any magnetic system
of any kind, we find, by addition of effects such as that just considered, that

dN
there will be an electromotive force -r- arising from the motion of the

whole system, where N is the total number of tubes of induction which cut

the circuit.

It will be noticed that the argument we have given supplies no reason for taking JV to

be the number of tubes of induction rather than tubes of force. But if the number of

tubes crossing the circuit is to depend only on the boundary of the circuit we must take

tubes of induction and not tubes of force, for the induction is a solenoidal vector while

the force, in general, is not.

507. The electromotive force of induction 77 has been supposed to
dt

be measured in the same direction as the current, and on comparing this

with the law of signs previously given in 483, we obtain the relation

between the directions of the electromotive force round the circuit, and of

the lines of induction across the circuit. The magnitude and direction of

the electromotive force are given in the two following laws:

NEUMANN'S LAW. Whenever the number of tubes of magnetic induction

which are enclosed by a circuit is changing, there is an electromotive force

acting round the circuit, in addition to the electromotive force of any batteries

which may be in the circuit, the amount of this additional electromotive force

being equal to the rate of diminution of the number of tubes of induction

enclosed by the circuit.

LENZ'S LAW. The positive direction of the electromotive force gr
ana

the direction in which a tube offorce must pass through the circuit in order to

be counted as positive, are related in the same way as the forward motion and

rotation of a right-handed screw.
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If there is no battery in the circuit, the total electromotive force will be

dN
-j- ,

and the current originated by this electromotive force is spoken of as

an " induced
"
current.

508. In order that the phenomena of induced currents may be consistent

with the conservation of energy, it must obviously be a matter of indifference

whether we cause the magnetic lines of induction to move across the circuit,

or cause the circuit to move across the lines of induction. Thus Neumann's

law must apply equally to a circuit at rest and a circuit in motion. So also

if the circuit is flexible, and is twisted about so as to change the number of

lines of induction which pass through it, there will be an induced current of

which the amount will be given by Neumann's Law.

509. For instance if a metal ring is spun about a diameter, the number

of lines of induction from the earth's field which pass through it will change

continuously, so that currents will flow in it. Furthermore, energy will be

consumed by these currents so that work must be expended to keep the ring
in rotation. Again the wheels and axles of two cars in motion on the same

line of rails, together with the rails themselves, may be regarded as forming
a closed circuit of continually changing dimensions in the earth's magnetic
field. Thus there will be currents flowing in the circuit, and there will be

electromagnetic forces tending to retard or accelerate the motions of the cars.

510. If, as we have been led to believe, electromagnetic phenomena are

the effect of the action of the medium itself, and not of action at a distance,

it is clear that the induced current must depend on the motion of the lines of

force, and cannot depend on the manner in which these lines of force are pro-

duced. Thus induction must occur just the same whether the magnetic field

originates in actual magnets or in electric currents in other parts of the field.

This consequence of the hypothesis that the action is propagated through the

medium is confirmed by experiment indeed in Faraday's original investiga-
tions on induction, the field was produced by a second current.

511. Let us suppose that we have two circuits 1, 2, of which 1 contains

a battery and a key by which the circuit

can be closed and broken, while circuit 2

remains permanently closed, and contains a

galvanometer but no battery. On closing
the circuit 1, a current flows through circuit

1, setting up a magnetic field. Some of the

tubes of induction of this field pass through
circuit 2, so that the number of these tubes

changes as the current establishes itself in

circuit 1, and the galvanometer in 2 will

accordingly shew a current. When the current in 1 has reached its steady
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value, as given by Ohm's Law, the number of tubes through circuit 2 will no

longer vary with the time, so that there will be no electromotive force in

circuit 2, and the galvanometer will shew no current. If we break the

circuit 1, there is again a change in the number of tubes of induction passing

through the second circuit, so that the galvanometer will again shew a

momentary current.

GENEKAL EQUATIONS OF INDUCTION IN LINEAR CIRCUITS.

512. Let us suppose that we have any number of circuits 1, 2, ....

Let their resistances be R1} R2 , ..., let them contain batteries of electro-

motive forces Elt Ez , ..., and let the currents flowing in them at any instant

bei, 4, ....

The numbers of tubes of induction Nl} Nz ,
... which cross these circuits

are given by (cf. equations (429))

N! = ZH ii + Z12 i'2 + Lls i3 + ..., etc.

In circuit 1 there is an electromotive force El due to the batteries, and an

dN
electromotive force --^ due to induction. Thus the total electromotive

dt

force at any instant is El -j- ,
and this, by Ohm's Law, must be equal to

(Jut

R^. Thus we have the equation

lsis + ...)
= R1 il ............ (431).

Similarly for the second circuit,

^2 -^(Z21 i1 + Z22 r2 + Z23 i3 +...) =^2 ............(432),

and so on for the other circuits.

Equations (431), (432), ... may be regarded as differential equations from

which we can derive the currents il} i2 ,
... in terms of the time and the

initial conditions. We shall consider various special cases of this problem.

INDUCTION IN A SINGLE CIRCUIT.

513. If there is only a single circuit, of resistance R and self-induction L,

equation (431) becomes

tf-J^ZiO-lK,
...........................(433).

Let us use this equation first to find the effect of closing a circuit pre-

viously broken. Suppose that before the time t = the circuit has been

open, but that at this instant it is suddenly closed with a key, so that the

current is free to flow under the action of the electromotive force E.
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The first step will be to determine the conditions immediately after the

circuit is closed. Since
-^-(Z^) is, by equation (433), a finite quantity, it

follows that Lii must increase or decrease continuously, so that immediately
after closing the circuit the value of Li^ must be zero.

To find the way in which ir increases, we have now to solve equation (433),

in which E, L and R are all constants, subject to the initial condition that

ij
= when t = 0. Writing the equation in the form

we see that the general solution is

where C is a constant, and in order that ^ may vanish when t = 0, we must

have C = E, so that the solution is

(434).

131

The graph of ^ as a function of t is shewn in fig. 131. It will be seen

that the current rises gradually to its final

value E/R given by Ohm's Law, this rise

being rapid if L is small, but slow if L is

great. Thus we may say that the increase in

the current is retarded by its self-induction.

We can see why this should be. The energy
of the current ^ is \L%?, and this is large when
L is large. This energy represents work per-

formed by the electric forces: when the current

is i!, the rate at which these forces perform work is Eilt a quantity which

does not depend on L. Thus when L is large, a great time is required for

the electric forces to establish the great amount of energy Z%
2

.

A simple analogy may make the effect of this self-induction clearer. Let the flow of

the current be represented by the turning of a mill-wheel, the action of the electric forces

being represented by the falling of the water by which the mill-wheel is turned. A large

value of L means large energy for a finite current, and must therefore be represented by

supposing the mill-wheel to have a large moment of inertia. Clearly a wheel with a small

moment of inertia will increase its speed up to its maximum speed with great rapidity,

while for a wheel with a large moment of inertia the speed will only increase slowly.

Alternating Current.

514. Let us next suppose that the electromotive force in the circuit is

not produced by batteries, ,but by moving the circuit, or part of the circuit,

in a magnetic field. If <M is the number of tubes of induction of the
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external magnetic field which are enclosed by the circuit at any instant,

the equation is

- t̂
(Lil + N) = Bil ........................(435).

The simplest case arises when N is a simply-harmonic function of the

time, proportional let us say to cos pt. We can simplify the problem by sup-

posing that N is of the form G (cospt + ismpt). The real part of N will

give rise to a real value of ilt and the imaginary part of N to an imaginary
value of v Thus if we take N= Ceipt we shall obtain a value for i\ of which

the real part will be the true value required for v
Assuming N= G(cospt + i sinpi)

= Ceipt
,
the equation becomes

and clearly the solution will be proportional to eipt . Thus the differential

operator -=- will act only on a factor eipt
,
and will accordingly be equivalent to

(MI

multiplication by ip. We may accordingly write the equation as

-
ip (Lii -f- CeW) = Ri1}

a simple algebraic equation of which the solution is

. _- pi Of??*
'

ll
~
R + Lip'

Let the modulus and argument of this expression be denoted by p and ^,

so that the value of the whole expression is p (cos % + * sin ^). The value of

/o,
the modulus, is equal ( 311) to the product of the moduli of the factors, so

that

G
p ~

while the argument %, being equal ( 311) to the sum of the arguments of

the factors, is given by

The solution required for ^ is the real term p cos %, so that

^ = p cos x

=~ sin \pt
- tan- ()l . ...(436).+& V v^/j

The electromotive force produced by the change in the number of tubes

of the external field is

dN d ,n- --- = -
(Ccospt) =pGsmpt.



458 Induction of Currents in Linear Circuits [CH. xiv

Thus, if self-induction were neglected, the current, as given by Ohm's

Law, would be

pO .

^smpt,

and this of course would agree with that which would be given by equation

(436) if L were zero.

The modifications produced by the existence of self-induction are repre-

sented by the presence of L in expression (436), and are two in number. In

the first place the phase of the current lags behind that of the impressed

electromotive force by tan~l

-jj- ,
and in the second place the apparent resist-

ance is increased from R to V-R2 + Z2

j
2
.

515. The conditions, assumed in this problem are sufficiently close to

those which occur in the working of a dynamo to illustrate this working. A
coil which forms part of a complete circuit is caused to rotate rapidly in a

magnetic field in such a way as to cut a varying number of lines of induction.

T)

The quantity ^ may be supposed to represent the number of alterna-
ZTT

tions per second i.e. the number of revolutions of the engine by which the

dynamo is driven. We see that the current sent through the circuit will be

an "
alternating

"
current of frequency equal to that of the engine. In the

example given, the rate at which heat is generated is (p cos ^)
2
R, and the

average rate, averaged over a large number of alternations, is %p*R or

t
2

This, then, would be the rate at which the engine driving the dynamo
would have to perform work.

Discharge of a Condenser.

516. A further example of the effect of induction in a single circuit which

is of extreme interest is supplied by the phenomenon of the discharge of a

condenser.

Let us suppose that the charges on the two plates at any instant are Q
and Q, the plates being connected by a wire of resistance R and of self-

induction L. If C is the capacity of the condenser, the difference of potential

of the two plates will be ^ ,
and this will now play the same part as the

electromotive force of a battery. The equation is accordingly

*' <437 >-
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The quantities Q and i are not independent, for i measures the rate of

flow of electricity to or from either plate, and therefore the rate of diminution

of Q. We accordingly have i = - -~
,
and on substituting this expression for

i, equation (437) becomes

d*Q dQ Q

The solution is known to be

Q = Ae-w + BerW ........................ (438),

where A, B are arbitrary constants, and \, X2 are the roots of

o .(439).

If the circuit is completed at time t = 0, the charge on each plate being
initially Q ,

we must have, at time = 0,

and these conditions determine the constants A and B. The equations

giving these quantities are

A + B = Qo, A\i + X2
= 0.

If the roots of equation (439) are real, it is clear, since both their sum
and their product are positive, that they must themselves be positive quanti-
ties. Thus the value of Q given by equation (438) will gradually sink from

Qo to zero. The current at any instant is

and this starts by being zero, rises to a maximum and then falls again to

zero. The current is always in the same direction, so that Q is always of the

same sign.

It is, however, possible for equation (439) to have imaginary roots. This

will be the case if

-"

is negative. Denoting JR2 -~-
,
when negative, by /e

2
,
the roots will be
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so that the solution (438) becomes

st

Rt

= e 2LD cos
Kt

where D, e are new constants. In this case the discharge is oscillatory. The
2?rZy

charge Q changes sign at intervals - -
,
so that the charges surge backwards

and forwards from one plate to the other. The presence of the exponential
_Rt

e
2L shews that each charge is less than the preceding one, so that the

charges ultimately die away. The graphs for Q and i in the two cases of

(i) -~- (discharge continuous),

(ii) R2 <-T (discharge oscillatory),O

are given in figs. 132 and 133.

Fia. 132.

(i) discharge continuous.

FIG. 133.

(ii) discharge oscillatory.

The existence of the oscillatory discharge is of interest, as the possibility

of a discharge of this type was predicted on purely theoretical grounds by
Lord Kelvin in 1853. Four years later the actual oscillations were observed

by Feddersen.
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517. It is of value to compare the physical processes in the two kinds of

discharge.

Let us consider first the continuous discharge of which the graphs are

shewn in fig. 132. The first part of the discharge is similar to the flow

already considered in 513. At first we can imagine that the condenser is

exactly equivalent to a battery of electromotive force E= ^, and the act of
O

discharging is equivalent to completing a circuit containing this battery.

After a time the difference between the two cases comes into effect. The

battery would maintain a constant electromotive force, so that the current

K
would reach a constant final value ^ ,

whereas the condenser does not supply

a constant electromotive force. As the discharge occurs, the potential differ-

ence between the plates of the condenser diminishes, and so the electromotive

force, and consequently the current, also diminish. Thus the graph for i in

fig. 132, can be regarded as shewing a gradual increase towards the value

-^ (where
E = ^)

in the earlier stages, combined with a gradual falling off of

the current, consequent on the diminution of E, in the latter stages.

For the oscillatory discharge to occur, the value of L must be greater than

for the continuous discharge. The energy of a current of given amount is

accordingly greater, while the rate at which this is dissipated by the genera-

tion of heat, namely Ri2
,
remains unaltered by the greater value of Z. Thus

for sufficiently great values of L the current may persist even after the con-

denser is fully discharged, a continuation of the current meaning that the

condenser again becomes charged, but with electricity of different signs from

the original charges. In this way we get the oscillatory discharge.

INDUCTION IN A PAIR OF CIRCUITS.

518. If L, M, N are the coefficients of induction (L11} Z12 , L^) of a pair of

circuits of resistances R, S, in which batteries of electromotive forces E1} E3

are placed, the general equations become

(440),

(441).

Sudden Completing of Circuit.

519. Let us consider the conditions which must hold when one of the

circuits is suddenly completed, the process occupying the infinitesimal inter-

val from t = to t r. Let the changes which occur in ^ and i'a during this
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interval be denoted by A^ and AV Equations (440) and (441) shew that

during the interval from t = to t = r the values of -=- (Li^ -f Mi2) and of

-j- (M^ + Niz) are finite, so that when r is infinitesimal, the changes in
Cu

Li! + ^'2 and M^ + JV^ must vanish. Thus we must have

0,

t = 0.

Except in the special case in which LN M2 =
(a case of importance,

which will be considered later), these equations can be satisfied only by

At*!
= Ai'2 = 0. Thus the currents remain unaltered by suddenly making a

circuit, and the change in the currents is gradual and not instantaneous.

520. Suppose, for instance, that before the instant t = circuit 2 is

closed but contains no battery, while circuit 1, containing a battery, is broken.

Let circuit 1 be closed at the instant t = 0, then the initial conditions are

that at time t = 0, ^ = iz
= 0. The equations to be solved are

The solution is known to be

where A, A't B, B' are constants, and X, X' are the roots of

(R - L\) (S - N\) - Jf2\2 = 0,

or of RS-(RN + SL)\ + (LN-M*)\* = Q ............(444).

The energy of the currents, namely

being positive for all values of ^ and i'2 ,
it follows that LN M 2

is necessarily

positive. Since R8 and RN + SL are also necessarily positive, we see that all

the coefficients in equation (444) are positive, so that the roots X, X' are both

positive.

When t = 0, we must have

(445),

(446),
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and in order that equation (443) may be satisfied at every instant, we must

have

e~* + (S
- N\') Re-** = 0,

for all values of t, and for this to be satisfied the coefficients of e~M and e~ K>t

must vanish separately. Thus we must have

(S-N\)B = MA\ ..................... ,..(447),

(S
- N\'} & = MA'\' ........................(448),

and if these relations are satisfied, and X, X' are the roots of equation (444),

then equation (442) will be satisfied identically. From equations (445), (446),

(447) and (448), we obtain

B-B' A\ -A'\' -E,
M ~

~M~
~
S-N\~ S-N\'

~
RS(\~> -X'-1

)'

and the solution is found to be

(0-jyx)^ _ (g-jyv)fl
RS\ (X-

1 - X'-1

)
** ; + RSX' (X'-

1 - X-1

)
(L '*

ME, A
. ME,

e~ Kt

R8 (X-
1 - V-1

) RS (X'-
1 - X-1

)

We notice that the current in 1 rises to its steady value ^ ,
the rise being

similar in nature to that when only a single circuit is concerned ( 513). The

rise is quick if X and X7

are large i.e. if the coefficients of induction are

small, and conversely. The current in 2 is initially zero, rises to a maximum
and then sinks again to zero. The changes in this current are quick or slow

according as those of current 1 are quick or slow.

Sudden Breaking of Circuit.

521. The breaking of a circuit may be represented mathematically by

supposing the resistance to become infinite. Thus if circuit 1 is broken, the

process occurring in the interval from t = to t = r, the value of R will

become infinite during this interval, while the value of i, becomes zero. The

changes in i, and i2 are still determined by equations (440) and (441), but we

can no longer treat R as a constant, and we cannot assert that in the interval

from to T the value of Ri^ is always finite.

It follows, however, from equation (441) that
-^ (Mi, + Ni2) remains finite

throughout the short interval, so that we have, with the same notation as

before,

i, + N&i3
= 0.
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Suppose for instance that before the circuit 1 was broken we had a steady
W

current -
1

in circuit 1, and no current in circuit 2. We shall then have

ME,
so that Ai2

and therefore immediately after the break, the initial current in circuit 2 is

MEl

This current simply decays under the influence of the resistance of the

circuit. Putting EZ
= Q and i,

= in equation (441) we obtain

<M? - _ ^
dt~ N 1*'

and the solution which gives t*2
= -arW initially is

. ME,

The changes in the current i, during the infinitesimal interval r are of

interest. These are governed by equation (440), the value of R not being
constant.

The value of E, is finite, and may accordingly be neglected in comparison
with the other terms of equation (440), which are very great during the

interval of transition. Thus the equation becomes, approximately,

t
(Lil + Mi2)

= -Ri1 ........................ (449).

The value of -7- (Mi, + Ni9) is, as we have already seen, finite, so that we

may subtract
-^

times this quantity from the left-hand member of equation

(449) and the equation remains true. By doing this we eliminate i2) and
obtain

The solution which gives to i, the initial value ft) is

giving the way in which the current falls to zero. We notice that if

LN M* is very small, the current falls off at once, while ifLN - M2
is large,

the current will persist for a longer time. In the former case the breaking
of the circuit is accompanied only by a very slight spark, in the latter case

by a stronger spark.
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One Circuit containing a Periodic Electromotive Force.

522. Let us suppose next that the circuits contain no batteries, but that

circuit 1 is acted upon by a periodic electromotive force, say E cos pt, such as

might arise if this circuit contained a dynamo.

As in 514, it is simplest to assume an electromotive force ~E&pi \ the

solution actually required will be obtained by ultimately rejecting the

imaginary terms in the solution obtained.

The equations to be solved are now

(451).

As before both ^ and i'2 ,
as given by these equations, will involve the

time only through a factor eipt
,
so that we may replace -^ by ip, and the

equations become

ipit + Mipi2
=

Siz + Mipii + Nipiz
= 0,

from which we obtain

8 + Nip
~
-Mip

~
(R + Lip)(S + Nip) +

The current i\ in the primary is given, from these equations, by

+-_
S + Nip

R'+L'ip'

y NMyR = R +

The case of no secondary circuit being present is obtained at once by

putting S = oo
,
and the solution for ^ is seen to be the same as if no

secondary circuit were present, except that Rf

,
L' are replaced by R and L.

Thus the current in the primary circuit is affected by the presence of the

secondary in just the same way as if its resistance were increased from

R to R, and its coefficient of self-induction decreased from L' to L.

J. 30
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The amplitudes of the two currents are
1
1\ and

|i'2 |,
so that the ratio of

the amplitude of the current in the secondary to that in the primary is

_ Mip

RTI

.(452).

The difference of phase of the two currents

= arg i'2
-

arg ^

= arg (tj/i)

- Mip \

523. The analysis is of practical importance in connection with the

theory of transformers. In such applications, the current usually is of very

high frequency, so that p is large, and we find that approximately the ratio

of the amplitudes (cf. expression (452)) is -~
,
while the difference of phase

(cf. expression (453)) is TT. These limiting results, for the case of p infinite,

can be obtained at a glance from equation (451). The right-hand member,

Si2 ,
is finite, so that ^ (Mi^ 4- Ni^ is finite in spite of the infinitely rapid

variations in ^ and iz separately. In other words, we must have approxi-

mately Mi-L + Niz constant, and clearly the value of this constant must be

zero, giving at once the two results just obtained.

524. Whatever the value of p, the result expressed in equation (452) can

be deduced at once from the principle of energy. The current in the primary
is the same as it would be if the secondary circuit were removed and R, L

changed to R, L'. Thus the rate at which the generator performs work is

RV, or averaged over a great number of periods (since ^ is a simple-harmonic

function of the time) is J R' \
^

|

2
. Of this an amount JR \

^
|

2 is consumed in

the primary, so that the rate at which work is performed in the secondary is

|

2
,
or

This rate of performing work is also known to be \S |

iz
|

2
>
and on

equating these two expressions we obtain at once the result expressed

by equation (452).
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Case in which LN M 2 is small.

525. The energy of currents ilt ia in the two circuits is

^US+ZMifr + Nif) ........................ (454),

and since this must always be positive, it follows that LNM2 must neces-

sarily be positive. The results obtained in the special case in which LN - M 2

is so small as to be negligible in comparison with the other quantities

involved are of special interest, so that we shall now examine what special

features are introduced into the problems when LN M2
is very small.

Expression (454) can be transformed into

LN-M 2
.

J (Li, + Mi2)
2 + ^ *"

so that when LN M2
is neglected the energy becomes

and this vanishes for the special case in which the currents are in the ratio

ij/ijj
= MjL. This enables us to find the geometrical meaning of the relation

LN M 2 = 0. For since the energy of the currents, as in 501, is

MM*
we see that this energy can only vanish if the magnetic force vanishes at

every point. This requires that the equivalent magnetic shells must coincide

and be of strengths which are equal and opposite. Thus the two circuits

must coincide geometrically. The number of turns of wire in the circuits

may of course be different : if we have r turns in the primary and s in the

secondary, we must have

L_M = r

M~N s'

and when the currents are such as to give a field of zero energy, each fraction

is equal to i2 /ii-

526. Let us next examine the modifications introduced into the analysis

by the neglect of LN M 2 in problems in which the value of this quantity is

small. We have the general equations ( 518),

Ri, ..................... (455),

Siz ..................... (456).

If we multiply equation (455) by M and equation (456) by L and sub-

tract, we obtain

(457),

an equation which contains no differentials.

302
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527. To illustrate, let us consider the sudden making of one circuit,

discussed in the general case in 519. The general equations there obtained,

namely
+ MAi2

= 0,

now become identical. We no longer can deduce the relations A^ = At'2 = 0,

but have only the single initial conditions

A% _ M
fA.KQ\

'

A%2 Jj

But by supposing equations (455) and (456) replaced by equations (455)

and (457) we have only one differential coefficient and therefore only one

constant of integration in the solution, and this can be determined from

the one initial condition expressed by equation (458).

Let us, for instance, consider the definite problem discussed (for the

general case) in 520. Circuit 2 contains no battery so that E2
= 0, and at

time = circuit 1 is suddenly closed, so that the electromotive force E,
comes into play in the first circuit. The initial currents are given by

(from equation (458)), Li, + Mi* = (459),

(from equation (457)), ME,= RMi,-SLi2 (460),

othat JL- A = .
ME* = ^

i\f~ r 7?M 2 4. Sf/ 2 T CRN 4- ^T\
'

Thus finite currents come into existence at once, but the system of

currents is one of zero energy, since equation (459) is satisfied. To find the

subsequent changes, we multiply equation (455) by -~ and equation (456) by

~- (putting E2
= 0), and find on addition

LEi_(L_
N\d

of which the solution, subject to the initial condition Li, +M2
=

0, is

Li, + Miz
=
^jj(l- e'Tw+LS*} .

This and equation (460) determine the currents at any time.

These results can of course be deduced also by examining the limiting
form assumed by the solution of 520, when LN-M2 vanishes.

The problem of the breaking of a circuit, discussed in 521, can be

examined in a similar way in the special case in which LN M2 = 0.
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EXAMPLES.

/I. A coil is rotated with constant angular, velocity o> about an axis in its plane in a

uniform field of force perpendicular to the axis of rotation. Find the current in the coil

at any time, and shew that it is greatest when the plane of the coil makes an angle

tan
~ l

( -p- j
with the lines of magnetic force.

fy
The resistance and self-induction of a coil are R and Z, and its ends A and B are

connected with the electrodes of a condenser of capacity C by wires of negligible resistance.

There is a current Icospt in a circuit connecting A and
,
and the charge of the con-

denser is in the same phase as this current. Shew that the charge at any time is

-fi-cospt,
and that C(R2+p2L2

)=L. Obtain also the current in the coil.

^ The ends B, D of a wire (R, L] are connected with the plates of a condenser of

capacity C. The wire rotates about BD which is vertical with angular velocity o>, the

area between the wire and BD being A. If H is the horizontal component of the earth's

magnetism, shew that the average rate at which work must be done to maintain the

rotation is

closed solenoid consists of a large number N of circular coils of wire, each of

radius a, wound uniformly upon a circular cylinder of height 2A. At the centre of the

cylinder is a small magnet whose axis coincides with that of the cylinder, and whose

moment is a periodic quantity /z sin pt. Shew that a current flows in the solenoid whose

intensity is approximately

n

where R, L are the resistance and self-induction of the solenoid, and tan a=R\Lp.

5. A circular coil of n turns, of radius a and resistance R, spins with angular velocity

<a round a vertical diameter in the earth's horizontal magnetic field H : shew that the

average electromagnetic damping couple which resists its motion is ^ff^n^a^R. Given

5"=0'17, 7i= 50, R= l ohm, a= 10 cm., and that the coil makes 20 turns per second,

express the couple in dyne-centimetres, and the mean square of the current in amperes.

6L/A condenser, capacity (7, is discharged through a circuit, resistance R, induction L,

containing a periodic electromotive force Esin nt. Shew that the " forced " current in the

circuit is

E sin (nt
-

6} #+ (nL
-

where tan 6=(n
2CL - I)/nCR.
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V7. Two circuits, resistances R1 and R2 ,
coefficients of induction L, M, N, lie near each

other, and an electromotive force E is switched into one of them. Shew that the total

quantity of electricity that traverses the other is EMI RI R? .

^"8. A current is induced in a coil B by a current Isinpt in a coil A. Shew that the

mean force tending to increase any coordinate of position 6 is

30'

where L, M, N are the coefficients of induction of the coils, and R is the resistance of B.

* 9. A plane circuit, area S, rotates with uniform velocity w about the axis of z, which

lies in its plane at a distance h from the centre of gravity of the area. A magnetic

molecule of strength p is fixed in the axis of x at a great distance a from the origin,

pointing in the direction Ox. Prove that the current at time t is approximately

2*SW N ,
"

r cos (<ot
-

e) +

where
rj,

e are determinate constants.

\X^LO. Two points A, B are joined by a wire of resistance R without self-induction
;

B is joined to a third point C by two wires each of resistance R, of which one is without

self-induction, and the other has a coefficient of induction L. If the ends A, C are kept

at a potential difference Ecospt, prove that the difference of potentials at B and C will

be E' cos (pt y\ where

_pLR_

A condenser, capacity (7, charge $, is discharged through a circuit of resistance

R, there being another circuit of resistance S in the field. IfLN=M2
,
shew that there

will be initial currents - NQjC (RN-\-SL] and MQIC(RN+SL\ and find the currents at

any time.

12. Two insulated wires A, B of the same resistance have the same coefficient of

\self-induction L, while that of mutual induction is slightly less than L. The ends of B
are connected by a wire of small resistance, and those of A by a battery of small resistance,

and at the end of a time t a current i is passing through A. Prove that except when t is

very small,

ii(i+t")

approximately, where iQ is the permanent current in A, and i' is the current in each after

a time t, when the ends of both are connected in multiple arc by the battery.

Vl3. The ends of a coil forming a long straight uniform solenoid of m turns per unit

length are connected with a short solenoidal coil of n turns and cross-section A, situated

inside the solenoid, so that the whole forms a single complete circuit. The latter coil can

rotate freely about an axis at right angles to the length of the solenoid. Shew that in free

motion without any external field, the current i and the angle 6 between the cross-sections

of the coils are determined by the equations

Ri= --r(Lii-\-L<ii+&TrmnAi cos 6],

d?6

I-jfi + 4:irmnAi 2 sin 6= 0,
ct>t

where LI, L2 are the coefficients of self-induction of the two coils, / is the moment of

inertia of the rotating coil, R is the resistance of the whole circuit, and the effect of the

ends of the long solenoid is neglected.
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L4. Two electrified conductors whose coefficients of electrostatic capacity are yl5 y2 ,
r

are connected through a coil of resistance R and large inductance L. Verify that the

frequency of the electric oscillations thus established is

2 .

15. An electric circuit contains an impressed electromotive force which alternates

in an arbitrary manner and also an inductance. Is it possible, by connecting the

extremities of the inductance to the poles of a condenser, to arrange so that the current

in the circuit shall always be in step with the electromotive force and proportional to it ?

y 16. Two coils (resistances R, S ;
coefficients of induction L, M, N) are arranged in

^parallel in such positions that when a steady current is divided between the two, the

resultant magnetic force vanishes at a certain suspended galvanometer needle. Prove

that if the currents are suddenly started by completing a circuit including the coils, then

the initial magnetic force on the needle will not in general vanish, but that there will be

a " throw " of the needle, equal to that which would be produced by the steady (final)

current in the first wire flowing through that wire for a time interval

M-L M-N
D ry
1 tJ

\
1 17. A condenser of capacity C is discharged through two circuits, one of resistance R

and self-induction Z, and the other of resistance R and containing a condenser of capacity
C'. Prove that if Q is the charge on the condenser at any time,

,d*Q L L \d*Q R R R\dQ Q

18. A condenser of capacity C is connected by leads of resistance r, so as to be in

parallel with a coil of self-induction Z, the resistance of the coil and its leads being R. If

this arrangement forms part of a circuit in which there is an electromotive force of period

,
shew that it can be replaced by a wire without self-induction if

(IP
- L/C) =p*LC (H - L/C),

and that the resistance of this equivalent wire must be (Br+L/C)l(R+r).

v/19. Two coils, of which the coefficients of self- and mutual-induction are Z1} L2 , M,
and the resistances Rlt R^ carry steady currents C^ C2 produced by constant electro-

motive forces inserted in them. Shew how to calculate the total extra currents produced
in the coils by inserting a given resistance in one of them, and thus also increasing its

coefficients of induction by given amounts.

In the primary coil, supposed open, there is an electromotive force which would

produce a steady current (7, and in the secondary coil there is no electromotive force.

Prove that the current induced in the secondary by closing the primary is the same, as

regards its effects on a galvanometer and an electrodynamometer, and also with regard to

the heat produced by it, as a steady current of magnitude

CMRl_ 1

. . .

lasting for a time

while the current induced in the secondary by suddenly breaking the primary circuit may
be represented in the same respects by a steady current of magnitude (7Jf/2Z2 lasting for

a time



472 Induction of Currents in Linear Circuits [OH. xiv

20. Two conductors ABD^ ACD are arranged in multiple arc. Their resistances are

R, S and their coefficients of self- and mutual-induction are L, Nt
and M. Prove that

when placed in series with leads conveying a current of frequency p, the two circuits

produce the same effect as a single circuit whose coefficient of self-induction is

and whose resistance is

US (S+R)+pz
{R (N-

(L+N-

21. A condenser of capacity C containing a charge Q is discharged round a circuit in

the neighbourhood of a second circuit. The resistances of the circuits are R, S, and their

coefficients of induction are L, M, N.

Obtain equations to determine the currents at any moment.

If x is the current in the primary, and the disturbance be over in a time less than T,

shew that

and that

Examine how I x^dt varies with S.



CHAPTER XV

INDUCTION OF CURRENTS IN CONTINUOUS MEDIA

GENERAL EQUATIONS.

528. WE have seen that when the number N, of tubes of induction,

which cross any circuit, is changing, there is an electromotive force ,-

acting round the circuit. Thus a change in the magnetic field brings into

play certain electric forces which would otherwise be absent.

We have now abandoned the conception of action at a distance, so that

we must suppose that the electric force at any point depends solely on the

changes in the magnetic field at that point. Thus at a point at which the

magnetic field is changing, we see that there must be electric forces set up

by the changes in the magnetic field, and the amount of these forces must be

the same whether the point happens to coincide with an element of a closed

conducting circuit or not.

Let ds be an element of any closed circuit drawn in the field, either in a

conducting medium or not, and let X, Y, Z denote the components of electric

intensity at this point. Then the work done by the electric forces on a unit

electric charge in taking it round this circuit is

and this, by the principle just explained, must be equal to -j- where N is
ctt

the number of tubes of induction which cross this circuit.

529. We have (cf. 437),

(462),

dN
so that on equating expression (461) to -j- ,

we have
at
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The left-hand member is equal, by Stokes' Theorem ( 438) to

f(J7/^_^ ^_^ f^-dX}\dS
j)\ \dy~dz)

n
\dz dx)

H
\dx dy )}

'

the integration being over the same area as that on the right hand of equa-
tion (463). Hence we have

l

\ nfdX-^ <\ n (^Y_dXL
) \dz dx dt) \dx dy

'

dt.

This equation is true for every surface, so that not only must each inte-

grand vanish, but it must vanish for all possible values of /, m, n. Hence each

coefficient of I, m, n must vanish separately. We must accordingly have

da dZ

dY da\ X dZ db Y dX dc, , a A
-77 n- d>Sf = 0.

db ax dz
-T: =-5-- 5- ...........................(465),
dt dz Sic

do dY dX
-dt

=
fa-ty

...........................(466)"

530. The components F, G, H of the magnetic vector-potential are

given, as in equations (376), by

dH dGr /^/ihr\

a=^-- 5-, etc......................... (467).
dy dz

On comparing these equations with equations (464) (466), it is clear

that the simplest solution for the vector-potential is given by the relations

dF dG dH

If F, G, H is the most general vector-potential we must have relations of

the form (cf. equations (375))

?=-*-' etc.....

where is an arbitrary function replacing the % of equations (375).

531. Writing these relations in the form

dF 9^

we have equations giving the electric forces explicitly.
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The function *& has, so far,- had no physical meaning assigned to it.

Equations (470), (471), (472) shew that the electric force (X, Y, Z) can be

regarded as compounded of two forces :

/ dF dG dH\ . . f
(i) a force f -=-

,
-=-

,
-=-

J arising from the changes in the mag-

netic field
;

-~
, , -TT

J
which is present when

there are no magnetic changes occurring.

We now see that the second force is the force arising from the ordinary
electrostatic field, so that we may identify ^ with the electrostatic potential

when no changes are occurring. The meaning to be assigned to M* when

changes are in progress is discussed below (Chapter xx).

532. If the medium is a conducting medium, the presence of the electric

forces sets up currents, and the components u, v, w of the current at any

point are, as in 374, connected with the currents by the equations

X = TU, Y=TV, Z TW,

these equations being the expression of Ohm's Law, where r is the specific

resistance of the conductor at the point.

On substituting these values for X, Y, Z in equations (464) (466) or

(470) (472), we obtain a system of equations connecting the currents in

the conductor with the changes in the magnetic field.

533. There is, however, a further system of equations expressing rela-

tions between the currents and the magnetic field. We have seen ( 480)
that a current sets up a magnetic field of known intensity, and since the

whole magnetic field must arise either from currents or from permanent

magnets, this fact gives rise to a second system of equations.

In a field arising solely from permanent magnetism, we can take a unit

pole round any closed path in the field, and the total work done will be nil.

Hence on taking a unit pole round a closed circuit in the most general

magnetic field, the work done will be the same as if there were no perma-
nent magnetism, and the whole field were due to the currents present. The
amount of this work, as we have seen, is 4?rSi where 2t is the sum of all the

currents which flow through the circuit round which the pole is taken. If

u, v, w are the components of current at any point, we have

i = 1 1 (lu + mv + nw) dS,

the integration being over any area which has the closed path as boundary.
Hence our experimental fact leads to the equation
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Transforming the line integral- into a surface integral by Stokes' Theorem

( 438), we obtain the equation in the form

As with the integral of 529, each integrand must vanish for all values

of I, m, n, so that we must have

4? =^ ^- (473),
dy dz

dOL 87 ,AA\^V=
d~z-^ <474>'

47r =|^-^ (475).dx dy

534. If we differentiate these three equations with respect to x, y, z

respectively and add, we obtain

of which the meaning (cf. 375, equation (311)) is that no electricity is

destroyed or created or allowed to accumulate in the conductor.

The interpretation of this result is not that it is a physical impossibility for electricity

to accumulate in a conductor, but that the assumptions upon which we are working are

not sufficiently general to cover cases in which there is such an accumulation of electricity.

It is easy to see directly how this has come about. The supposition underlying our

equations is that the work done in taking a unit pole round a circuit is equal to 4?r times

the total current flow through the circuit. It is only when equation (476) is satisfied by
the current components that the expression

" total flow through a circuit
" has a definite

significance : the current flow across every area bounded by the circuit must be the same.

We shall see later (Chapter xvn) how the equations must be modified to cover the case

of an electric flow in which the condition is not satisfied. For the present we proceed upon
the supposition that the condition is satisfied.

Currents in homogeneous media.

535. Let us now suppose that we are considering the currents in a

homogeneous non-magnetised medium. We write

a =
yu,a, etc., X = TU, etc.,

in which p and T are constant. The systems of equations of 529 and 533

now become

dot. /dw dv^
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Differentiating equation (478) with respect to the time, we obtain

du d f dy\ d ( d

dw

( 3 /dv du\ 9 /du dw\\
r

\dy (fa
~

dy)~ dz \fc

~
~fa ) j

in virtue of equation (476).

Similar equations are satisfied by the other current-components, so that

we have the system of differential equations

47T/X dw^ -
dt

dt

^~-r (479).

r ai

If we eliminate the current-components from the system of equations

(477) and (478), we obtain

r Tt-
Vla <48 >'

and similar equations are satisfied by b and c.

536. The equation which has been found to be satisfied by u, v, w,

a, ft and y is the well-known equation of conduction of heat. Thus

we see that the currents induced in a mass of metal, as well as the com-

ponents of the magnetic field associated with these currents, will diffuse

through the metal in the same way as heat diffuses through a uniform

conductor.

Rapidly alternating currents.

537. The equations assume a form of special interest when the currents

are alternating currents of high frequency. We may assume each component
of current to be proportional to e%pt (cf. 514), and may then replace the

operator -=- by the multiplier ip. The equations now assume the form

n
u = Vu (481),

a = V2
a, etc.,
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and ifp is so large that it may be treated as infinite, these equations assume

the simple form

u = v w = 0,

a = b = c = 0.

Thus for currents of infinite frequency, there is neither current nor

magnetic field in the interior. The currents are confined to the surface,

and the only part of the conductor which comes into play at all is a thin

skin on the surface.

Equations (481) enable us to form an estimate of the thickness of this

skin when the frequency of the currents is very great without being actually

infinite.

At a point on the surface of the conductor, let us take rectangular

axes so that the direction of the current is that of Ox while the normal to

the surface is Oz. If the thickness of the skin is very small, we need not

consider any region except that in the immediate neighbourhood of the

origin, so that the problem is practically identical with that of current

flowing parallel to Ox in an infinite slab of metal having the plane Oxy
for a boundary.

Equation (481) reduces in this case to

and if we put
"I = ^ ^he solution is

The value of K is found to be

_cv*'^.7 _ ** '%/ *"" r\. / *'/%./ " *"&

so that u = Ae

and the condition that the current is to be confined to a thin skin may now
be expressed by the condition that u when z = oo

,
and is accordingly

= 0. The multiplier A is independent of z, but will of course involve

the time through the factor &&\ let us put A^u^, and we then have
the solution
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Rejecting the imaginary part, we are left with the real solution

u = u e

from which we see that as we pass inwards from the surface of the con-

ductor, the phase of the current changes at a uniform rate, while its amplitude
decreases exponentially.

We can best form an idea of the rate of decrease of the amplitude by considering a

concrete case. For copper we may take (in c.G.s. electromagnetic units) /*=!, T= 1600.

Thus for a current which alternates 1000 times per second, we have

p= 2 TT x 1000, *y -Ji-= 5 approximately.

It follows that at a depth of 1 cm. the current will be only e~ 5 or '0067 times its value

at the surface. Thus the current is practically confined to a skin of thickness 1 cm.

The total current per unit width of the surface at a time t is I udz, of

which the value is found to be

W COS \pt--r

T

Thus, if we denote the amplitude of the aggregate current by Z7, the

value of u will be U A/
^

.

The heat generated per unit time in a strip of unit width and unit

length is

u?dtdz

rz=*> _ 2 /****
|r^

2
I e V r

J z=o

Thus the resistance of the conductor is the same as would be the

resistance for steady currents of a skin of depth 1 / \ / ^^
.

The results we have obtained will suffice to explain why it is that the conductors used
to convey rapidly alternating currents are made hollow, as also why it is that lightning
conductors are made of strips, rather than cylinders, of metal.
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PLANE CURRENT-SHEETS.

538. We next examine the phenomenon of the induction of currents

in a plane sheet of metal.

Let the plane of the current-sheet be taken to be z 0. Let us introduce

a current-function <E>, which is to be denned for every point in the sheet by
the statement that the total strength of all the currents which flow between

the point and the boundary is <1>. Then the currents in the sheet are known

when the value of <3> is known at every point of the sheet. If we assume

that no electricity is introduced into, or removed from, the current-sheet, or

allowed to accumulate at any point of it, then clearly <I> will be a single-

valued function of position on the sheet.

The equation of the current-lines will be < = constant, and the line

<3> = will be the boundary of the current-sheet. Between the lines <l> and

<I> -f d<& we have a current of strength d& flowing in a closed circuit. The

magnetic field produced by this current is the same as that produced by
a magnetic shell of strength d<& coinciding with that part of the current-

sheet which is enclosed by this circuit, so that the magnetic effect of the

whole system of currents in the sheet is that of a shell coinciding with

the sheet and of variable strength <X>. This again may be replaced by a

distribution of magnetic poles of surface density <I>/e on the positive side of

the sheet, together with a distribution of surface density <3>/e on the

negative side of the sheet, where e is the thickness of the sheet.

Let P denote the potential at any point of a distribution of poles of

strength <I>, so that

(482),

where dx' dy' is any element of the sheet. The magnetic potential at any

point outside the current-sheet of the field produced by the currents is then

fl =-^ ..............................(483).

If a- is the resistance of a unit square of the sheet at any point, and

u, v the components of current, we have, by Ohm's Law,

X =
(TU, Y = (TV.

The components u, v are readily found to be given by

so that we have the equations

true at every point of the sheet.
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Hence, by equation (466),

*>_*Y 3X_ (***}
~~dt-fa~~tyj~ *\W W)

The total magnetic field consists of the part of potential ft due to the

currents and a part of potential (say) H', due to the magnetic system by which

the currents are induced. Thus the total magnetic potential is II -f- 1', and

at a point just outside the current-sheet (taking //,
= 1)

and equation (485) becomes

The function P (equation (482)) is the potential of a distribution of poles
of surface density <l> on the sheet. Hence P satisfies Laplace's equation at

all points outside the sheet, and at a point just outside the sheet and on its

r)P

positive face = 2?r^>.

Hence, at a point just outside the positive face of the sheet,

2?r

i

2-7T 9^a
'

by equation (483), so that equation (486) becomes

Ji(n + fl')
=^^ ........................(48V),

dt dz 2-7T 9^2

and similarly, at the negative face of the sheet, we have the equation

Finite Current-sheets.

539. Suppose that in an infinitesimal interval any pole of strength m
moves from P to Q. This movement may be represented by the creation

of a pole of strength m at P and of one of strength -f m at Q. Thus

the most general motion of the inducing field may be replaced by the crea-

tion of a series of poles. The simplest problem arises when the inducing
field is produced by the sudden creation of a single pole, and the solution

j. 31
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of the most general problem can be obtained from the solution of this simple

problem by addition.

From equations (487) and (488) it is clear that ---(11 + H') remains

finite on both surfaces of the sheet during the sudden creation of a new
a
dzpole, so that
^- (H + fl') remains unaltered in value over the whole surface

of the sheet. Let the increment in (O + O') at any point in space be

denoted by A, then A is a potential of which the poles are known in the

space outside the sheet, and of which the value is known to be zero over

the surface of the sheet. The methods of Chapter vui are accordingly
available for the determination of A : the required value of A is the

electrostatic potential when the current-sheet is put to earth in the

r)O'

presence of the point charges which would give a potential if the sheet

were absent.

o

Physically, the fact that
^- (ft + 1') remains unaltered over the whole

surface of the sheet means that the field of force just outside the sheet

remains unaltered, and hence that currents are instantaneously induced in

the sheet such that the lines of force at the surfaces of the sheet remain

unaltered.

The induced currents can be found for any shape of current-sheet for

which the corresponding electrostatic problem can be solved*, but in general
the results are too complicated to be of physical interest.

Infinite Plane Current-sheet.

540. Let the current-sheet be of infinite extent, and occupy the whole
of the plane of xz, and let the moving magnetic system be in the region
in which z is negative. Then throughout the region for which z is positive
the potential fl + O' has no poles, and hence the potential

has no poles. Moreover this potential is a solution of Laplace's equation,
and vanishes over the boundary of the region, namely at infinity and over

the plane z = (cf. equation (487)). Hence it vanishes throughout the

whole region (cf. 186), so that equation (487) must be true at every point

* See a paper by the author,
"
Finite Current-sheets," Proc. Lond. Math. Soc. Vol. xxxi.

p. 151.
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in the region for which z is positive. We may accordingly integrate with

respect to z and obtain the equation in the form

no arbitrary function of x
t y being added because the equation must be

satisfied at infinity.

The motion of the system of magnets on the negative side of the sheet

may be replaced, as in 539, by the instantaneous creation of a number of

poles. At the creation of a single pole currents are set up in the sheet such

that 11 + 1' remains unaltered (cf. equation (489)) on the positive side of

the sheet. Thus these currents form a magnetic screen and shield the space
on the positive side of the sheet from the effects of the magnetic changes on

the negative side.

To examine the way in which these currents decay under the influence

of resistance and self-induction, we put H' = in equation (489), and find

that fl must be a solution of the equation .

cm__o^an
dt 2-7T dz

The general solution of this equation is

and this corresponds to the initial value

n^/tey,*).

Thus the decay of the currents can be traced by taking the field of

potential H at time t = and moving it parallel to the axis of z with a

velocity .
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EXAMPLES.

1. Prove that the currents induced in a solid with an infinite plane face, owing to

magnetic changes near the face, circulate parallel to it, and may be regarded as due to

the diffusion into the solid of current-sheets induced at each instant on the surface so as

to screen off the magnetic changes from the interior.

Shew that for periodic changes, the current penetrates to a depth proportional to the

square root of the period. Give a solution for the case in which the strength of a fixed

inducing magnet varies as cospZ.

312
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2. A magnetic system is moving towards an infinite, plane conducting sheet with

velocity w. Shew that the magnetic potential on the other side of the sheet is the same

as it would be if the sheet were away, and the strengths of all the elements of the magnetic

system were changed in the ratio R/(R+w), where 27r.fi is the specific resistance of the

sheet per unit area. Shew that the result is unaltered if the system is moving away from

the sheet, and examine the case of w= - R.

If the system is a magnetic particle of mass M and moment
??i,

with its axis perpen-

dicular to the sheet, prove that if the particle has been projected at right angles to the

sheet, then when it is at a distance z from the sheet, its velocity z is given by

3. A small magnet horizontally magnetised is moving with a velocity u parallel to a

thin horizontal plate of metal. Shew that the retarding force on the magnet due to the

currents induced in the plate is

m2 uR

where m is the moment of the magnet, c its distance above the plate, 2-rrR the resistance

of a sq. cm. of the plate, and Q2=u2 + R2
.

4. A slowly alternating current I cos pt is traversing a small circular coil whose

magnetic moment for a unit current is M. A thin spherical shell, of radius a arid specific

resistance
o-,

has its centre on the axis of the coil at a distance / from the centre of the

coil. Shew that the currents in the shell form circles round the axis of the coil, and that

the strength of the current in any circle whose radius subtends an angle cos" 1

/*
at the

centre is

M 1(1 -u 2
*

,

where tanen=

5. An infinite iron plate is bounded by the parallel planes x= h, x=-h; wire is

wound uniformly round the plate, the layers of wire being parallel to the axis of y. If an

alternating current is sent through the wire producing outside the plate a magnetic force

#o cospt parallel to z, prove that ff
y
the magnetic force in the plate at a distance x from

the centre, will be given by

. _ sinh m(h+x) sin m(h-x) sinh m(hx} sin m(h+x)
cosh m (h+x] cosm (fi

-
x] + cosh m (h

-
x] cos m (h+x)

'

where mP^ZirppI*.

Discuss the special cases of (i) mh small, (ii) mh large.



CHAPTER XVI

DYNAMICAL THEORY OF CURRENTS

GENERAL THEORY OF DYNAMICAL SYSTEMS.

541. WE have so far developed the theory of electromagnetism by

starting from a number of simple data which are furnished or confirmed by

experiment, and examining the mathematical and physical consequences
which can be deduced from these data.

There are always two directions in which it is possible for a theoretical

science to proceed. It is possible to start from the simple experimental data

and from these to deduce the theory of more complex phenomena. And it

may also be possible to start from the experimental data and to analyse these

into something still more simple and fundamental. We may, in fact, either

advance from simple phenomena to complex, or we may pass backwards from

simple phenomena to phenomena which are still simpler, in the sense of

being more fundamental.

As an example of a theoretical science of which the development is almost

entirely of the second kind may be mentioned the Dynamical Theory of

Gases. The theory starts with certain simple experimental data, such as

the existence of pressure in a gas, and the relation of this pressure to the

temperature and density of a gas. And the theory is developed by shewing
that these phenomena may be regarded as consequences of still more funda-

mental phenomena, namely the motion of the molecules of the gas.

In our development of electromagnetic theory there has so far been but

little progress in this second direction. It is true that we have seen that the

phenomena from which we started such as the attractions and repulsions

of electric charges, or the induction of electric currents may be interpreted

as the consequences of other and more fundamental phenomena taking place
in the ether by which the material systems are surrounded. We have even

obtained formulae for the stresses and the energy in the ether. But it has

not been possible to proceed any further and to explain the existence of these

stresses and energy in terms of the ultimate mechanism of the ether.



486 Dynamical Theory of Currents [CH. xvi

The reason why we have been brought to a halt in the development of

electromagnetic theory will become clear as soon as we contrast this theory

with the theory of gases. The ultimate mechanism with which the theory of

gases is concerned is that of molecules in motion, and we know (or at least

can provisionally assume that we know) the ultimate laws by which this

motion is governed. On the other hand the ultimate mechanism with which

electromagnetic theory is concerned is that of action in the ether, and we are

in utter ignorance of the ultimate laws which govern action in the ether.

We do not know how the ether behaves, and so can make no progress towards

explaining electromagnetic phenomena in terms of the behaviour of the ether.

542. There is a branch of dynamics which attempts to explain the

relation between the motions of certain known parts of a mechanism, even

when the nature of the remaining parts is completely unknown. We turn to

this branch of dynamics for assistance in the present problem. The whole

mechanism before us consists of a system of charged conductors, magnets,

currents, etc., and of the ether by which all these are connected. Of this

mechanism one part (the motion of the material bodies) is known to us, while

the remainder (the flow of electric currents, the transmission of action by the

ether, etc.) is unknown to us, except indirectly by its effect on the first part

of the mechanism.

543. An analogy, first suggested by Professor Clerk Maxwell, will ex-

plain the way in which we are now attacking the problem.

Imagine that we have a complicated machine in a closed room, the only

connection between this machine and the exterior of the room being by
means of a number of ropes which hang through holes in the floor into the

room beneath. A man who cannot get into the room which contains the

machine will have no opportunity of actually inspecting the mechanism, but

he can manipulate it to a certain extent by pulling the different ropes. If,

on pulling one rope, he finds that others are set into motion, he will under-

stand that the ropes must be connected by some kind of mechanism above,

although he may be unable to discover the exact nature of this mechanism.

In this analogy, the concealed mechanism is supposed to represent those parts of the

universe which do not directly affect our senses e.g. the ether while the ropes represent

those parts of which we can observe the motion e.g. material bodies. In nature, there

are certain acts which we can perform (analogous to the pulling of certain ropes), and these

are invariably followed by certain consequences (analogous to the motion of other ropes),

but the ultimate mechanism by which the cause produces the effect is unknown. For

instance we can close an electric circuit by pressing a key, and the needle of a distant

galvanometer may be set into motion. We infer that there must be some mechanism

connecting the two, but the nature of this mechanism is almost completely unknown.

Suppose now that an observer may handle the ropes, but may not pene-
trate into the room above to examine the mechanism to which they are
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attached. He will know that whatever this mechanism may be, certain laws

must govern the manipulation of the ropes, provided that the mechanism is

itself subject to the ordinary laws of mechanics.

To take the simplest illustration, suppose that there are two ropes only, A and B, and

that when rope A is pulled down a distance of one inch, it is found that rope B rises

through two inches. The mechanism connecting A and B may be a lever or an arrange-

ment of pulleys or of clockwork, or something different from any of these. But whatever

it is, provided that it is subject to the laws of dynamics, the experimenter will know,
from the mechanical principle of " virtual work," that the downward motion of rope A
can be restrained on applying to B a force equal to half of that applied to A.

544. The branch of dynamics of which we are now going to make use

enables us to predict what relation there ought to be between the motions of

the accessible parts of the mechanism. If these predictions are borne out by

experiment, then there will be a presumption that the concealed mechanism

is subject to the laws of dynamics. If the predictions are not confirmed by

experiment, we shall know that the concealed mechanism is not governed by
the laws of dynamics.

Hamilton's Principle.

545. Suppose, first, that we have a dynamical system composed of dis-

crete particles, each of which moves in accordance with Newton's Laws of

Motion. Let any typical particle of mass ml have at any instant t coordi-

nates #j, ylt z^ and components of velocity uly v1} wl} and let it be acted on by
forces of which the resultant has components Xlt Tl} Zlt Then, since the

motion of the particle is assumed to be governed by Newton's Laws, we have

(490),

(491),

(492).

Let us compare this motion with a slightly different motion, in which

Newton's Laws are not obeyed. At the instant t let the coordinates of this

same particle be x-^ + Sxl} y^ + %i, z
l + Bzl and let its components of velocity

be U!+Sult vl + Svl , M^ + Stt/i. Let us multiply equations (490), (491) and

(492) by fa, Syl} fa respectively, and add. We obtain

Now fa = frfa) - u, (fa)
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If we sum equation (493) for all the particles of the system, replacing the

terms on the left by their values as just obtained, we arrive at the equation

JI ii + Wi&O - 2m! (u^bUi + v^ +

+FxSfc + ^&O ...... (494).

Let T denote the kinetic energy of the actual motion, and T + T that of

the slightly varied motion, then

so that 8T= Smx (^ Su^ + v1S^ H- wl

and this is the value of the second term in equation (494).

If W and W -f BW are the potential energies of the two configurations

(assuming the forces to form a conservative system), we have

W= - 2 I

'

(X1 dasl + F^ + ZidzJ,

and 8W = 2 (XjS^ + Y1%i + ^ 8^1),

so that the value of the right-hand member of equation (494) is 8 W.

We may now rewrite equation (494) in the form

- W) = 2mj (i*^ + v^y, + w

This equation is true at every instant of the motion. Let us integrate it

throughout the whole of the motion, say from t = to t = T. We obtain

- W)dt=

The displaced motion has been supposed to be any motion which

differs only slightly from the actual motion. Let us now limit it by the

restriction that the configurations at the beginning and end of the motion

are to coincide with those of the actual motion, so that the displaced motion

is now to be one in which the system starts from the same configuration as in

the actual motion at time t = 0, and, after passing through a series of con-

figurations slightly different from those of the actual motion, finally ends in

the same configuration at time t r as that of the actual motion. Mathe-

matically this new restriction is expressed by saying that at times t = and

t = r we must have 8x = Sy = &z = for each particle. Equation (495) now
becomes

(496).

546. Speaking of the two parts of the mechanism under discussion

as the "
accessible

"
and "

concealed
"

parts, let us suppose that the kinetic

and potential energies T and W depend only on the configuration of the



545-548] Lagranges Equations 489

accessible parts of the mechanism. Then throughout any imaginary motion

of the accessible parts of the system we shall have a knowledge of T and W
at every instant, and hence shall be able to calculate the value of

(T-W)dt (497).

We can imagine an infinite number of motions which bring the system
from one configuration A at time t = to a second configuration B at time t = T,

and we can calculate the value of the integral for each. Equation (496) shews

that those motions for which the value of the integral is stationary would be

the motions actually possible for the system. Having found which these

motions were, we should have a knowledge of the changes in the accessible

parts of the system, although the concealed parts remained unknown to us,

both as regards their nature and their motion.

547. Equation (496) has been proved to be true only for a system con-

sisting of discrete material particles. At the same time the equation itself

contains, in its form, no reference to the existence of discrete particles. It

is at least possible that the equation may be the expression of a general

dynamical principle which is true for all systems, whether they consist of

discrete particles or not. We cannot of course know whether or not this

is so. What we have to do in the present chapter is to examine whether

the phenomena of electric currents are in accordance with this equation.
We shall find that they are, but we shall of course have no right to deduce

from this fact that the ultimate mechanism of electric currents is to be found

in the motion of discrete particles. Before setting to work on this problem,

however, we shall express equation (496) in a different form.

Lagranges Equations for Conservative Systems of Forces.

548. Let #ls #2, ... 9n be a set of quantities associated with a mechanical

system such that when their value is known, the configuration of the system
is fully determined. Then lt 2 ,

... 6n are known as the generalised coordi-

nates of the system.

The velocity of any moving particle of the system will depend on the values

of -^ , -y^, etc. Let us denote these quantities by l} Z ,
etc. Let a? be a

at at

Cartesian coordinate of any moving particle. Then by hypothesis x is a

function of lt 2 , ..., say

so that by differentiation,
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Thus each component of velocity of each moving particle will be a linear

function of 1? 2 , >
from which it follows that the kinetic energy of motion

of the system must be a quadratic function of lt 2 , ..., the coefficients in this

function being of course functions of 6l , 2 ,

Let us denote T W by L, so that L is a function of lt 2 ,
... n ,

and of 0j, 2 > ... n , say

L=
</> (0i, 2 >

- &n, 0i> 0a> - On)-

If L + 8L is the value of Z in the displaced configuration X + 80! ,

2 + S02 ,
...0n + S0n ,

we have

8i =
a?^

+ - +
aTn
^ +

ai
8^-'

so that equation (496), which may be put in the form

now assumes the form

iSW+iSA*- .....................(498).
i 80j i 90J /

We have Sft = (0X + 8ft)
-

X

so that .

o90!

The last term vanishes since, by hypothesis, 80! vanishes at the beginning
and end of the motion, and equation (498) now assumes the form

Let us denote the integrand, namely

! dt\de

by /, so that the equation becomes

(

T

Idt = 0.
Jo
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The varied motion is entirely at our disposal, except that it must be

continuous and must be such that the configurations in the varied motion

coincide with those in the actual motion at the instants t = and t = T.

Thus the values of S01) S02 ,
... at every instant may be any we please which

are permitted by the mechanism of the system, except that they must be

continuous functions of t and must vanish when t and when t = T. Whatever

series of values we assign to B0l} S02 > >
we have seen that the equation

is true. Hence the value of / must vanish at every instant, and we must

have

_ .... ................. (499).

dtw)
549. At this stage there are two alternatives to be considered. It may

be that whatever values are assigned to $0lt S02 ,
... $0n ,

the new configura-

tion l + S0i, 2 + S#2> @n + &0n will be a possible configuration that is to

say, will be one in which the system can be placed without violating the

constraints imposed by the mechanism of the system. In this case equation

(499) must be true for all values of 80lt S02 > S0,'so that each term must

vanish separately, and we have the system of equations

A -" ) ............(600) -

There are n equations between the n variables 1} #2 ,
... On and the time.

Hence these equations enable us to trace the changes in 6lt #2 > #n and to

express their values as functions of the time and of the initial values of

01, 2 ,
... n , GI, 0i, ... n .

550. Next, suppose that certain constraints are imposed on the values of

lt 0%, ... n by the mechanism of the system. Let these be m in number,
and let them be such that the small increments 80lt S02 ,

... &0n are connected

by equations of the form

.................. (501),

......... ......... (502),

etc.

Then equation (499) must be true for all values of S0lt S02 ,
... which are

such as also to satisfy equations (501), (502), etc. Let us multiply equations

(501), (502), ... by X, /*, ... and add to equation (499).

We obtain an equation of the form

(81, _ d /SL\
b '\ S0 .....
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Let us assign arbitrary values to 80m+1 ,
S0m+ 2 ,

... &0n ,
and then assign to

the m quantities BO^ S#2 >
... B0m the values given by the m equations (501),

(502), etc. In this way we obtain a system of values for &0l} S02 ,
... &0n

which is permitted by the constraints of the system.

The m multipliers X, //,,
... are at our disposal : let these be supposed to

be chosen so that the m equations

^ + - =0
' (*

= 1>2, ... m) ......(504)

are satisfied. Then equation (503) reduces to

Idt \9

and since arbitrary values have been assigned to S0TO+1 ,
... S0n) it follows that

each coefficient in this equation must vanish separately. Combining the

system of equations so obtained with equations (504), we obtain the complete

system of equations

Lagranges Equations for General (including Non-conservative) Forces.

551. If the system of forces is not a conservative system, we cannot

replace the expression

in 545 by 8W where W is the potential energy. We may, however, still

denote this expression for brevity by {&TP}, no interpretation being assigned
to this symbol, and equation (496) will assume the form

(507).

By the transformation used in 548, we may replace I STdt by
./o

FYi^i'l/^la^B
Jo i la*, dt\dej)

Now (8 W} is, by definition, the work done in moving the system from

the configuration lf 2 ,
. . . n to the configuration ^ + S0a ,

#2 + S02 ,
. . . n + B0n .

It is therefore a linear function of B0l} S02 ,
... S0n ,

and we may write

where lt B2 , ... n are functions of lt 2 ,
... n .
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We now have equation (507) in the form

p|jOT_<*,^ }
a

Jo i 18(9, $W '}

As before each integrand must vanish. We have therefore at every instant

2J^_^Y+@U1
= o.

i (d0, dtW I

If the coordinates lf 2 ,
... On are all capable of independent variation,

this leads at once to the system of equations

while if the variations in lt 2 ,
... are connected by the constraints implied

in equations (501), (502), ... we obtain, as before, the system of equations

l(3-)--~ e' + Xa + >'6' + -' (- 1,2, ...).. .(509).
at VdtV vu8

The quantities l} 2 ,
... are called the "generalised forces" correspond-

ing to the coordinates lt 2 ,

Lagrange's Equations for Impulsive Forces.

552. Let us now suppose that the system is acted on by a series of

impulsive forces, these lasting through the infinitesimal interval from t =

to t = r. If we multiply equations (508) by dt and integrate throughout this

interval we obtain

ari-rajr^ r *

O/TT

The interval r is to be considered as infinitesimal, and ^- is finite.
v"s

Thus the second term may be neglected and the equation becomes

change in -~= sdt ........................(510).
d0s Jo

We call I s dt the generalised impulse corresponding to the generalised
Jo

force @s ,
and then, from the analogy between equation (510) and the equation

change in momentum = impulse,
O/77

we call - the generalised momentum corresponding to the generalised
d08

coordinate S .
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APPLICATION TO ELECTROMAGNETIC PHENOMENA.

553. We have already obtained expressions for the energy of an electro-

static system, a system of magnets, of currents, etc., and in every case this

energy can be expressed in terms of coordinates associated with "
accessible

"

parts of the mechanism. We can also find the work done in any small change

in the system, so that we can obtain the values of the quantities denoted in

the last section by Oj, 2 ,
.... All that remains to be done before we can

apply Lagrange's equations provisionally (cf. 547) to the interpretation of

electromagnetic phenomena is to determine whether the different kinds of

energy are to be regarded as kinetic energy or potential energy.

Kinetic and Potential Energy.

554. At first sight it might be thought obvious that the energy of

electric charges at rest and of magnets at rest ought to be treated as

potential energy, while that of electric charges or magnets in motion ought
to be treated as kinetic. On this view the energy of a steady electric

current, being the energy of a series of charges in motion, ought to be

regarded as kinetic energy. We have also seen that this energy is to be

regarded as being spread throughout the medium surrounding the circuit in

which the current flows, and not as concentrated in the circuit itself. Thus

we must regard the medium as possessing kinetic energy at every point, the

LiH2

amount of this energy being, as we have seen, ^ per unit volume.

But we have also been led to suppose that the medium is in just the

same condition whether, the magnetic force is produced by steady currents or

by magnetic shells at rest. Thus, on the simple view which we are now

considering, we are driven to treat the energy of magnets at rest as kinetic

a result which is inconsistent with the simple conceptions from which we
started. Having arrived at this contradictory result, there is no justification

left for treating electrostatic energy, any more than magnetostatic energy,

as potential rather than kinetic.

555. Abandoning this simple but unsatisfactory hypothesis, let us turn

our attention in the first place to the definite discussion of the nature of the

energy of a steady electric current.

Let us suppose that we have two currents i, i' flowing in small circuits at

a distance r apart. As a matter of experiment we know that these circuits

exert mechanical forces upon one another as if they were magnetic shells of

strengths i, i'. Let us suppose that a force R is required to keep them apart,

so that initially the circuits attracted one another with a force R, but are
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now in equilibrium under the action of their mutual attraction and this force

R acting in the direction of r increasing.

/* /* OOS P
If M is the quantity 1 1

- dsds, we know that the value of R is

R = -ii'
d~ .............................. (511),

this value being found directly from the experimental fact that the circuits

attract like their equivalent magnetic shells (cf. 499).

The energy of the two currents is known to be

Ni' 2

) .....................(512).

Let us suppose, for the sake of generality, that this consists of kinetic

energy T and potential energy W. Then, assuming for the moment that the

mechanism of these currents is dynamical, in the sense that Lagrange's

equations may be applied, we shall have a dynamical system of energy
T 4- W, and one of the coordinates may be taken to be r, the distance apart

of the circuits.

The Lagrangian equation corresponding to the coordinate r is found to

be (cf. equation (508)),

and since we know that, in the equilibrium configuration,

dM
-5- ,

dr

d (dT\ ..,dM
-;- Urr =0, R = - '

dt \drj

we obtain on substitution in equation (513),

d(T-W)_ ..,dM

dr
'

dr'

From equation (512) we see that the right-hand member is the value of

dE f d(T+w) .. ^ ^w A i- Lai-
,
or of ^7=--'. Hence our equation shews that -5

= 0, from which we
dr dr dr

deduce that W = 0. In other words, assuming that a system of steady

currents forms a dynamical system, the energy of this system must be

wholly kinetic.

This result compels us also to accept that the energy of a system of

magnets at rest must also be wholly kinetic. We shall discuss this result

later. For the present we confine our attention to the case of electric

phenomena only. We have found that if the mechanism of these pheno-

mena is dynamical (the hypothesis upon which we are going to work), then

the energy of electric currents must be kinetic.
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Induction of Currents.

556. Let us consider a number of currents flowing in closed circuits.

Let the strengths of the currents be i,, i2 ,
... and let the number of tubes of

induction which cross these circuits at any instant be Nlt Nz , ..., so that if

the magnetic field arises entirely from the currents, we have (cf. 503)

.(514).
..., etc.J

The energy of the currents is wholly kinetic so that we may take

as before ( 503).

In the general dynamical problem, it will be remembered that T was a

quadratic function of the velocities. Thus ill i2 ,
... must now be treated as

velocities and we must take as coordinates quantities #x ,
x2 , ..., defined by

dxl . dx2

*"* *=* eto-

Clearly x^ measures the quantity of electricity which has flowed past any

point in circuit 1 since a given instant, and so on. Thus in terms of the

coordinates xly #2 ,
... we have

r = i(Z11^1

2 + 2Z;i2^2 + ...) .....................(515).

There is no potential energy in the present system, but the system is

acted on by external forces, namely the electromotive forces in the batteries

and the reaction between the currents and the material of the circuits which

shews itself in the resistance of the circuits. We have therefore to evaluate

the generalised forces lt 2 ,
....

Consider a small change in the system in which x is increased by &cl5 so

that the current i\ flows for a time dt given by tj<&=*&&!. The work per-

formed by the battery is E^xlt the work performed by the reaction with the

matter of the circuit, being equal and opposite to the heat generated in the

circuit, is R^dt. Thus ifX1 is the generalised force corresponding to the

coordinate xly we have

so that Xl
= E! R^.

The Lagrangian equation corresponding to the coordinate a^ is

or
t
(Ln i1 + L 12i^...) = El -Rl i1 (516),

O AT

or again E.-
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The equations corresponding to the coordinates x2) xz ,
... are

$2 --^T -Ka*2> etc.
ot

Thus the Lagrangian equations are found to be exactly identical with the

equations of current-induction already obtained, shewing not only that the

phenomenon of induction is consistent with the hypothesis that the whole

mechanism is a dynamical system, but also that. this phenomenon follows as

a direct consequence of this hypothesis. In this system the accessible parts
of the mechanism are the currents flowing in the wires; the inaccessible

parts consist of the ether which transmits the action from one circuit to

another.

556 a. On the electron theory, the kinetic energy must be supposed made

up partly of magnetic energy, as before, and partly of the kinetic energy of

the motion of the electrons by which the current is produced.

Let the average forward velocity of the electrons at any point be UQ (cf.

345 a), and let u+ U be the actual velocity of any single electron, so that the

average value of u is nil. The kinetic energy of motion of the electrons, say

Te ,
is then

The first term represents part of the heat-energy of the matter, and this

does not depend on the values of the currents Alt #2 >
.... To evaluate the

second term we use equation (6) of 345 a,

and obtain the kinetic energy of the electrons in the complete system of

currents in the form

Thus the total kinetic energy may still be expressed in the form (515) if

we take
r -

?,etc (517),

and in this the first term is the contribution from the magnetic energy

(cf. 503), and the second term is the contribution from the kinetic energy of

the electrons.

Equation (516) assumes the form

(Z7n ii + -12*2+) = -^i
-

-Ri^'i
-

I I ifpi dsj -^ (51 7 a).

j. 32
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If the induction terms on the left are omitted, we have as the equation

of a circuit in which induction is negligible

This, with the help of the formulae of 345 a, may be expressed in the form

which in turn is seen to be exactly identical with equation (c) of 345 a,

integrated round the circuit.

Thus we see that the analysis of 556 applies perfectly to the electron

theory of matter, provided Zn , L&, ... are supposed to have the values given

by equation (517), and equation (51 7 a) is then the general equation of

induction of currents, when the inertia of the electrons is taken into account.

Electrokinetic Momentum.

557. The generalised momentum corresponding to the coordinate x is

fim

^r-
or NI. Thus the generalised momenta corresponding to the currents in

the different circuits are Nlt N2 , ..., the numbers of tubes of induction which

cross the circuits. The quantity N-^ is accordingly sometimes called the

electrokinetic momentum of circuit 1, and so on.

If we give to Zn the value obtained in equation (517) of 556 a, the

value of the electrokinetic momentum is (cf. equations (514))

a la +...) + ij_ I

-j^
ds,

in which clearly the last term comes from the momentum of the electrons,

and the remaining terms from the momentum of the magnetic field.

Discharge of a Condenser.

558. As a further illustration of the dynamical theory, let us consider

the discharge of a condenser. Let Q be the charge on the positive plate
at any instant, and let this be taken as a Lagrangian coordinate. The

current i is given by i =
--^

= -Q. In the notation already employed

( 516) we have

C'
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and Lagrange's equation is

d fdT\ dT 3W .- ---h
- = -Rt,

dQ dQ

*3+2+8-
which is the equation already obtained in 516, and leads to the solution

already found.

Oscillations in a network of conductors.

559. The equations governing the currents flowing in any network of

conductors when induction is taken into account can be obtained from the

general dynamical theory.

Let us suppose that the currents in the different conductors are

*ii *a> 'ni an<i let the corresponding coordinates be xlt #2 > %n> these

dx
being given by i\

= ^ ,
etc. If any conductor, say 1, terminates on a

Cut

condenser plate, let x denote the actual charge on the plate, and let the

Ci T
current be measured towards the plate, so that the relations h^-jTi e*c.

will still hold. Let conductor 1 contain an electromotive force El and be

of resistance R^.

The quantities xlt x2 ,
... may be taken as Lagrangian coordinates, but

they are not, in general, independent coordinates. If any number of the

conductors, say 2, 3, ... s meet in a point, the condition for no accumulation

of electricity at the point is, by Kirchhoff's first law,

*2*8 " 4 = 0,

from which we find that variations in x2 ,
x3 ,

... are connected by the

relations

Let us suppose that there are m junctions. The corresponding con-

straints on the values of &BJ, 8#2 >
... can be expressed by m equations of

the form
n ^. _L n /y _l_ _L n XT -^ C\}

(518),

etc., in which each of the coefficients al5 az ,
... an , h, ... has for its value

either 0, +1 or 1.

The kinetic energy T will be a quadratic function of xly xz , etc., while

the potential energy W (arising from the charges, if any, on the condensers)

322
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will be a quadratic function of ^, #2 ,
.... The dynamical equations are now

n in number, these being of the form (cf. equations (509))

E.-R.i. + \<i. + iJb.+ ...(
= !, 2,. ..n).. .(519).

These equations, together with the m equations obtained by applying

Kirchhoff's first law to the different junctions, form a system of m + n equa-

tions, from which we can eliminate the m multipliers X, //,, ..., and then

determine the n variables #15 #2 , ... xn .

560. As an example of the use of these equations, let us imagine that

a current I arrives at A and divides into two parts il} i2 ,
which flow along

arms ACB, ADB and reunite at B. Neglecting induction between these

arms and the leads to A and B, we may suppose that the part of the kinetic

energy which involves i^ and i2 is ,

There are no batteries and no condenser in the arms in which the

currents ^ and ia flow. The currents are, however, connected by the

relation

7 .............................. (520),

so that the corresponding coordinates ccl and xz are connected by

8^ + ^2 = 0.

The dynamical equations are now found to be (cf. equation (519))

-r (Mi^ + Ni^)
= - Si2 + X.

If we subtract and replace i2 by 7 - ^ from equation (520), we eliminate

X and obtain

If / is given as a function of the time, this equation enables us to deter-

mine ilt and thence iz .



559-561] Electric Oscillations 501

For instance, suppose that the current / is an alternating current of

frequency p. If we put I = i eipt
,
the solution of the equation is

. 8-(M-N)ip
ll '

R-(M-L)ipwhile smnlarly ^2
=
(L + N _ m} ip + (R + S)

L

When p = 0, the solution of course reduces to that for steady currents.

As p increases, we notice that the three currents ii, i'2 and / become, in

general, in different phases, and that their amplitudes assume values

which depend on the coefficients of induction as well as on the resistances.

Finally, for very great values of^, the values of i\ and ia are given by

shewing that the currents are now in the same phase and are divided in a

ratio which depends only on their coefficients of induction. For instance,

if the arms ACB, ADB are arranged so as to have very little mutual

induction (M very small), the current will distribute itself between the

two arms in the inverse ratio of the coefficients of self-induction.

It is possible to arrange for values for L, M and N such that the two

currents i\ and ia shall be of opposite sign. In such a case the current in one

at least of the branches is greater than that in the main circuit. Let us, for

instance, suppose that the branches consist of two coils having r and s turns

respectively, and arranged so as to have very little magnetic leakage, so

that LN M 2
is negligible (cf. 525). We then have approximately

r"2
~~

rs
=
7 '

and the equations become

c*j t*2
-^

s r s r
'

so that the currents will flow in opposite directions, and either may be greater
than the current in the main circuit. By making s nearly equal to r and

keeping the magnetic leakage as small as possible, we can make both

currents large compared with the original current. But when s r exactly,

we notice from equations (524) that the original current simply divides itself

equally between the two branches.

Rapidly alternating currents.

561. This last problem illustrates an important point in the general

theory of rapidly alternating currents. In the general equations (519),

d idT\ dT dW
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let us suppose that the whole system is oscillating with frequency p, which

is so great that it may be treated as infinite. We may assume that every

variable is proportional to &&, and may accordingly replace ^ by the multi-

plier ip. The equations now become

and all the terms on the left hand may be neglected in comparison with the

first, which contains the factor ip. The terms on the right cannot legitimately

be neglected because X, /*,
... are entirely undetermined, and may be of the

same large order of magnitude as the terms retained. If we replace X, /A,
...

by ip\'t ip/jf,
. . .

,
the equations become

/6.+ ...=0, etc.
oxg

in which X7

, ///,
... are now undetermined multipliers. These, however, are

exactly the equations which express that T is a maximum or a minimum

for values of xlt #2 ,
... which are consistent with the relations (cf. 559)

necessary to satisfy Kirchhoff's first law. Since T can be made as large as

we please, the solution must clearly make T a minimum.

Thus we have seen that

As the frequency of a system of alternating currents becomes very

great, the currents tend to distribute themselves in such a way as to make

the kinetic energy of the currents a minimum subject only to the relations

imposed by Kirchhoff's first law.

This result may be compared with that previously obtained ( 357) for

steady currents. We see that while the distribution of steady currents is

determined entirely by the resistance of the conductors, that of rapidly

alternating currents is, in the limit in which the frequency is infinite,

determined entirely by the coefficients of induction,

562. As a consequence it follows that, in a continuous medium of any

kind, the distribution of rapidly alternating currents will depend only on the

geometrical relations of the medium, and not on its conducting properties.

In point of fact, we have already seen that the current tends to flow entirely

in the surface of the conductor ( 537). We now obtain the further result

that it will, in the limit, distribute itself in the same way over the surface

of this conductor, no matter in what way the specific resistance varies from

point to point of the surface.
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MECHANICAL FORCE ACTING ON A CIRCUIT.

563. Let 6 be any geometrical coordinate, and let be the generalised

force tending to increase the coordinate 0, so that to keep the system of

circuits at rest we must suppose it acted on by an external force . Then

Lagrange's equation for the coordinate is

80

and therefore, since the system is in equilibrium, we must have

If the energy of the system were wholly potential and of amount W, the

force would be given by

*-*
Thus the mechanical forces acting are just the same as they would be if

the system had potential energy of amount T.

564. Let us suppose that any geometrical displacement takes place, this

resulting in increases S0l} S#2 >
... in the geometrical coordinates Qlt #2 , ..., and

let the currents in the circuits remain unaltered, additional energy being

supplied by the batteries when needed.

The increase in the kinetic energy of the system of currents is

dT -.

while the work done by the electrical forces during displacement is

which, by equation (521), is also equal to

These two quantities would be equal and opposite if the system were a

conservative dynamical system acted on by no external forces. In point of

fact they are seen to be equal but of the same sign. The inference is that

the batteries supply during the motion an amount of energy equal to twice

the increase in the energy of the system. Of this supply of energy half

appears as an increase in the energy of the system, while the other half is

used in the performance of mechanical work.

This result should be compared with that obtained in 120.
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565. As an example of the use of formula (521), let us examine the

force acting on an element of a circuit. Let the

components of the mechanical force acting on any

element ds of a circuit carrying a current i be de-

noted by X, Y, Z.

To find the value of X, we have to consider a

displacement in which the element ds is displaced a

distance dx parallel to itself, the remainder of the

circuit being left unmoved. Let the component of magnetic induction

perpendicular to the plane containing ds and dx be denoted by N, then if

T denotes the kinetic energy of the whole system, the increase in T caused

by displacement will be equal to i times the increase in the number of

tubes of induction enclosed by the circuit, and therefore

dT=iNdsdx.

Thus, using equation (521),

v dT . , T 7X = ;r-
- = iNds,

ox

and there are similar equations giving the values of the components F and Z.

If B is the total induction and if B cos e is the component at right angles

to ds, then the resultant force acting on ds is seen to be a force of amount

iBcoseds, acting at right angles to the plane containing B and ds, and in

such a direction as to increase the kinetic energy of the system. This is a

generalisation of the result already obtained in 498.

MAGNETIC ENERGY.

566. We have seen that the energy of the field of force set up by a

system of electric currents must be supposed to be kinetic energy. We
know also that this field is identical with that set up by a certain system of

magnets at rest. These two facts can be reconciled only by supposing that

the energy of a system of magnets at rest is kinetic energy a suggestion

originally due to Ampere.

Weber's theory of magnetism ( 476) has already led us to regard any

magnetic body as a collection of permanently magnetised particles. Ampere
imagined the magnetism of each particle to arise from an electric current

which flowed permanently round a non-resisting circuit in the interior of the

particle. The phenomena of magnetism, on this hypothesis, become in all

respects identical with those of electric currents, and in particular the energy
of a magnetic body must be interpreted as the kinetic energy of systems of

electric currents circulating in the individual molecules. For instance two

magnetic poles of opposite sign attract because two systems of currents

flowing in opposite directions attract.
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We have seen that the mechanical forces in a system of energy E are

dp1
Tiff

-^Q
, etc., if the energy is potential, but are + -^ , etc., if the energy is

kinetic. It might therefore be thought that the acceptance of the hypothesis
that all magnetic energy is kinetic would compel us to suppose all mechanical

forces in the magnetic system to be the exact opposites of what we have

previously supposed them to be. This, however, is not so, because accepting
this hypothesis compels us also to suppose the energy to be exactly opposite
in amount to what we previously supposed it to be. Instead of supposing

riff
that we have potential energy E and forces ^ , etc., we now suppose that

v3C

we have kinetic energy E and forces + -=--
, etc., so that the amounts of

USD

the forces are unaltered.

To understand how it is that the amount of the magnetic energy must be

supposed to change sign as soon as we suppose it to originate from a series

of molecular currents, we need only refer back to 502.

567. The molecular currents by which we are now supposing magnetism
to be originated must be supposed to be acted on by no resistance and by no

batteries, but if the assemblage of currents is to constitute a true dynamical

system we must suppose them capable of being acted upon by induction

whenever the number of tubes of force or induction which crosses them is

changed. In the general dynamical equation

ddT\ ST

dT
we may put E and R each equal to zero, and

^
is already known to vanish.

occ

>~\m

Thus the equation expresses that =-r remains unaltered.

We now see that the strengths of the molecular currents will be changed

by induction in such a way that the electrokinetic momentum of each remains

unaltered. If the molecule is placed in a magnetic field whose lines of force

run in the same direction as those from the molecule, then the effect of induc-

tion is to decrease the strength of the molecule until the aggregate number
of tubes of force which cross it is equal to the number originally crossing it.

This effect of induction is of the opposite kind from that required to explain
the phenomenon of induced magnetism in iron and other paramagnetic sub-

stances. It has, however, been suggested by Weber that it may account for

the phenomenon of diamagnetism.

568. Modern views as to the structure of matter compel us to abandon

Ampere's conception of molecular currents, but this conception can be

replaced by another which is equally capable of accounting for magnetic
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phenomena. On the modern view all electric currents are explained as the

motion of streams of electrons. The flow of Ampere's molecular current may
accordingly be replaced by the motion of rings of electrons. The rotation

of one or more rings of electrons would give rise to a magnetic field exactly

similar to that which would be produced by the flow of a current of electricity

in a circuit of no resistance.

It is on these lines that it appears probable that an explanation of

magnetic phenomena will be found in the future. No complete explanation

has so far been obtained, for the simple and sufficient reason that the arrange-

ment and behaviour of the electrons in the molecule or atom is still unknown.
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EXAMPLES.

1. Two wires are arranged in parallel, their resistances being R and S, and their

coefficients of induction being L, M, N. Shew that for an alternating current of frequency

p the pair of wires act like a single conductor of resistance R and self-induction L, given by

R

2. A conductor of considerable capacity S is discharged through a wire of self-induc-

tion L. At a series of points along the wire dividing it into n equal parts, (nl) equal
conductors each of capacity S' are attached. Find an equation 'to determine the periods
of oscillations in the wire, and shew that if the resistance of the wire may be neglected,

the equation may be written

2 tan J< (S- #')
= '

cot
n<f>,

where the current varies as e~ixt
,
and sin2

<

3. A Wheatstone bridge arrangement is used to compare the coefficient of mutual

induction M of two coils with the coefficient of self-induction L of a third coil. One of the

coils of the pair is placed in the battery circuit AC, the other is connected to B, D as a

shunt to the galvanometer, and the third coil is placed in AD. The bridge is first balanced

for steady currents, the resistances of AB, BC, CD, DA being then R1 ,
R2 ,

#3 ,
jR4 : the

resistance of the shunt is altered till there is no deflection of the galvanometer needle at

make and break of the battery circuit, and the total resistance of the shunt is then R.

Prove that
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4. Two circuits each containing a condenser, having the same natural frequency when
at a distance, are brought close together. Shew that, unless the mutual induction between

the circuits is small, there will be in each circuit two fundamental periods of oscillation

given by

where (7l5 C2 are the capacities, Zl5 L2 the coefficients of self-induction, and M the coeffi-

cient of mutual induction, of the circuits.

5. Let a network be formed of conductors A, B, ... arranged in any order. Prove that

when a periodic electromotive force Fcospt is placed in A the current in B is the same in

amplitude and phase as the current is in A when an electromotive force Fcospt is placed
in B.



CHAPTER XVII

DISPLACEMENT CURRENTS

GENERAL EQUATIONS.

569. OUR development of the theory of electromagnetism has been based

upon the experimental fact that the work done in taking a unit magnetic

pole round any closed path in the field is equal to 4?r times the aggregate
current enclosed by this path. But it has already been seen ( 534) that this

development of the theory is not sufficiently general to take account of

phenomena in which the flow of current is not steady :

" the aggregate current

enclosed by a path
"

is an expression which has a definite meaning only when
the flow of current is steady. Before proceeding to a more general theory,
which is to cover all possible cases of current flow, it is necessary to deter-

mine in what way the experimental basis is to be generalised, in order to

provide material for the construction of a more complete theory.

The answer to this question has been provided by Maxwell. According
to Maxwell's displacement theory ( 171), the motion of electric charges is

accompanied by a "
displacement

"
of the surrounding medium. The motion

produced by this displacement will be spoken of as a "
displacement-current,"

and we have seen that the total flow which is obtained by compounding the

displacement-current with the current produced by the motion of electric

charges (which will be called the conduction-current), will be such that the

total flow into any closed surface is, under all circumstances, zero. Thus if

Sl ,
S2 are any two surfaces bounded by the same closed

path s, the total flow of current across Si is the same as ^__^
the total flow, in the same direction, across $2 ,

so that
>̂s

either may be taken to be the flow through the circuit

s. Maxwell's theory proceeds on the supposition that
in any flow of current, the work done in taking a unit magnetic pole round s

is equal to the total flow of current, including the displacement-current,
through s. The justification for this supposition is obtained as soon as it is

seen how it brings about a complete agreement between electromagnetic
theory and innumerable facts of observation.

570. Let us first put the hypothesis of the existence of displacement-
currents into mathematical language. Let u, v, w be the components of the
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current at any point which is produced by the motion of electric charges, and

let this be measured in electromagnetic units (cf. 484). Let /, g, h be

the components of displacement (or polarisation) at this point, this being

supposed measured in electrostatic units. Let any closed surface be taken,

and let I, m, n be the direction-cosines of the outward normal to any element

dS of the surface. Then if E is the total charge of electricity enclosed

by this surface, we have, by Gauss' Theorem,

(522).

Let us suppose that there are G electrostatic units of charge in one

electromagnetic unit. Then the total charge of electricity enclosed by the

pi

surface, measured in electromagnetic units, is -~
,
and the rate at which this

quantity increases is measured by the total inward flow of electricity across

the surface S, these currents of electricity being measured also in electro-

magnetic units. Thus we have

.-y
- i i

y^i/tv i aw i ii/i/vj wfs^ .......... ytyjOy.
L> d

TTfl

Substituting for -y- its value, as found by differentiation of equation

(522), we obtain

ff( 7 / 1 df\ / 1 dq\ ( 1 dJi\\ 1CI . /~OA\
1 1 JA f 4- -4- 4. ?ft [ <y -f

_ _^. _i_ ft H; -i_ _ -_ i > rt^
T = o . . .( 524 ).

\ f^ /V/ / V f ^// / V f // / /i

Now w, v, w are the components of the conduction-current, while

-^
-i-

, -ft -/- , ft -T- are the components of the displacement-current, both
G ct G ct G rf^

currents being measured in electromagnetic units. Thus

Idf Idg Idh

are the components of Maxwell's "
total current

"
and equation (524) expresses

that the total current is a solenoidal vector (cf. 177) the fundamental fact

upon which Maxwell's theory is based.

571. The hypothesis upon which the theory proceeds is, as we have

already said, that the work done in taking a magnetic pole round any closed

circuit is equal to 4?r times the total flow of current through the circuit,

this current being measured in electromagnetic units. As in 533, this is

expressed by the equation
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in which the line-integral is taken round the closed path, and the surface-

integral is taken over any area bounded by this closed path. We proceed as

in 533, and find that equation (525) is equivalent to the system of equa-

tions
. / __ w/ \

vx / vx r^f

47rU+^-T7=^-:FC dtj dy dz

dg
G dt

A i

*
**2f \

^^ "t
4-7T fl + TV -rr = ^ ^r

a

4-7T

1 dh
W+Ti-JU

da

dy

.(526).

These are the equations which must replace equations (473) (475) in

the most general case of current-flow.

572. In addition we have the system of equations already obtained in

5 529, namely
da,_dZ dY

^dt'dy dz'*

in which all the quantities are expressed in electromagnetic units. If the

electric forces X, Y, Z are expressed in electrostatic units, we must replace

the right hand of this equation by

and the system of equations becomes

1 da

Cdi~~

1 db = dX
C~di~ dz

dY
dz

dz_

dx
,(527).

_
1 dc

== d_Y_dX
C dt dx dy

The set of six equations, (526) and (527), form the most general system of

equations of the electromagnetic field. In these equations u, v, w, a, b, c,

a, ft, 7 are expressed in electromagnetic units, while /, g, h, X, Y, Z are

expressed in electrostatic units.

LOCALISATION AND FLOW OF ENERGY.

572 a. We have already found reasons for thinking that neither electric

nor magnetic energy is confined to the regions in which electric charges
and permanent magnetism are found. We are now supposing further that a

current of electricity is not confined to the conductor in which it appears to

be flowing, but is accompanied by disturbances through the surrounding
ether. The two suppositions are consistent with, and complementary to, one

another. For instance, a motion of electric charges will in general alter the
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electrostatic energy of the field, requiring a transference and adjustment of

energy throughout the ether : the mechanism of this flow of energy is to be

looked for in the displacement-currents which accompany the motion of the

charges.

The flow of energy in the ether is dealt with in Poynting's Theorem,

which follows.

Poynting's Theorem.

572 b. The total energy T + W in any region is given by

r+ F
-///{<*'

whence, on differentiating, and replacing //,a by a, KX by 4?r/, etc.,

J , I I I \\ *-* 1 . I
-* 7 . I " 1 , 1 I A I

Ot 7 , T /J 7 ,

at

- - + -
o- --^- - -..

dy d*'J

-C (uX + vY+wZ)dxdydz ............ (528),

on substitution from equations (526), (527). The first line

-^//{s^
aZ) + n (F - 0X)} dS ......(529),

by Green's Theorem ( 179), I, m, n being the direction cosines of the normal

inwards into the region.

In equation (528), the last term represents exactly the rate at which

work is performed or energy dissipated by the flow of currents, so that the

remainder (expression (529)) represents the rate at which energy flows into

the region from outside.

If II,, Uy) Uz denote
^-(Yy-Z/3), etc., we see that the value of

~r(T+ W) is the same as if there were a flow of energy in the direction

I, m, n of amount inx + mUy + nllz . The vector II of which 11^, IIy ,
Uz

are components is of amount

4- IV + n/) = RH sin 0,

where R, H are the electric and magnetic intensities and is the angle
between them. The direction of the vector II is at right angles to both R
and H, and the flow of energy into or out of the surfaces is the same as if

there were a flow equal to II in magnitude and direction at every point of

space. This vector II is called the
"
Poynting flux of energy."
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It is to be noticed that we have only found the total flux of energy over

a closed surface
;
we have no right to assume that the flux at any single

point is that given by Poynting's formula.

But if we are right in supposing (cf. 161) that the state of the medium

at every point depends only on the values and directions of R and H, then

the flow of energy at every point must be exactly that given by the Poynting

flux, for the integral (529) can be distributed in no other way consistently

with the supposition in question.

EQUATIONS FOR AN ISOTROPIC CONDUCTOR.

573. In an isotropic medium we may put (cf. 128)

4-7T df _ K dX
~U ~dt

~
C dt

'

The values of u, v, w are also given in terms of X, Y, Z by Ohm's Law. The

electric forces, measured in electromagnetic units (the components of force

acting on an electromagnetic unit of charge), will be CX, CY, CZ, so that we

have the relations
riv

u = ^,etc (530),

and equations (526) become

(

4

_^ +J^ Z =
|_| )etc (531).

Thus the present system of equations differs from that previously obtained,

in which the displacement-current was neglected, by the presence of the term

K dX
~rt ~ji - To form an estimate of the relative importance of this term, let us

examine the case of an alternating current in which the time factor is eipt .

We may as usual replace -j- by ip, and equations (531) become
dt

r= |y |3 etc

Thus neglecting the displacement-current amounts to neglecting the

ratio Kipr/farC*. Clearly the neglect of this ratio produces the greatest
error in problems in which T is large (conductors of high resistance) and in

which p is large (rapidly changing fields). On substituting numerical values

it will be found that in problems of conduction through metals, the neglect
of the factor Kipr/4f7rC

2

produces a quite inappreciable error unless p is com-

parable with 1015
i.e. unless we are dealing with oscillating fields of which

the frequency is comparable with that of light-waves. Thus the effect of

the displacement-current in metals has been inappreciable in the problems
so far discussed, so that the neglect of this effect may be regarded as

justifiable. The matter stands differently as regards the problems to be

discussed in the next chapter, in which the oscillations of the field are

identical with those of light-waves.
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EQUATIONS FOR AN ISOTROPIC DIELECTRIC.

574. The equations assume special importance when the medium is

isotropic and non-conducting. There can be no conduction-current, so that

we put u = v = w = 0. We also put

4>7rf= KXj etc., a = //.a, etc.

The equations now become

C~dt
=
dy~dz\ ~C~di

=Z

dy~dz
Ktt fo>*fy{ pd8_dX dZ ,

n J+
~~

a~ a. r V
A

/'
~~
n^JT

~
~^~

~
^Z. r (&/C dt dz dx

C dt dx dy j

C dt dz dx

= __
C dt da) dy

Of these two systems of equations the former may be regarded as giving
the magnetic field in terms of the changes in the electric field, while the

latter gives the electric field in terms of the changes in the magnetic field.

We notice that, except for a difference of sign, the two systems of equations
are exactly symmetrical. Thus in an isotropic non-conducting medium

magnetic and electric phenomena play exactly similar parts.

The two systems of equations may be regarded as expressing two facts for

which we have confirmation, although indirect, from experiment. System (A)

expresses, as we have seen, that the line-integral of magnetic force round a

circuit is equal to the rate of change (measured with proper sign) of the

surface integral of the polarisation, this rate of change being equal to 4?r

times the total current through the circuit, while similarly system (B) ex-

presses that the line-integral of electric force round a circuit is equal to the

rate of change of the surface integral of bhe magnetic induction. These two

facts, however, are not independent of one another : the latter can be shewn

to follow from the former if we assume the whole mechanism of the system
to be dynamical in its nature. This might be suspected from what has

already been seen in 556, but we shall verify it before proceeding further.

575. Assuming the whole field to form a dynamical system, the kinetic

and potential energies are given by

W = -
IH^(X

2 + F2 + Z*) dxdydz.

The quantities a, ft, 7 must fundamentally be of the nature of velocities

let us denote them by j , rj, ,
so that f, rj, are positional coordinates, and

J. 33
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giving the kinetic energy as a quadratic function of the velocities. The

motion can be obtained from the principle of least action, expressed by equa-

tion (496), namely

We cannot, however, obtain the equations of motion until we know the

relation between the coordinates f, 77, f which enter in the kinetic energy,

and the coordinates X, Y, Z which enter in the potential energy. We shall

find that if we suppose. this relation to be that expressed by equations (A),

then equations (B) will be obtained as the equations of motion.

576. Assuming that the magnetic coordinates f, 77, are connected with

the electric coordinates X, F, Z by equations (A), we have

_W = ^(d _drj\
dz dt(d dz)>C dt dy dz dtdy

so that on integration we obtain

except for a series of constants which may be avoided by assigning suitable

values to f, 77 and f. Using equations (533), we have the potential energy

expressed as a function of f, 77 and f, and the kinetic energy expressed as a

function of f, 77 and ,
and may now proceed to find the equations of motion

by the principle of least action.

We have

) dxdydz

T) + cS) dxdydz,

so that

= T

STdt = -
(aBf + 687; + cS) dxdydz

t =

-
j-

I
j-

I

dt iaSf + bfy -f c8?) dxdydz.

As in 545, we suppose the values of Sf, 8*7, 8? all to vanish at the

instants t = and t = r, so that the first term on the right hand disappears.

We have also

*W=~ffj(KX$X + KYSY+KZSZ) dxdydz

G
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on substituting the values of KX, etc., from equations (533). The volume

integral may be transformed by Green's Theorem, and we obtain

SW=

Collecting terms, we find that

/>-*>*--/
& 8Z dZ\, (G 87 8Z\,J, , ,

n + o
-- *- ^ + ? + ~--

-5- r dxdydzC dz dxj \C dx dy J j

- dt

Since the variations Sf, Srj, S% are independent and may have any values

at all points in the field, their coefficients must vanish separately, and we

must have
a <M_dY_
G dy dz

~

These are the equations which the principle of least action gives as the

equations of motion, and we see at once that they are simply the equations

of system (B).

Homogeneous medium.

577. Let us next consider the solution of the systems of equations (A)

and (B) (of page 513) when fi and K are constants throughout the medium,
and the medium contains no electric charges. From the first equation of

system (A), we have

KJJ, <Z
2Z _ d_ /> dj\ _ d_ //*

* #~\0 dt) dz\C dt'

and on substituting the values of ^ -^
and ~ -r- from the last two equa-

tions of system (B), this equation becomes

Kv,tfX = _8/8F_8^N 3_fiX__
O 2 dP

~

dy (dx dy) dz\dz dx

d^X_d_fdY
dy* W dxdy

Since the medium is supposed to be uncharged, we have

3Z 8_F dZ =
dx

*
dy dz

332
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r)2 JT

so that the last term may be replaced by 4- -^ ,
and the equation becomes

Kp&X
~& dt*

By exactly similar analysis we can obtain the differential equation satis-

fied by F, Z, a, ft and 7, and in each case this differential equation is found

to be identical with that satisfied by X. Thus the three components of

electric force and the three components of magnetic force all satisfy exactly

the same differential equation, namely

h V X ..............................(534),

where a stands for C/^/Kfj,. This equation, for reasons which will be seen

from its solution, is known as the "
equation of wave-propagation."

SOLUTIONS OF

Solution for spherical waves.

578. The general solution of the equation of wave-propagation is best

approached by considering the special form assumed when the solution %
is spherically symmetrical. If ^ is a function of r only, where r is the

distance from any point, we have

dr,

which may be transformed into

~

V X ' v % / / K O K \
-77 T\7

= T~1T" ( OOO ),

d (at)
2 dr*

and the solution is

r%=f(r- at) + 3>(r + at) (536),

where/ and < are arbitrary functions.

The form of solution shews that the value of % at any instant over a

sphere of any radius r depends upon its values at a time t previous over

two spheres of radii r at and r 4- at. In other words, the influence of any
value of ^ is propagated backwards and forwards with velocity a. For

instance, if at time t = the value of ^ is zero except over the surface of

a sphere of radius r, then at time t the value of % is zero everywhere except
over the surfaces of the two spheres of radii r at

;
we have therefore two

spherical waves, converging and diverging with the same velocity a.
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General solution (Liouville).

579. The general solution of the equation can be obtained in the

following manner, originally due to Liouville.

Expressed in spherical polars, r, 6 and 0, the equation to be solved is

r2 sin W W r*
d<f>*

Let us multiply by sin 6d6d$ and integrate this equation over the surface

of a sphere of radius r surrounding the origin. If we put

.............. ..........(537),

the equation becomes

l^x = i.
a_

/
2 a\\

a2 dt2 r2 dr (

T
dr)'

the remaining terms vanishing on integration. The solution of this equation

(cf. equation (536)) is

r)} .....................(538).

For small values of r this assumes the form

X =
*

|j/(aO
+ 4> (at)}

- r {/' (at)
- V (at)} + J {/" (a*) + <&" (a*)} + . . .

......... (539).

In order that X may be finite at the origin through all time, we must

have

f(at) + 4> (at)
=

at every instant, so that the function <& must be identical with f. On

putting r = 0, equation (539) becomes

(X)r. = -
2/' (at),

and from equation (537), putting r = 0, we have

so that 4flr(x)r-o
= -2/'(0 ........................ (540).

Equation (538) may now be written as

r\ =f(at
-

r) -f(at + r).

On differentiating this equation with respect to r and t respectively,

|; (*)=--/'(* -r)-f'(at + r),

W- f'(at-r)-f'(at + r),
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and on addition we have

-2/'(a + ,-)
=
|;(rX)

+ li(rX).

This equation is true for all values of r and t : putting t = 0, we have

as an equation which is true for all values of r. Giving to r the special

value r = at, the equation becomes

-
2/' (at)

=
I (at=0) + W

The left hand is, by equation (520), equal to 47r(%)r=0 . If we use ^, # to

denote the mean values of % and % averaged over a sphere of radius at at

any instant, the equation becomes

(%),M>
= (^=O) + ^-O ..................... (541).

Thus the value of % at any point (which we select to be the origin) at

any instant t depends only on the values of % and % at time t = over a

sphere of radius at surrounding this point. The solution is of the same

nature as that obtained in 578, but is no longer limited to spherical waves.

General solution (Kirchhoff).

580. A still more general form of solution has been given by Kirchhoff.

Let <J> and be any two independent solutions of the original equation, so

that

^ = a V<S, **'.i<#TO .................. (542).

By Green's Theorem (equation (101))

- S fife
|?

- V
|^)

dS =
[/T (3>V

2 - V2

4>) dxdydz

by equations (542). The volume integrations extend through the interior

of any space bounded by the closed surfaces Slf S2 , ..., and the normals to

$1, $2 >
... are drawn, as usual, into the space. If we integrate the equation

just obtained throughout the interval of time from t t' to t = + ", we
obtain
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So far ^F has denoted any solution of the differential equation. Let us

now take it to be -F(r + at), this being a solution (cf. equation (536)) what-

ever function is denoted by F, and let F(x) be a function of x such that it

and all its differential coefficients vanish for all values of x except x 0, while

/+
F(x)dx = \.

J -00

Such a function, for instance, is jF(#) = Lt -

We can choose t' so that, for all values of r considered, the value of

r at' is negative. The value of r + at" is positive if t" is positive. Thus

F(r + at) and all its differential coefficients vanish at the instants t = t" and

t = t', so that the right-hand member of equation (543) vanishes, and the

equation becomes

2,1 dt\\(<&-^ ty }dS = Q . (544)
J -t' JJ\ on on)

Let us now suppose the surfaces over which this integral is taken to be

two in number. First, a sphere of infinitesimal radius r
, surrounding the

origin, which will be denoted by Sl} and second, a surface, as yet unspecified,

which will be denoted by S. Let us first calculate the value of the contribu-

tion to equation (544) from the first surface. We have, on this first surface,

so that when r is made to vanish in the limit, we have

and therefore

on

47T

f
J -t

since the integrand vanishes except when t = 0.

Thus equation (544) becomes

47T
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Integrating by parts, we have, as the value of the first term under the

time integral,

t" (h ?\r

_ t
- r

a r dn

'"'"
r JL^

tt> J-t'Cirdn dt

The first term vanishes at both limits, and equation (545) now becomes

We can now integrate with respect to the time, for F (r + at) exists only

at the instant t = r/a. Thus the equation becomes

1 f/Tl dr d , 9 /1\ ia<S>~|
4>r=0 = _-_4>__+__ r dS,

J=o 4>7r J J \_ar dn dt dn\rj r dn]t=-
r-

giving the value of <1> at the time t = in terms of the values of < and 4>

taken at previous instants over any surface surrounding the point. The

solution reduces to that of Liouville on taking the surface S to be a sphere,

so that = - .

on dr

As with the former solutions, the result obtained clearly indicates propa-

gation in all directions with uniform velocity a.

PROPAGATION OF ELECTROMAGNETIC WAVES.

581. It is now clear that the system of equations

Kli&X _
~&~dP~

........................... ( b)j

etc. obtained in 577 indicate that, in a homogeneous isotropic dielectric, all

electromagnetic effects ought to be propagated with the uniform velocity

C
This enables us to apply a severe test to the truth of the theory of

displacement-currents. The value of C can of course be determined experi-

mentally, and the velocity of propagation of electromagnetic waves can also

be determined. In air, in which K = ^ \, these two quantities ought, if

the hypothesis of displacement-currents is sound, to be identical.

582. For the value of C, the ratio of the two units, the following ex-

perimental results are collected by Abraham *, as likely to be most accurate :

Himstead ... 3-0057 x 1010

Rosa 3-0000 x 1010

J. J. Thomson .. 2-9960 x 1010

Abraham ... 2'9913xl010

Pellat 3-0092 x 1010

Hurmuzescu 3-0010 x 1010

Perot and Fabry 2 '9973 x 1010

.* Rapports presents au Congres du Physique, Paris, 1900. Vol. n, p. 267.
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The mean of these quantities is

= 3-0001 xlO10
.

For the velocity of propagation of electromagnetic waves in air, the

following experimental values are collected by Blondlot and Gutton* :

Blondlot ... ... 3-022 xlO10
,

2-964 xlO10
,

2-980 x 1010

Trowbridge and Duane ... 3'003 x 1010

MacLean ... ... 2-991IxlO10

Saunders ... ... 2'982 x 1010
,

2'997 x 1010

The mean of these quantities is 2*991 x 1010
.

Thus the two quantities agree to within a difference which is easily within

the limits of experimental error.

ELECTROMAGNETIC THEORY OF LIGHT.

583. Both these quantities are equal, or very nearly equal, to the

velocity of light, and this led Maxwell to suggest that the phenomena of

light propagation were, in effect, identical with the propagation of electric

waves. Out of this suggestion, amply borne out by the results of further

experiments, has grown the Electromagnetic Theory of Light, of which a short

account will be given in the next chapter. From an examination of different

experimental results, Cornuf gives as the most probable value of the velocity

of light in free ether

3'0013 -0027 x 1010 cms. per second.

Dividing by 1'000294, the refractive index of light passing from a vacuum
to air, we find as the velocity of light in air,

3-0004 '0027 x 1010 cms. per second.

This quantity, again, is identical, except for a difference which is well

within the limits of experimental error, with the quantities already obtained.

Thus we may say that the ratio of units C is identical with the velocity
of propagation of electromagnetic waves, and this again is identical with the

velocity of light.

UNITS.

584. We can at this stage sum up all that has been said about the

different systems of electrical units.

There are three different systems of units to be considered, of which two

are theoretical systems, the electrostatic and the electromagnetic, while the

third is the practical system. We shall begin by discussing the two

theoretical systems and their relation to one another.

*
Rapports presentes au Congres du Physique, Paris, 1900. Vol. n, p. 283.

f I.e. p. 246.
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585. In the Electrostatic System the fundamental unit is the unit of

electric charge, this being denned as a charge such that two such charges at

unit distance apart in air exert unit force upon one another. There will, of

course, be different systems of electrostatic units corresponding to different

units of length, mass and time, but the only system which need be considered

is that in which these units are taken to be the centimetre, gramme and

second respectively.

In the Electromagnetic System the fundamental unit is the unit mag-
netic pole, this being defined to be such that two such poles at unit distance

apart in air exert unit force upon one another. Again the only system
which need be considered is that in which the units of length, mass and

time are the centimetre, gramme and second.

From the unit of electric charge can be derived other units e.g. of

electric force, of electric potential, of electric current, etc. in which to

measure quantities which occur in electric phenomena. These units will

of course also be electrostatic units, being derived from the fundamental

electrostatic unit.

So also from the unit magnetic pole can be derived other units e.g. of

magnetic force, of magnetic potential, of strength of a magnetic shell, etc.

in which to measure quantities which occur in magnetic phenomena. These

units will belong to the electromagnetic system.

If electric phenomena were entirely dissociated from magnetic phenomena,
the two entirely different sets of units would be necessary, and there could be

no connection between them. But the discovery of the connection between

electric currents and magnetic forces enables us at once to form a connection

between the two sets of units. It enables us to measure electric quantities

e.g. the strength of a current in electromagnetic units, and conversely we
can measure magnetic quantities in electrostatic units.

We find, for instance, that a magnetic shell of unit strength (in electro-

magnetic measure) produces the same field as a current of certain strength.
We accordingly take the strength of this current to be unity in electro-

magnetic measure, and so obtain an electromagnetic unit of electric current.

We find, as a matter of experiment, that this unit is not the same as the

electrostatic unit of current, and therefore denote its measure in electro-

static units of current by G. This is the same as taking the electromagnetic
unit of charge to be C times the electrostatic unit, for current is measured
in either system of units as a charge of electricity per unit time.

In the same way we can proceed to connect the other units in the two

systems. For instance, the electromagnetic unit of electric intensity will be

the intensity in a field in which an electromagnetic unit of charge experiences
a force of one dyne. An electrostatic unit of charge in the same field

would of course experience a force of l/C dynes, so that the electrostatic
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measure of the intensity in this field would be I/O. Thus the electro-

magnetic unit of intensity is l/C times the electrostatic. The following
table of the ratios of the units can be constructed in this way:

Ratios of Units.

Charge of Electricity. One electromag. unit = C electrostat. units.

Electromotive Force. = l/C
Electric Intensity. = 1/0
Potential. =1/0
Electric Polarisation. = G

Capacity. = O 2

Current. =C
Resistance of a conductor. = I/O

2

Strength of magnetic pole.
= 1/0

Magnetic Intensity.
=

,,

Induction. =1/0
Inductive Capacity. = O 2

Magnetic Permeability. = I/O
2

586. The value of 0, as we have said, is equal to about 3 x 1010 in

C.G.s. units. If units other than the centimetre, gramme and second are

taken, the value of will be different. Since we have seen that represents
a velocity, it is easy to obtain its value in any system of units.

For instance a velocity 3xl010 in C.G.S. units=6'71xl08 miles per hour, so that if

miles and hours are taken as units the value of C will be 6'71xl08
.

587. The practical system of units is derived from the electromagnetic

system, each practical unit differing only from the corresponding electro-

magnetic unit by a certain power of ten, the power being selected so as to

make the unit of convenient size. The actual measures of the practical units

are as follows :

Practical Units.
Measure in

Measure in electrostatic units

Quantity Name of Unit electromag. units (Taking (7= 3 x 1010
)

Charge of Electricity Coulomb 1Q-1 3 x 109

Electromotive Force }

Electric Intensity I Volt 108 ^
Potential

j

Capacity Farad 10~9

Microfarad 10~15

Current Ampere 10"1

Resistance Ohm 109
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For legal and commercial purposes, the units are defined in terms of material standards.

Thus according to the resolutions of the International Conference of 1908 the legal (Inter-

national) ohm is defined to be the resistance offered to a steady current by a uniform

column of mercury of length 106*300 cms., the temperature being 0C., and the mass

being 14'4521 grammes, this resistance being equal, as nearly as can be determined by

experiment, to 109 electromagnetic units. Similarly the legal (International) ampere is

defined to be the current which, when passed through a solution of silver nitrate in water,

deposits silver at the rate of -00111800 grammes per second.

588. As explained in 18, all the electric and magnetic units will have

apparent dimensions in mass, length and time. These are shewn in the

following table:

Electrostatic Electromagnetic

Charge of Electricity e

Density p

Electromotive Force E
Electric Intensity R (X, Y, Z)

Potential V

Electric Polarisation P (/, g, h)

Capacity C

Current i

Current per unit area (u, v, w)

Kesistance R L~ l

Specific resistance T T

Strength of magnetic pole m

Magnetic Force

Induction B (a, 6, c)

Inductive Capacity K
Magnetic Permeability p.
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CHAPTER XVIII

THE ELECTROMAGNETIC THEORY OF LIGHT

VELOCITY OF LIGHT IN DIFFERENT MEDIA.

589. IT has been seen that, on the electromagnetic theory of light, the

propagation of waves of light in vacuo ought to take place with a velocity

equal, within limits of experimental error, to the actual observed velocity

of light. A further test can be applied to the theory by examining whether

the observed and calculated velocities are in agreement in media other than

the free ether.

According to the electromagnetic theory, if V is the velocity in any

medium, and V the velocity in free ether, we ought to have the relation

V

where K
, /i refer to free ether.

For free ether and all media which will be considered, we may take /*= 1.

Also if v is the refractive index for a plane wave of light passing from free

ether to any medium, we have from optical theory the relation

15

7-'.

so that, according to the electromagnetic theory, the refractive index of any
medium ought to be connected with its inductive capacity by the relation

V =

One difficulty appears at once. According to this equation there ought
to be a single definite refractive index for each medium, whereas the pheno-
menon of dispersion shews that the refractive index of any medium varies with

the wave-length of the light. It is easy to trace this difficulty to its source.

The phenomenon of dispersion is supposed to arise from the periodic motion

of charged electrons associated with the molecules of the medium (cf. 610,

below), whereas the theoretical value which has been obtained for the velocity

of light has been deduced on the supposition that the medium is uncharged
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at every point ( 577). It is only when the light is of infinite wave-length

that the effect of the motion of the electrons disappears. Thus according to

rj
the electromagnetic theory the value of \/^ ought to be identical with the

V M.Q

refractive index for light of infinite wave-length. Unfortunately it is not

possible to measure the refractive index with accuracy except for visible

light.

590. In the following table, the values of A /= are mean values taken
V KQ

from the table already given on p. 132 of the inductive capacities of gases.

The values of v refer to sodium light.

Gas
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provided /
2 + ra2 + n2 = l. This value of ^ is a complex quantity of which

the real and imaginary parts separately must be solutions of the original

equation. Thus we have the two solutions

X = A cos K (Ix + my + nz - at) (548),

% = A sin K (Ix 4- my -\-nz- at).

Either of these solutions represents the propagation of a plane wave.

The direction-cosines of the direction of propagation are I, m, n, and the

velocity of propagation is a. Usually it will be found simplest to take the

value of % given by equation (547) as the solution of the equation and reject

imaginary terms after the analysis is completed. This procedure will be

followed throughout the present chapter; it will of course give the same
result as would be obtained by taking equation (548) as the solution of the

differential equation.

Propagation of a Plane Wave.

592. Let us now consider in detail the propagation of a plane wave of

light, the direction of propagation being taken, for simplicity, to be the axis

of x. The values of X, Y, Z, a, ft, 7 must all be solutions of the differential

equation, each being of the form

X = Ae^x - at ) .......... : ...................(549).

The six values of X, Y, Z, a, ft, 7 are not independent, being connected

by the six equations of 574, namely

KdX = ty_d0
G dt dy dz

KdY = da_dy
(j dt dz dx

KdZ
G~dt

da

^_
G dt dy dz

(A), C dt z
^

dx

= _
C dt dx dy

.(B).

From the form of solution (equation (549)), it is clear that all the differ-

ential operators may be replaced by multipliers. We may put

d 8.88= -
nca, ^- IK, r- = 5-

= 0.
dt ox dy dz

The equations now become

Ka

Ka
~G

I (A'),

Z=

~B= Z
(B')-
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Since X = 0, a. = 0, it appears that both the electric and magnetic forces

are, at every instant, at right angles to the axis of x
y

i.e. to the direction of

propagation. From the last two equations of system (A') we obtain

shewing that the electric force and the magnetic force are also at right angles

to one another.

On comparing the results obtained from the electromagnetic theory of

light, with those obtained from physical optics, it is found that the wave of

light which we have been examining is a plane-polarised ray whose plane of

polarisation is the plane containing the magnetic force and the direction of

propagation. Thus the magnetic force is in the plane of polarisation, while

the electric force is at right angles to this plane.

Conditions at a Boundary between two different media.

593. Let us next consider what happens when a wave meets a boundary
between two different dielectric media 1, 2. Let the suffix 1 refer to quanti-

ties evaluated in the first medium, and the suffix 2 to quantities evaluated in

the second medium. For simplicity let us suppose the boundary to coincide

with the plane of yz.

At the boundary, the conditions to be satisfied are ( 137, 467) :

(1) the tangential components of electric force must be continuous,

(2) the normal components of electric polarisation must be continuous,

(3) the tangential components of magnetic force must be continuous,

(4) the normal components of magnetic induction must be continuous.

Analytically, these conditions are expressed by the equations

K.X^K.X,, ,= Z, = Z2 ............ (550),

It will be at once seen that these six equations are not independent : if

the last two of equations (550) are satisfied, then the first of equations (551)
is necessarily satisfied also as a consequence of the relation

_/ida =a_a7
G dt dy dz

being satisfied in each medium, while similarly, if the last two of equations
(551) are satisfied, then the first of equations (550) is necessarily satisfied.

Thus there are only four independent conditions to be satisfied at the

boundary, and each of these must be satisfied for all values of y, z and t.

It is most convenient to suppose the four boundary conditions to be the

continuity of F, Z, ft, 7.
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Refraction of a Wave polarised in plane of incidence.

594. Let us now imagine a wave of light to be propagated through
medium (1), and to meet the boundary, this wave being supposed polarised in

the plane of incidence. Let the boundary, as before, be the plane of yz, and

let the plane of incidence be supposed to be the plane of xy. Since the

wave is supposed to be polarised in the plane of incidence, the magnetic
force must be in the plane of xy, and the electric force must be parallel to

the axis of z. Hence for this wave, we

may take

Z
'

/3 = /3V.

7 = 0,

and it is found that the six equations

(A), (B) of p. 527 are satisfied if we have

a! ff

(2)

(i)

sin 0j cos 0!

= -
...(552).

FIG. 137.

The angle l is seen to be the "angle of incidence
"
of the wave, namely,

the angle between its direction of propagation and the normal (Ox) to the

boundary.

Let us suppose that in the second medium there is a refracted wave,

given by

X=Y=0,

7 = 0,

where, in order that the equations of propagation may be satisfied, we must

have
a" =

"

= Z"
sin 2

- cos 2

~~

/"^

vr,
.(553).

It will be found on substitution in the boundary equations (550) and

(551) that the presence of an incident and refracted wave is not sufficient

to enable these equations to be satisfied. The equations can, however, all

J. 34
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be satisfied if we suppose that in the first medium, in addition to the incident

wave, there is a reflected wave given by

g.
_

QI'" giKS (xcos03+y sin 8
-

Jftf)

Q _ Qf"
giK3 (x COS 63+y sin 6a

-
tft)

7 = 0,

where, in order that the equations of propagation may be satisfied, we must

have

sTiTft

=^sT3

=
~7^

(554) -

VF,
The boundary conditions must be satisfied for all values of y and t. Since

y and t enter only through exponentials in the different waves, this requires

that we have

#! sin ft = K2 sin ft = KS sin ft (555),

V V - LT V V V fttfi\Kin K2 '2 HS'I ^OOOJ.

From (556) we must have /^ = KS ,
and hence from (555), sin ft = sin ft.

Since ft and ft must not be identical, we must have ft = TT - ft. Thus

The angle of incidence is equal to the angle of reflection.

We further have, from equations (555) and (556),

sinft_T^_ f--*7\

where v is the index of refraction on passing from medium 1 to medium 2,

so that the sine of the angle of incidence is equal to v times the sine of the

angle of refraction.

Thus the geometrical laws of reflection and refraction can be deduced at

once from the electromagnetic theory. These laws can, however, be deduced
from practically any undulatory theory of light. A more severe test of a

theory is its ability to predict rightly the relative intensities of the incident,

reflected and refracted waves, and this we now proceed to examine.

595. The only boundary conditions to be satisfied are the continuity,
at the boundary, of Z and (cf. 593). Thus we must have

7' _l_ yu ^" /KKQ\Z +Z =^ (558),

= 0" (559).

On substituting from equations (552), (553) and (554), the last relation
becomes

-
1

cos <?,('-.'")= ooefl ............(560),
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...(561),

so that all the boundary conditions are satisfied if

Z' Z" Z'"

1+u 2 1 - u

, K2 fa COS2
2 /enct\

where u 2 = ? ^ - ^ (562).
yLfc2 .fiTi COS

2
0j

For all media in which light can be propagated, we may take //,
= 1, so

that

"2 cos 2 sin 0i cos 2 tan 6l /i?o\
F ^-

= - - ^ = T
-

(ooo).
.! cos 0j sin 2 cos r tan 2

Thus the ratio of the amplitude of the reflected to the incident ray is

Z'" _ I u _ tan 2
- tan t _ sin (02

- 0Q (564A
Z'

~
1 +u

~~

tan 2 -f tan Ol

~
sin (0a + 0,)

"

This prediction of the theory is in good agreement with experiment.

Z"
This being so, the predicted ratio of

-y,
is necessarily in agreement with

experiment, since both in theory and experiment the energy of the incident

wave must be equal to the sum of the energies of the reflected and refracted

waves.

Total Reflection.

596. We have seen (equation (557)) that the angle 2 is given by
1

sin 2
= - sin 6l ,

v

where v is the index of refraction for light passing from medium 1 to

medium 2. If v is less than unity, the value of - sin 0j may be either

greater or less than unity according as Ol > or < sin"1
!/. In the former

case sin 2 is greater than unity, so that the value of 2 is imaginary.

This circumstance does not affect the value of the foregoing analysis in a

case in which 6l > sin"1

v, but the geometrical interpretation no longer holds.

Let us denote - sin X by p, and Vp
2 1 by q. Then in the analysis we

may replace sin 2 by p, and cos 2 by iq, both p and q being real quantities.

The exponential which occurs in the refracted wave is now

pix-i (x cos &t+y sin 0$ J)

Thus the refracted wave is propagated parallel to the axis of y, i.e.

normal to the boundary, and its magnitude decreases proportionally to the

factor e -**. At a small distance from the boundary the refracted wave

becomes imperceptible.

342
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Algebraically, the values of Z
',
Z" and Z'" are still given by equations (561),

but we now have

/Ksfr
cos#2 . IK&i. q~ V ^K, cos ft V frKi cos ft

'

so that u is an imaginary quantity, say u = iv, and, from equations (561),

Z'" l-u l-iv
Z' \ + u 1 + iv

'

1 - iv

1 +iv
= 1, so that we may takeSince v is real, we have

where % = arg j
= - 2 tan'1

!;.

In the reflected wave, we now have

_ Z' eiltl (-xcosO l+ysia9 l J^t-

Comparing with the incident wave, in which

^ Z' ei*i (a; cos e,+y sin 6,
-

If^
we see that reflection is now accompanied by a change of phase 2 tan"1

v,

but the amplitude of the wave remains unaltered, as obviously it must from

the principle of energy.

Refraction of a Wave polarised perpendicular to plane of incidence.

597. The analysis which has been already given can easily be modified

so as to apply to the case in which the polarisation of the incident wave is

perpendicular to the plane of incidence. All that is necessary is to inter-

change corresponding electric and magnetic quantities : we then have an

incident wave in which the magnetic force is perpendicular to the plane of

incidence, and this is what is required.

Clearly all the geometrical laws which have already been obtained will

remain true without modification, and the analysis of 591 (total reflection)

will also hold without modification.

Formula (563), giving the amplitude of the reflected ray, will, however,

require alteration. We have, as in equation (564), for the ratio of the

amplitudes of the incident and reflected rays,

3C-J^ .... ...(565),
7 1 + u

but the value of u, instead of being given by equation (563), must now be

supposed to be given by
2 P*&i cs2

0*

cos2
ft

'
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this equation being obtained by the interchange of electric and magnetic
terms in equation (562). Taking /xa

=
/z 1
=

l, we obtain

r

l cos ft sin ft cos ft sin 2ft

\ cos ft sin ft cos ft sin 2ft
'

whence, from equation (565),

7'" tan (ft
-

ft)
.(566),

7 tan (ft + ft)"

giving the ratio of the amplitudes of the incident and reflected waves. This

result also agrees well with experiment.

598. We notice that if ft + ft = 90, then 7'"
= 0. Thus there is a

certain angle of incidence such that no light is reflected. Beyond this

angle 7'" is negative, so that the reflected light will shew an abrupt

change of phase of 180. This angle of incidence is known as the polarising

angle, because if a beam of non-polarised light is incident at this angle,
the reflected beam will consist entirely of light polarised in the plane of

incidence, and will accordingly be plane-polarised light.

It has been found by Jamin that formula (566) is not quite accurate

at and near to the polarising angle. It appears from experiment that a

certain small amount of light is reflected at all angles, and that instead of

a sudden change of phase of 180 occurring at this angle there is a gradual

change, beginning at a certain distance on one side of the polarising angle
and not reaching 180 until a certain distance on the other side. Lord

Rayleigh has shewn that this discrepancy between theory and experiment
can often be attributed largely to the presence of thin films of grease and

other impurities on the reflecting surface. Drude has shewn that the

outstanding discrepancy can be accounted for by supposing the phenomena
of reflection and refraction to occur, not actually at the surface between

the two media, but throughout a small transition layer of which the thick-

ness must be supposed finite, although small compared with the wave-length
of the light.

WAVES IN METALLIC AND CONDUCTING MEDIA.

599. In a metallic medium of specific resistance r, equations (A), namely

KdX_dy dfi

G dt -dy~'d*
' " (^7)'

etc., must be replaced (cf. equation (531)) by

/47TC Kd\ 87 8/9

(~*"cdi)*-ty~di (568)>

etc.



534 The Electromagnetic Theory of Light [OH. xvm

For a plane wave of light of frequency p we can suppose the time to

enter through the complex imaginary eipt and replace -j- by ip. Thus on the

left-hand of equation (567) we have -J- X, while on the left-hand of

equation (568) we have f-r + J-\X. It accordingly appears that the

conducting power of the medium can be allowed for by replacing K by

.

ipr

600. In a non-conducting medium, equation (535), satisfied by each of

the quantities X, F, Z, a, /3, 7, reduces to

when the wave is of frequency p. The corresponding equation for a con-

ducting medium must, by what has just been said, be

<569) -

For a plane wave propagated in a direction which, for simplicity, we shall

suppose to be the axis of a?, the solution of this equation will be

(570),

where (q +^ = - + .....................(571).

Clearly the solution (570) represents the propagation of waves with a

velocity V equal to p/r, the amplitude of these waves falling off with a

modulus of decay q per unit length.

On equating imaginary parts of equation (571) we obtain

(572),

so that q is given by

q=- Z**Z-LC
(573).r r T

601. For a good conductor T is small, so that q is large, shewing that

good conductors are necessarily bad transmitters of light. For a wave of

light in silver or copper we may take as approximate values in c.G.S. units

(remembering that T as given on p. 342 is measured in practical units)

T = 1'6 x 10~6 ohms = T6 x 103

(electromag.), /*
=

1, F= 3 x 1010
,

from which we obtain q = 1'2 x 108
. It appears that, according to this theory,

a ray of light in a good conductor ought to be almost extinguished before
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traversing more than a small portion of a wave-length. This prediction of

the theory is not borne out by experiment, and for a long time this fact was

regarded as a difficulty in Maxwell's Electromagnetic Theory.

We shall see below that the difficulty disappears as soon as the simple

theory of Maxwell is replaced by a more complex theory in which the

existence of electrons is definitely taken into account. But before passing

to this more complete theory, we shall examine to what extent the present

simple theory is capable of accounting for the phenomena of metallic

reflection.

Metallic Reflection.

602. Let us suppose, as in fig. 137, that we have a wave of light inci-

dent at an angle X upon the boundary between two media, and let us suppose
medium 2 to be a conducting medium of inductive capacity K%. Then (cf.

599) all the analysis which has been given in 590 593 will still hold if

we take Kz to be a complex quantity given by

(574).
ipr

Since K2 is complex, it follows at once that F"2 is complex, being given by

and hence that the angle #2 is complex, being given (cf. equation (557)) by

. sin2

1F2 sin'0, <7
2

. K^sm*0=-^rK*=-nT- F = sin01 -=r--- .........(575).
Y\ V\ ^-2^2 -ft-sAig

The value of u is now given, from equation (562), by

K * cos2

1
- -

tan'0, ...(576)
/U2

2

(cf. equation (575)) for light polarised in the plane of incidence. For light

polarised perpendicular to the plane of incidence, the value of u is found, as

before, by interchanging electric and magnetic symbols.

If we put u = a. + i@, we have, as before (equation (564)),

Z'" = l-u = l-a-i$
Z' ~I + u~l + a + ift'

If we put this fraction in the form peix ,
then the reflected wave is

given by

i +ysinOl
- F
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Comparing this with the incident wave, for which

^x Cos6/i+ y sin fli~ FI *)

we see that there is a change of phase K^X at reflection, and the amplitude

is changed in the ratio 1 : p. The electric force in the refracted wave is

accompanied by a system of currents, and these dissipate energy, so that

the amplitude of the reflected wave must be less than that of the incident

wave.

We have J"*- !

so that ,.OZ|^_1_ ................ (577 ),

shewing that p < 1, as it ought to be. Also

y = - tan-1 -- - tan'1 ~- = - tan-1 - ^-^, ......(578).1-a 1 + a 1 - a2 -
/3

2

603. Experimental determinations of the values of p and x have been

obtained, but only for light incident normally, the first medium being air.

For this reason we shall only carry on the analysis for the case of 6 = 0. It

is now a matter of indifference whether the light is polarised in or at right

angles to the plane of incidence
;
indeed it is easily verified that the values

given for p and x by equations (577) and (578) are the same in either

case.

Taking for simplicity the analysis appropriate to light polarised in the

plane of incidence, and putting 6 0, /^
=

1, K^ = 1, we have from equation

(576)

and, since u = a + i(3, this gives

a*-/32=^ .............................. (579),

.(580).

604. Let us consider the results as applied to light of great wave-length,
for which p is very small. For such values of p, a/3 is clearly very large

compared with a2 -
/3

2
,
so that a and /3 are nearly equal numerically, and we

may suppose as an approximation that (cf. equation (580))

.(581).

When a and are equal and large, equation (577) becomes

ELJ^ (582).
27T<72
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Let us suppose that an incident beam has intensity denoted by 100, and

that of this a beam of intensity R is reflected from the surface of the metal,

while a beam of intensity 100 .R enters the metal. Then R may be called

the reflecting power of the metal.

The intensity of the absorbed beam is

100-5 = 100(1 -

= 200 .(583).

We notice that for waves of very great wave-length (p very small)

R approximates to 100, so that for waves of very great wave-length all

metals become perfect reflectors. This is as it should be, for these waves of

very long period may ultimately be treated as slowly-changing electrostatic

fields, and the electrons at the surface of the metal screen its interior from

the effects of the electric disturbances falling upon it (cf. 114).

Equation (583) predicts the way in which 100 R ought to increase as

p increases, and an extremely important series of experiments have been

conducted by Hagen and Rubens* to test the truth of the formula for

light of great wave-length. The following table will illustrate the results

obtainedf :

A/fatal
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difficulty of the experiments and for the roughness of some of the approxi-

mations which have to be made.

605. Hagen and Rubens also conducted experiments for light of

wave-lengths A, = 25'5/t, 8/z-
and 4^. On comparing the whole series it is

found that the differences between observed and calculated values become

progressively greater on passing to light of shorter wave-length. Drude

has conducted a series of experiments on visible light, from which it appears
that the simple theory so far given fails entirely to agree with observation

for wave-lengths as short as those of visible light.

ELECTRON THEORY.

606. We have now reached a stage in the development of electro-

magnetic theory in which it is necessary to take definite account of the

presence of electrons in order to obtain results in agreement with observation.

We shall have to consider two sets of electrons, the "
free

"
and " bound

"

electrons of 345 a, these being the mechanisms respectively of conduction

and of inductive capacity.

The application of an electric force X will result in a motion of free

electrons similar to that investigated in 345 a, and in a motion of the

bound electrons similar to that discussed in 151. But if X is variable

with the time, the inertia of the electrons will come into play and the

resulting motions will be different from those given by Ohm's law and

Faraday's law. We shall suppose that at any instant the current produced

by the motion of the free electrons is Uf, and that that produced by the

motion of the bound electrons is ub .

607. We may consider first the evaluation of Uf. Taking N to be the

number of free electrons per unit volume, and allowing for change of notation,

equation (c) of 345 may be re-written in the form

/fQA\
(684)'

in which, as throughout this chapter, X is expressed in electrostatic units,

while Uf is in electromagnetic units, and r stands for y/Ne
2
,
so that T' becomes

identical with the specific resistance r when the currents are steady.

This equation is applicable to our present investigation if we suppose
X to be periodic in the time of frequency p. Taking X =X eipt,

the

solution of equation (584) is __ ...........................m .

The quantity T' here may depend on p, and without a full knowledge of the

structure of matter it is impossible to decide how important the dependence
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of T' on p may be. We are therefore compelled to retain it as an unknown

quantity in our equations, remembering that it becomes identical with r when

p = 0, and is probably numerically comparable with r for all values of p.

We may note that the real part of the current, corresponding to the force

X = XQ cos pt, is

CX
^ cos (pt e) cos e,

in which tan e = .

^
, , shewing that the inertia of the electrons, as repre-

sented in the last term of equation (584), results in a lag e in the phase of

the current, accompanied by a change in amplitude. The rate of generation
of heat by the current Uf, being equal to the average value of UfXQ Gospt,'

. , , , .
,

,

is found to be i r- cos2
e or 1---

,
where

T rn

(586).

It is worth noticing that for light of short wave-length the last term in rp

may be more important than the first term T'. Thus rp may be largest for

good conductors, and smallest for bad conductors.

608. We turn to the evaluation of ^6 ,
the current produced by the small

excursions of the bound electrons, as they oscillate under the periodic electric

forces.

We shall regard a molecule (or atom), as in 151, as a cluster of electrons,

and these electrons will be capable of performing small excursions about their

positions of equilibrium.

Let Olt #2 , ... be generalised coordinates (cf. 548) determining the

positions of the electrons in the molecule, these being chosen so as to be

measured from the position of equilibrium. So long as we consider only

small vibrations, the kinetic energy T and the potential energy W of the

molecule can be expressed in the forms

2F = Mi* + 20U0A + &* + .................. (587),

2T=M1

2 + 26120A +M2
2 + .................. (588),

in which the coefficients au ,
a12 , a^, ..., &n, ... may be treated as constants.

By a known algebraic process, new variables fa, fa, ... can be found, such

that equations (587), (588) when expressed in terms of these variables

assume the forms

........................(589),

........................(590),

these equations involving only squares of the new coordinates fa, fa, ____

The coordinates found in this way for any dynamical system are spoken of

as the "principal coordinates" of the system.
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The equation of motion of the molecule, when acted on by no external

forces, is readily found to be (cf. equations (500))

-
s<t>s , (5=1,2,...) ..................... (591).

These equations are known to represent simply periodic changes in

, 02, ... of frequencies nlt w2 ,
... given by

%" = .................................(592).

The frequencies of vibration of the molecule are, however, the frequencies

of which we have evidence in the lines of the spectrum emitted by the

substance under consideration, so that equations (592) connect the frequencies
of the spectral lines with the coefficients of the principal coordinates of the

molecule.

609. If now the molecule is supposed to vibrate under the influence of

externally applied forces (such, for instance, as would occur during the

passage of a wave of light through the medium), equation (591) must be

replaced (cf. equation (508)) by .

(593),

where <&8 is that part of the "generalised force" corresponding to the

coordinate fa, which originates in the externally applied forces.

If X is the electromotive force in the wave of light at any instant, each

electron will experience a force Xe, and there will be a contribution of the

form sXe to <J>g .

Again the electrostatic field created by the displacements of the electrons

in the various neighbouring molecules will contribute a further term to <
s .

The displacement of any electron through a distance f will produce the same
field as the creation of a doublet of strength e%. Thus if there are M molecules

per unit volume, the total strength of the doublets per unit volume, say T,

may be supposed to be of the form

...) .....................(594),

and these will produce an electric intensity of which the average value may
be taken to be (cf. 145) *r, which must be added to the original intensityX of the wave.

The total value of <D8 is therefore &(X + Kr), so that on replacing a8 by
its value from equation (592), equation (593) becomes

A:r) ..................... (595).

If we suppose X to depend on the time through the factor e^, then
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<f>
will clearly depend on the time through the same factor, and we may

replace <j>s by p*$>s . Equation (595) now becomes

whence, by equation (594),

and if we write

= Me*2^ /^TIT-i)
(598 )'

this gives, as the value of F,

The current produced by the motion of the bound electrons is ub in

electromagnetic, and therefore Guj, in electrostatic units. Its value in

electrostatic units is also (cf. 345 a) Neu or 20
,
where the summation

ut

is taken through a unit volume, and this in turn is equal to P. Thus

f iO X

The total current, expressed in electromagnetic units, is

lty. +

In calculating / we must remember that the polarisation produced by
the motion of the bound electrons is already allowed for in the presence
of the term u^. We accordingly take / equal simply to X/4>7r, and on

further replacing ub and Uj by the values found for them, the total

current becomes

(600).
47rCV 1-K0

'

, m

In place of equation (569), the equation of propagation is

47T0 \
,

47T/J

As in 600, the solution is

(601),

where (2 +^ = - i + +-. .........(602).
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Non-conducting media.

610. For a non-conducting medium T' = oo
,
so that the last term in

equation (602) vanishes, and the right-hand member becomes wholly real.

For certain values of 0, this right-hand member is negative, so that q
= 0,

shewing that light is transmitted without diminution; the medium is

perfectly transparent.

For transparent media we may take p = 1, and the velocity of propagation

V is given by

l-Zf-Ifl
4^

T"2
~

2 ~r'-

If v is the refractive index of the medium, as compared with that of

a vacuum, V = C/v, so that

...........................(603);

.hence z..JB-- .....................(604),

in which a = -
1, cs =

6
*J

-

,
so that a and cg are constants.

K PS

Clearly (cf. 609) the values of s can be calculated if we make

assumptions as to the arrangement of the molecules in the medium. On

assuming that the molecules are regularly arranged in cubical piling, K is

found to have the value - r ,
so that a becomes equal to 2.

o

Formula (604) in which a is neglected altogether becomes exactly

identical with the well-known Sellmeyer or Ketteler-Helmholtz formula

for the dispersion of light, of which the accuracy is known to be very

considerable. If a is put equal to 2, the formula becomes identical with

dispersion formulae which have been suggested by Larmor and Lorentz.

It has been shewn by Maclaurin* that formula (604) will give results in

almost perfect agreement with experiment, at least for certain solids, if a is

treated as an adjustable constant. The agreement of the formula is so very

good that little doubt can be felt that it is founded on a true basis. Mac-

laurin finds for a values widely different from 2 (for rocksalt a = 5*51, for

fluorite a = 1'04), the differences between these numbers and 2 pointing

perhaps to the crystalline arrangement of the molecules. For liquids and

gases we should expect to find a equal to 2.

* Proc. Roy. Soc. A, 81, p. 367 (1908).
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Since M is proportional to p, the density of the substance, formula (604)

indicates that --
ought to vary directly as p when p varies. This law,

with a taken equal to 2, was announced by H. A. Lorentz* of Leyden and

L. Lorenzf of Copenhagen in 1880. Its truth has been verified by various

observers, and, in particular, by MagriJ for a large range of densities of air.

2 1

From equation (604) it also follows that the values of --- for a mixture

v3 1
of liquids or gases ought to be equal to the sum of the values of - for its

ingredients, a law which is also found to agree closely with observation on

taking a = 2.

611. For certain other values of 9, the right hand of equation (601) (in

which r is taken infinite) is found to be real and positive. We now have r =

and the solution (601) becomes

X

shewing that there is no wave-motion proper, but simply extinction of the

light. Thus there are certain ranges of values of p (namely those which make

(q + ir)
a

positive in equation (601)) for which light cannot be transmitted

at all. Clearly these represent absorption bands in the spectrum of the

substance.

Clearly (q + irf becomes positive when 6 is large and negative. It will

be noticed that 6, as given by equation (598), becomes infinite when p has

any of the values n lt nz , ..., changing from oo to + oo as p passes through
these values. Thus the absorption bands will occur close to the frequencies

of the natural vibrations of the molecule. But just in these regions we have

to consider certain new physical agencies which cannot legitimately be

neglected when p has values near to nlt n2 , ..., although probably negligible

in other regions of the spectrum.

612. Equation (593) is not strictly true with the value we have assigned
to <!>. For, in the first place the vibrations represented by the changes in

<f>s

are subject to dissipation on account of the radiation of light, and of this no

account has been taken. In the second place there must be sudden forces

acting in liquids and gases occasioned by molecular impacts, and requiring the

addition of terms to <f>, throughout the short periods of these impacts. There

must be analogous changes to be considered in the case of a solid, although

our ignorance of the processes of molecular motion in a solid makes it im-

possible to specify them with any precision.

* Wied. Ann. 9, p. 641 (1880).

f Wied. Ann. 11, p. 70 (1880).

$ Phys. Zeitschrift, 6, p. 629 (1905).
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The effect of these agencies must be to throw the
</>s

's of the different

molecules out of phase with one another and also out of phase with X and F.

The analysis of 609 has made the ratios of X : F : <
fi wholly real (cf. equa-

tions (596) and (597)), indicating that X, F and < s are exactly in the same

phase. The considerations just brought forward shew that these ratios ought
also to contain small imaginary parts.

The process of separating real and imaginary parts in equation (602) now

becomes much more complicated, but it will be obvious that for all values of

p, both q and r will have some value different from zero. Thus there is

always some extinction of light and some transmission, for all values of p, and

there is no longer the sudden change from total extinction to perfect trans-

mission. The edges of the absorption band become gradual and not sharp.

Hardly enough is known of the details of molecular action to make it worth

trying to represent the conditions now under discussion in exact analysis.

Conducting media.

613. For a conducting medium we retain r in equation (602), and

obtain on equating imaginary parts (cf. equation (572))

"r ~

so that instead of equation (573) we have

For visible light this gives a very much smaller value of q than that

discussed in 600, and the value of q will obviously be still further modified

by the considerations mentioned in 612. There is no reason for thinking
that the value of q would not be in perfect agreement with experiment if

all the facts of the electron theory could be adequately represented in our

analysis.

On comparing the total current, as given by formula (600), with the value
v

assigned to it in the analysis of 594598, we see that all this

earlier analysis will apply to the present problem if we suppose K to be
a complex quantity given by

where v is given by formula (603).
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If, as in 603, we put

2=- =
( +W,

^2

we find,

1
.('

m 47r<72

)J/2 _ __ _ I

Ne* r rp }

from which, in combination with equation (577), the reflecting power R of

a metal may be calculated.

On comparing these formulae with experiment, the general result appears
to emerge, that the number of free electrons in conductors is comparable
with the number of atoms. According to a paper by Schuster, published in

1904*, the ratio of the number of free electrons to atoms ranges from 1 to 3

in various substances
; Nicholson

"f",
as the result of a more elaborate

investigation, obtains values for this ratio ranging from 2 to 7. The observed

values of the specific heats of the metals seem, however, to preclude any
values much greater than 2.

CRYSTALLINE DIELECTRIC MEDIA.

614. Let us consider the propagation of light, on the electromagnetic

theory, in a crystalline medium in which the ratio of the polarisation to the

electric force is different in different directions.

By equation (92), the electric energy W per unit volume in such a medium
is given by

W =~(KllX' + 2KliXY + ...).

If we transform axes, and take as new axes of reference the principal axes

of the quadric
jrU fl? + 2J5ru0y + ... = i ........................ (605),

then the energy per unit volume becomes

W = -

where Klt K*, K$ are the coefficients which occur in the equation of the

quadric (605) when referred to its principal axes. The components of polari-

sation are now given by (cf. equations (89))

* Phil. Mag. February 1904. t Phil. Mag. Aug. 1911.

j. 35
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The equations of propagation (putting //,
= 1) now become

K, dX dy dj3
1 da dZ

G dt dy dz

~G ~dt

=
dz~dx

da
^

C dt

C dt dy dz

ld{3
==
dX

L _dZ
C dt dz dx

idy = ar_ax
C dt dx dy

If we differentiate the first system of equations with respect to the time,

and substitute the values of
-^-

,

-
, ^ from the second system as before,

we obtain

d idX dY
dZ^~

dx (fa
+

dy
+

dz
'

On assuming a solution in which X, F, Z are proportional to

(Ix+my+nz- Vt)
.(606),

these equations become

^ K,X = X-l(lX + mY + nZ) = 0, etc.

On eliminating X, Y and Z from these three equations, we obtain

If we put -jf vf, etc., and simplify, this becomes

This equation gives the velocity of propagation F in terms of the direction-

cosines I. m, n of the normal to the wave-front. The equation is identical

with that found by Fresnel to represent the results of experiment. It can be

shewn that the corresponding wave-surface is the well-known Fresnel wave-

surface, and all the geometrical phenomena of the propagation of light in a

crystalline medium follow directly. For the development of this part of the

theory, the reader is referred to books on physical optics.

Assuming that a, ft, y as well as X, Y, Z are proportional to the exponen-
tial (606), the original system of equations become

K V--4- X = my n{3, etc. -(607),

-^ a = mZ nY, etc. .(608).
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If we multiply the three equations of system (607) by I, m, n respectively

and add, we obtain

IK^+mKtY+nKiZ^O .....................(609),

while a similar treatment of equations (608) gives

k + m+ny = ........................... (610).

From equation (609) we see that the electric polarisation is in the wave-

front. From equation (610), the magnetic force also is in the wave-front.

From this point onwards the development of the subject is the same on

the electromagnetic as on any other theory of light.

MECHANICAL ACTION.

Energy in Light-waves.

615. For a wave of light propagated along the axis of Ox, and having
the electric force parallel to Oy, we have (cf. 592) the solution

a = /3
=

; 7 = 70 cos K (x at),

and this satisfies all the electromagnetic equations, provided the ratio of y to

F is given by

7o _Ka_C _ IK
F
~

C
~
/jia^V fi

(6

The energy per unit volume at the point x is seen to be

-^ (#F2 + /*7
2
)
= -1- (KY* + /*7o

2

) cos
2

K(x-at) !(612).
O7T O7T

From equation (611) we see that the electric energy is equal to the

magnetic at every point of the wave. The average energy per unit volume,

obtained by averaging expression (612) with respect either to x or to t,

=
KY* =w
O7T O7T

As Maxwell has pointed out *, these formulae enable us to determine the

magnitude of the electric and magnetic forces involved in the propagation of

light. According to the determination of Langley, the mean energy of sun-

light, after allowing for partial absorption by the earth's atmosphere, is

4*3 x 10~5

ergs per unit volume. This gives, as the maximum value of the

electric intensity,

F = "33 c.G.s. electrostatic units

= 9'9 volts per centimetre,

Maxwell, Electricity and Magnetism (Third Edition), 793.

352
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and, as the maximum value of the magnetic force,

</== '033 C.G.S. electromagnetic units,

which is about one-sixth of the horizontal component of the earth's field in

England.

The Pressure of Radiation.

616. In virtue of the existence of the electric intensity Y, there is in free

KY2

ether ( 165) a pressure
-^

at right angles to the lines of electric force.

Thus there is a pressure -^ per unit area over each wave-front. Similarly

the magnetic field results ( 471) in a pressure of amount ~2- per unit area.
O7T

Thus the total pressure per unit area

This is exactly equal to the energy per unit volume as given by expression

(612). Thus we see that over every wave-front there ought, on the electro-

magnetic theory, to be a pressure of amount per unit area equal to the energy
of the wave per unit volume at that point. The existence of this pressure
has been demonstrated experimentally by Lebeclew

* and by Nichols and Hullf,
and their results agree quantitatively with those predicted by Maxwell's

Theory.
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CHAPTER XIX

THE MOTION OF ELECTEONS

GENERAL EQUATIONS.

617. THE motion of an electron or other electric charge gives rise to

a system of displacement currents, which in turn produce a magnetic field.

The motion of the magnetic lines of force gives rise to new electric forces,

and so on. Thus the motion of electrons or other charges is accompanied by

magnetic and electric fields, mutually interacting. To examine the nature

and effects of these fields is the object of the present chapter.

The necessary equations have already been obtained in 571 2, but the

current u, v, w must now be regarded as produced by the motion of charged
bodies. If at any point x, y, z there is a volume density p of electricity

moving with a velocity of components u, v, w, then the current at x, y, z has

components pu, pv, pwm electrostatic units. Since u, v, w in equations (526)

are measured in electromagnetic units, they must be replaced by pU/C, pv/C,

pw/C, and the equations become

---...................<>
Equations (527), namely

1 da dZ dY

remain unaltered, and the two sets of equations (613) and (614) provide the

material for our present discussion.

618. If we differentiate equations (613) with respect to x, y, z and add,

we obtain, after simplification from equation (63),

Clearly this is simply a hydrodynamical equation of continuity, expressing
that the increase in p in any small element of volume is accounted for by the

flow of electricity across the faces by which the element is bounded.
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At a point at which there is no electric charge (p
=

0), equations (613) and

(614) become identical with the equations of 574 and 577, and the

quantities X, Y, Z, a, ft, y must all satisfy the differential equation (534),

namely

(615).

Motion with uniform velocity.

619. Some of the simplest, and at the same time most interesting,

problems occur when the motion of the system of charges is such that every

point moves with the same uniform velocity.

For simplicity let us take this to be a velocity u parallel to the axis of x.

The rate of change of any quantity </>
as we follow it in its motion must be

nil, so that we must have

d

whatever
<f> may be. It follows that throughout our equations, -y- may be

dt

replaced by u
^-

.

Equations (613) now become

4W __
G \

r
dxj dy dz

_doL dy
C'dx'dz fa ll)>

4,7rudh_d/3 da

da;-fa~d

whilst equation (615), satisfied by X, Y, Z, a, , 7, becomes

620. If p, / g, h, which specify the electric field, are regarded as known
in equations (616) (618), then the simplest solution for a, /3, y is easily seen
to be

............... (620).

The most general solution is clearly obtained by adding to these values
terms

, /3 , yQ such as satisfy
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These equations express that the forces a
, /3 , 70 are derivable from

a potential, so that they represent the field of any permanent magnetism
which may accompany the charges in their motion.

The field of which we are in search, arising solely from the motion of the

electric charges, is represented by equations (620).

Since a. = 0, it appears that the lines of magnetic force are curves parallel

to the plane of yz, and therefore perpendicular to the direction of motion.

The magnetic force at any point is ^- times the component of polarisationo

in the plane of yz, and its direction is perpendicular both to that of the

component of polarisation and of the direction of motion.

621. Equations (620) would give the magnetic field immediately, if the

electric field accompanying the moving charges were known. But as we have

seen, this latter field is influenced by the magnetic field, and so is not the

same as it would be if the charges were at rest.

For a field moving with all ordinary velocities, u/G is a small quantity, so

that (cf. equations (620)), a, /3, 7 will be small quantities of the order of

magnitude of u/G. The changes produced in the electric field are now of the

order of magnitude of (u/C)
z
, and, in most problems, this is a negligible

quantity.

Assuming that ( U/C)* may be neglected, the electric field surrounding the

moving charges may be supposed to be the same as it would be if the charges

were at rest.

Field of a single moving electron (u*/G
2

neglected).

622. Let us use our equations to examine in detail the field produced by
a single point-charge, moving with a velocity u so small that U2

/C* may be

neglected.

Taking the position of the point at any instaat as origin, the components

of polarisation are

ex

^>

so that, by equations (620), the magnetic forces at a?, y, z are

= 0, /3
=
-J^, 7-g? (621).

The lines of magnetic force are circles about the path of the electron,

and the intensity at distance r from the electron is

^ (622)C r*

where 6 is the angle between the distance r and the direction of motion.
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623. Clearly the field produced by the motion of any number of electrons,

with any velocities and in any directions, can be obtained by the superposition

of fields such as (621). If charges e1} ez ,
... at xlt ylt z1

'

)
#2 , ya ,

22 ;
... move

with velocities ult vlt w^ ut ,
F2 , w^ ... the magnetic force at x, y, z will

have components

etc

624. If a small element ds of a circuit in which a current i (measured

in electromagnetic units) is flowing contains Nds electrons moving with an

average forward velocity U
,
we have (cf. equation (6) of 345)

The magnetic force at distance r produced by the motion of the electrons

in the element ds of the circuit is (cf. expression (622))

, T , eu sin 6 . , sin /^oo\
Nds-~f- or ids .....................(623).

This is exactly identical with the force given by Ampere's Law ( 497).

But Ampere's formula was only proved to be true when integrated round

a closed circuit, whereas formula (623) is now shewn to be true for every

element of a circuit.

ELECTROMAGNETIC MASS (u^/C* neglected).

625. Suppose next that an electric charge e is distributed uniformly over

a sphere of radius a, moving with velocity u. At points inside the sphere
there is no electric polarisation; while at external points the electric

polarisation, and therefore the magnetic field, will be the same as if the

charge were concentrated at the centre of the sphere. Thus at a distance r,

greater than a, from the centre of the sphere, there will be magnetic force, as

given by formula (622), and therefore magnetic energy in the ether of amount

(cf. 451)

sin2

-T- Per umt volume.

By integration, the total magnetic energy consequent on the motion is

............(624).

This energy may perhaps be most simply regarded as the energy of the

displacement currents set up by the motion of the sphere, but in whatever

way we regard it the energy must be classified as kinetic.
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If the charged body is of mass m the kinetic energy of its forward

motion is

,4llW ........................(625).

An analogy from hydrodynamics will illustrate the result at which we have arrived.

Suppose we have a balloon of mass m moving in air with a velocity v and displacing a

mass m! of air. If the velocity v is small compared with the velocity of propagation of

waves in air, the motion of the balloon will set up currents in the air surrounding it, such

that the velocity of these currents will be proportional to v at every point. The whole

kinetic energy of the motion will accordingly be

the term \m roi being contributed by the motion of the matter of the balloon itself, and the

term \ J/V2
by the air currents outside the balloon. The value ofM is comparable with m',

the mass of air displaced for instance if the balloon is spherical, arid if the motion of the

air is irrotational, the value of M is known to be ra' (cf. Lamb, Hydrodynamics, 91).

626. Strictly speaking formula (625) is true only when u remains steady

through the motion. Any change in the value of u will be accompanied by

magnetic disturbances in the ether which spread out with velocity C from

the sphere. An examination of integral (624) will, however, shew that the

energy is concentrated round the sphere the energy outside a sphere of

radius R is only a fraction a/R of the whole, and if R is taken to be a large

'multiple of a this may be disregarded. The time required for the energy to

readjust itself after a change of velocity is now comparable with R/C.

Thus if we exclude sudden changes in u, and limit our attention to

gradual changes extending over periods great compared with JR/C7, we may
take expression (625) to represent the kinetic energy, both for steady and

variable motion.

The problem gains all its importance from its application to the electron. For this

a= 2 x 10
~ 13 cms. (see below, 628), so that all except one per cent, of the magnetic energy

is contained within a sphere of radius ^= 2xlO~ u cms. Since Cr=3xl010
,
the time of

readjustment of this energy is '66 x 10
~ 21

seconds, an interval small enough to be disregarded

in almost all physical problems.

627. Remembering now that, by the principles of Chapter XVI, the

whole motion of any system can be determined from a knowledge of its

energy alone, it appears that the charged body under consideration will move

(so long as its velocity is small compared with that of light, and the changes

in this velocity are not too rapid) as though it were an uncharged body of

mass m given by
-
2

...........................(626).

Observations of the motion of the body will give us the value of m, but

e
2

we shall not be able to determine m and f ^ separately, at any rate so long

as the motion is subject to the limitations mentioned above.
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628. Thus it appears that the charge on a body produces an apparent

increase of mass, which is greater the smaller the dimensions of the body are.

A numerical calculation will shew that the most intense charge which

can be placed on a body by laboratory methods will result only in a quite

inappreciable increase of mass. The case stands differently when we consider

the permanent charge of the electron. Observation enables us to determine

m in formula (626), and the value of ra is found to be 8 x 10~28

grammes.
As we review in imagination the different possible sizes of electrons we come

at last to electrons so small that the whole value of m in formulae (626)
02

is contributed by the electromagnetic term f ^. The radius of such an

electron is about 2 x 10~13 cms. For such an electron the value of m would

be zero
;
and the kinetic energy of such an electron would consist entirely of

the electromagnetic energy of the displacement currents set up by its motion.

We shall see below (656 662) that when we pass to velocities such that

U/C is not small, formula (626) requires modification, and this modification is

of such a nature that it is possible experimentally to determine the values of

the two parts of m namely ra and the electromagnetic term separately.

The most recent experiments seem to indicate that m is exactly zero, so that

m is entirely electromagnetic. If so, we are enabled to fix the radius of the

electron at 2 x 10~13 cms.

629. If, as in 623, we have a number of electric charges moving with

different velocities, the electromagnetic energy of their motion can be found

by integrating (a
2 + /3

2 + 7
2

) through the free ether, where a, ft, 7 are

given by equations (623). Clearly the result will be a quadratic function of

e 2

#1, v\, wlt uz ,
V2 , w^ . . .

,
and in addition to the terms f ^- ( u? + v^+ w*\ etc.

which arise from the electromagnetic masses of the separate charges, there

will be cross terms involving the products u^, ^F2 , etc., etc.

If the charged bodies are electrons, it is readily seen that the cross terms are negligible

except when the electrons approach one another to within a distance less than the R of

THE FORCE ACTING ON A MOVING ELECTRON.

630. The assumption we have made that u/C is small is the same as

assuming to a first approximation that C is so great that the medium may
be supposed to adjust itself instantaneously to changes occurring in it, just
as an incompressible fluid would do. The time taken for action to pass from
one point to another may be neglected. We may accordingly assume that at

any instant the mechanical actions of any two parts of the field upon one
another are such that action and reaction are equal and opposite.
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From equations (621), it appears that an electron moving with velocity

u, 0, at the origin will exert a force of components

~ ue mz ue my
~~C^' 77 7^

upon a pole of strength m at x, y, z. It follows that a pole of strength m at

x, y, z will exert a force of components

- ue mz ue my
' ~C^' ~~C^

upon the moving electron at the origin.

If we have a number of magnetic poles, the resultant force upon the

moving electron has components

n Ue ^ mz ue ^ myU
'

C"
Z ^' ~~C~^

and the components of magnetic force at the origin are given by (cf. 408

and equation (11))

v mx
a = - Z , etc.

Thus the force on the moving electron may be put in the form

0, _^ 7, /3 ................. . ......(627).

Plainly the force on the electron will be given by formulae (627), whether

the magnetic field arises from poles of permanent magnetism or not. It is

clearly a force at right angles both to the direction of motion of the electron,

and to the magnetic force a, /3, 7 at the point. If H is the resultant magnetic

force, and 6 the angle between the directions of H and the axis of x, then

the resultant of the mechanical force is ue H sin#/(7.

If the electron has components of velocity u, v, w, the component of the

mechanical force on it will be

(628).

Since the mechanical force is always perpendicular to the direction of

motion, it does no work on the moving particle; and, in particular, if a

charged particle moves freely in a magnetic field, its velocity remains con-

stant.

The existence of this force explains the mechanism by which an induced current is set

up in a wire moved across magnetic lines of force. The force (628) has its direction along
the wire and so sets each electron into motion, producing a current proportional jointly to

the velocity and strength of the field i.e. to dNjdt.
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Motion of a charged particle in a uniform magnetic field.

631. Let a particle of charge e move freely in a uniform magnetic field

of intensity H. Let its velocity be resolved into a component A parallel to

the lines of force, and a component B in the plane perpendicular to them.

By what has just been said ( 630) both A and B must remain constant

throughout the motion, and there will be a force eHB/C acting on the particle

in a direction perpendicular to that of B, and in the plane perpendicular to

the lines of force. Thus if m is the mass of the particle, its acceleration must

be eHB/mC in this same direction.

Considering only the motion in a plane perpendicular to the lines of force,

we have a velocity B and an acceleration eHB/mC perpendicular to it. This

latter must be equal to Bz

/p, where p is the curvature of the path. Thus

p
=

TJ- >
a constant, shewing that the motion in question is circular.

eJii

Combining this circular motion with the motion parallel to the lines of

force we find that the complete orbit is a circular helix, of radius BmC/eH,
described about one of the lines of magnetic force as axis.

By measuring the curvature of an orbit described in this manner, it is

found possible to determine e/m experimentally for electrons and other

charged particles. Incidentally the fact that curvature is observed at all

provides experimental confirmation of the existence of the force acting on

a moving electron.

The "Hall Effect."

632. Further experimental evidence of the existence of this force is

provided by the " Hall Effect." Hall* found that when a metallic conductor

conveying a current is placed in a magnetic field, the lines of flow rearrange
themselves as they would under a superposed electromotive force at right

angles both to the direction of the current and of the magnetic field. The
same effect has also been detected in electrolytes and in gases.

The Hall Effect is of interest as exhibiting a definite point of divergence
between Maxwell's original theory and the modern electron-theory. Accord-

ing to Maxwell's theory, a magnetic field could act only 01* the material

conductor conveying a current, and not on the current itself, so that if the

conductor was held at rest the lines of flow ought to remain unaltered f.

The electron-theory, confirmed by the experimental evidence of the Hall

Effect, shews that this is not so, and that the lines of flow must be altered

in the presence of a transverse magnetic field.

*
Phil. Mag. 9 (1880), p. 225.

f Maxwell, Electricity and Magnetism, 501.
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The Zeemann Effect.

633. When a source of light emitting a line-spectrum is placed in a

strong magnetic field, the lines of the spectrum are observed to undergo
certain striking modifications. The simplest form assumed by the pheno-
menon is as follows.

If the light is examined in a direction parallel to the lines of magnetic

force, each of the spectral lines appears split into two lines, on opposite sides

of, and equidistant from, the position of the original line, and the light of

these two lines is found to be circularly polarised, the direction of polarisation

being different for the two.

If the light is examined across the lines of force, these same two lines

appear, accompanied now by a line at the original position of the line, so

that the original line now appears split into three. The side lines are

observed to be plane polarised in a plane through the line of sight and the

lines of force, while the middle line is plane polarised in a plane perpendicular
to the lines of force.

634. These various phenomena were observed by Zeemann in 1896, and

an explanation in terms of the electron-theory was at once suggested by
Lorentz.

Let us first examine a simple artificial case in which the spectrum contains

one line only, produced by the oscillations of a single electron about a position

of equilibrium.

If p is the frequency of this oscillation, the equations of motion of the

electron must be of the form

d*xm
~di?

== ~~P ' '

in which x, y, z are the coordinates of the electron referred to its position of

equilibrium.

Next suppose the electron to move in a field of force of intensity H
parallel to the axis of x. In addition to the force of restitution of components

p*x, p
z

y, p
z
z, the electron will be acted on by a force (cf. formulae (628))

of components
eH dz eH dy

' "C"dt f

~G"dt'

In place of the former equations, the equations of motion are now

d*y eH dz

&&+-<?*
d2z eH dy-
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and the solutions of these equations are

x A cos (pt e),

y = A! cos (qj
- O + A a cos (^ - e2),

z = ^-i sin (qj
-

i) + A 9 sin (g2
- ea),

in which J., A lt A 2 , e, e1} e2 are constants of integration, and ql} q2 are the

roots of

_ m(f = - rap
2 +

-Q q.

For even the strongest fields which are available in the laboratory, the

value of the last term in this equation is small compared with that of the

other terms, so that the solution may be taken to be

eH

The original vibrations of the electron, all of frequency p, may now be

replaced by the three following vibrations :

ii.

III. * = 0, y-^c

Vibration I of frequency p is a linear motion of the electron parallel

to Ox, the direction of the lines of magnetic force. The magnetic force in

the emitted radiation is accordingly always parallel to the plane of yz and

vanishes immediately behind and in front of the electron (cf. 622). Thus

there is no radiation emitted in the direction of the axis of x, and the

radiation emitted in the plane of yz will be polarised ( 592) in this plane.

Vibrations II and III represent circular motions in the plane of yz of

frequencies p ~ ~ . Clearly the radiation emitted along the axis of x will

be circularly polarised, while that emitted in the plane of yz will be plane

polarised in a plane through the line Ox and the line of sight (the motion

along the line of sight sending no radiation in this direction). Thus the

observed appearances are accounted for.

635. More complicated analysis leads to an explanation which is more

true to the facts, and also accounts for some of the more complex phenomena
observed.

Let the molecule (or atom) be regarded, as in 608, as a cluster of

electrons, capable of vibrating with frequencies n1? n2 , ..., and let the "principal
coordinates" ( 608) corresponding to these vibrations be

</>j,
< 2 , ....
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With the notation of 608, the equation satisfied by any coordinate
<j>s

is

&& = -.& + <&. (629),

in which the generalised force <E>S is now produced by the presence of the

magnetic field. Clearly 4>s must be a linear function of the components of

force -v,-~-w acting on the separate electrons, so that we may assume

<I>2
= eH (c21 <f>! + C22<&2 + ...), etc.

The rate at which work is done by these forces is

^c^! -f <>
2 02 + ... = eH [cu <j>i + (c12 + c21 ) <j>i< 2 + ]>

and since this must vanish for all possible motions, we must have cn = 0,

12
= c2i, etc., so that equations (629) become

If light of frequency p is emitted, there must be a solution of this set of

equations such that each of the <'s involves the time through the factor eipt.

Thus we may replace d\dt by ip, and on further replacing az , etc., by the

values from equation (592), equations (630) become

The elimination of the $'s leads to

I

=
(631),

which gives the possible values of p.

When 11=0) the determinant becomes the product of the terms in its

leading diagonal, so that the values for p are nlf n2 ,..., as they should be.

If the sign of H is reversed, the determinant remains unaltered in value (for

cla
= c21 , etc.), so that the expansion of the determinant contains only even

powers of H.
s= n

We write II for the continued product II &(w 2 ~ p
2
), and II for the

s= l rs...

same product with the r, s, ... terms omitted. We shall write A for the
rs...

determinant

U, Cj2j ^13,..

in which all terms are put equal to zero in which either suffix is not one of

the series r, s, . . . . Then the expansion of equation (631) is

n- Spv-ff
a
cw8n+ s p*(*H* & n -... = o .......... ..(632).

r, * rs rt s,t,u rstu rstu
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Clearly the values of p* will in general be of the forms

p2
= n* + OlH\ p

z = n* + 2H2
, etc.,

giving displacements of the spectral lines proportional to H 2
. This cannot

explain the Zeemann Effect, in which the displacement is proportional to H.

Guided by the results of 634, let us next assume that a number s of

the original free periods coincide; for instance, let nl} n2 , ...,ns be each equal

to n, and let us search for roots of the form p
2 = n2 + where f is small. As

regards small quantities, the first term of equation (632) contains f
s

,
the sum

in the second term contains H 2

%
s

, H^s
~\ H 2 s~2

;
the next sum contains

H* 8
, H^s~\ H* 8~2

,
H4 s-3

,
H* *-*', and so on. The only terms of

importance are those containing

PS 772VS-2 TTlfS-4.
b > ** b > ** > >

and the equation assumes the form

? + alH2

t;

s-2 + a2H^s-*+...=0 ............... (633),

in which al} a2> ... are coefficients whose exact values need not concern us.

It is at once clear that there will be s values of f each proportional to H.

Moreover these values will occur in pairs of equal and opposite values, except

that when s is odd f= will be one value. This exactly explains the

observed separations of the lines both in simple and in complex cases. The

divided lines are found to be always symmetrically arranged about the

original position of the line, one of the lines coinciding with this position

when the total number of lines is even.

636. According to the simple theory of 634, the frequency difference

8p ought to be given by

so that bpjH ought to be constant for all lines of the spectrum. After the

analysis of 635 it will not seem surprising that this simple law is not

altogether fulfilled. Nevertheless 8p/H is found to be fairly constant for

all lines, and the observed values of &p/H lead to values for e/m which are

in good agreement with those obtained in other ways.

637. It is observed that the divided lines in the Zeemann Effect

are always comparatively sharp. Now it does not seem likely that the

vibrating atoms can all assume the same orientation in a magnetic field, for

this would be contrary to the evidence of the Kinetic Theory of Matter.

We must therefore suppose that the vibrations of each atom are affected in

precisely the same way, no matter what its orientation may be. It is

difficult to see how this can be unless the atoms are of a spherically symmetrical
structure. Thus the Zeemann Effect confirms the evidence already suggested

by the Kinetic Theory of Gases as to atomic formation.



635-637] The Motion of Electrons 561

REFERENCES.

On the Motion of Electrons in general :

H. A. LORENTZ. The Theory of Electrons. Chap. i.

Encyc. der Math. Wissenschaften, v2, I, p. 145.

On the Zeemann Effect :

H. A. LORENTZ. The Theory of Electrons. Chap. IIL

(See also the references to books on physical optics, p. 548.)

j. 36



CHAPTER XX

THE GENERAL EQUATIONS OF THE ELECTROMAGNETIC FIELD

638. WE pass next to the consideration of the most general equations of

the electromagnetic field, covering, in particular, the motion of electrons

without any restriction as to the smallness of their velocities.

The material on which to base the discussion is found in equations (613)

and (614) of 617
;

/ .QK ,

(635) >

(636).C dt dy dz
'

Introduction of the Potentials.

639. With equations (636) we combine the relation

8a
+

86 8c =Q
dx dy dz

(equation (362)), and it follows, as in 443, that we can find a vector-

potential of components F, G, H connected with a, b, c by the relations

3H dGa=
fy~3*

and with Z, F, Z by the relations (cf. 530)

1 dF d

m which ^ is a function, at present undetermined in the general case, which
becomes identical with the electrostatic potential when there is no motion.

640. We have seen ( 442) that equations (638) are not adequate to
determine F, G, H completely, and hence ^ also (cf. equation (639)) is not
fully determined.
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Let FQ, (TO, H ,
W be any special set of values satisfying equations (638)

and (639). Then the most general values of F, G, H are given by (cf. 442)

jF= j^ + l^etc (640),

where % is any arbitrary single-valued function.

To find the most general value of W, we have from equation (639)

dW Y 1 fdF
~dx

= + G (~dt

'

so that, on integration,

\P = ^ -^|-fa constant (641).

From (640) and (641) we obtain

ox dy dz C dt ox

(642).

The function ^ is entirely at our disposal, so that

may have any value we please to assign to it. Let us agree to give to ^ such

a value, for every instant of time and all values of x, y, z, as shall make the

right-hand member of equation (642) vanish.

The value of ^ is now definitely settled, except for a set of values of ^
such that

at every instant and point, these values of % representing of course con-

tributions that might arise from a set of disturbances propagated through
the medium from outside.

Except for such additional values of %, the values of F, G, H, ^ are now

uniquely determined by equations (640) and (641). The vector potential

will in future mean the special vector of which these values of F, G, H are

the components, while the corresponding special value of ^ will be called the
"
Electric Potential."

From equation (642) it follows that the vector potential and the electric

potential are connected by the relation

.....................(643).
ox dy dz C dt

362
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Differential Equations satisfied by the Potentials.

641. If we differentiate equations (639) with respect to x, y, z and add,

we obtain

which, on substituting from equations (643) and (63), becomes

W-***- -^ (644^
O2 (^

' K
the differential equation satisfied by V. We notice that for a steady field it

becomes identical with Poisson's equation, while in regions in which there

are no charges it becomes identical with the equation of wave-propagation.

642. To obtain the differential equation satisfied by Fy
we transform

equation (635) by the use of equation (638). We have

dy\dx dy

_

dx \dx dy dz )

whence, from equations (643) and (639),

the differential equation satisfied by F. Similar equations are of course

satisfied by G and //.

Differential Equations satisfied by the Forces.

2 - - -=-643. Operating on equation (639) with the operator V 2 - - -=-
, we

have

This is the differential equation satisfied by X, and similar equations are

satisfied by Y and Z.
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644. For the differential equation satisfied by a, ft, 7 we have, from

equations (638) and (645),

c* dt*

_
C dy dz

and similar equations for /3 and 7.

Solution of the Differential Equations.

645. It will be seen that all the differential equations are of the same

general form, namely

V2*-=- 4 ........................ <648 >>

where cr arises from electric charges, at rest or in motion.

Clearly the value of % may be regarded as the sum of contributions from

the values of <r in the different small elements of volume. The simplest
solution for ^ is that arising from a distribution of a at and close to the

origin, cr being zero everywhere else.

For this special solution % is a function of r only which must satisfy

^v= 1 ^
ft a2 dt2

everywhere except at the origin. Proceeding as in 578, and rejecting the

term which represents convergent waves, as having no physical importance,

we obtain the solution (cf. equation (536))

(649),

where /is so far a perfectly arbitrary function.

Close to the origin, this reduces to

X-i/(-<rf) ........................... (650),

and it now appears that in equation (648) the middle term becomes insig-

nificant near the origin in comparison with the first term V 2

^. Thus close

to the origin the equation becomes identical with Poisson's equation, and the

integral is

crdxdydz

where the integral is taken only through the element of volume at the origin

in which cr exists, and T represents the integral of cr taken through this

element of volume.
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On comparing solutions (650) and (651), both of which are true near the

origin, we find that

/(-9-T (652),

and this determines the function/ completely. The general solution (649)

is now fully known, and by summation of such solutions the general solution

of equation (648) is obtained.

Let P, Q be any points distant r apart ;
let t be any instant of time, and

let t denote the instant of time r/a previous to it, so that t = t r/a.

Clearly f is the instant of departure from P of a disturbance reaching Q at t.

Following Lorentz, we shall speak of t as the "
local time

"
at P corresponding

to the time t at Q.

With this meaning assigned to t
,
we have

f(r - at) =/{- a(t- '-)} =/(- at,)
= r,

( v */"j

where r is evaluated at time t (cf. equation (652)). If we agree to denote

by [</>]
the value of

<f>
estimated at the local time at the point at which <

occurs, then this value of T will be expressed by [T], and solution (649)

becomes

X =V (653).

The most general solution of equation (648), obtained by the summation

of solutions such as (653), is

(654),

the last form applying when the distribution of a occurs only at points or in

small regions so small that the variations of local time through each region
are negligible.

The analogy of Poisson's equation and its solution in electrostatics (cf.

49, 40, 41) is obvious.

646. From equations (644) and (645) it follows that the potentials are

given by

(656).

If the moving electrons in formula (656) are conveying currents in linear

circuits, the formula becomes (on taking p 1)
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where the summation is over the different circuits and ix denotes the

dx
^-component of the current, which may also be expressed as i -=- . This

ct>s

formula may be compared with (419) from which it differs only in that it

takes account of the finite time required for the propagation of electro-

magnetic action.

The solution of equations (646) and (647) may be similarly written down,

but it is usually easier to evaluate the forces by differentiation of the

potentials.

The Field set up by moving Electrons.

647. We now suppose the carriers of the charges to be electrons or

other bodies, so small that the variations of local time over each may be

neglected.

Let a, 0, 7 refer to the force at a point a?', y', z' produced by the motion

of charges e at x, y, z, etc. We have

_=

Since [e w] is a function of t r/a, we have

so that

9 [ew] y' -y d_ [ew] _ _ y -y f
1 [ew] [ew]

dy' r r dr r r [a r r2

and on substitution in equations (657) we obtain formulae for a, /:?, 7.

These formulae are seen to contain terms both in r"1 and r~2
. At a great

distance from the electron the former alone are of importance, and the com-

ponents of force become

etc..........(658).

Similarly we find for the electric forces at a great distance

* =
^2^3,etc. ... .....................(659).

648. For a single electron in free ether, moving with an acceleration u

along the axis of an, the components of force assume the simple forms

] .........(660),

= --[ev\ F-0, Z=0 ..................(661).
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We can now find the rate at which energy is radiated away, using the

theorem of 5726. The direction of the Poynting flux at any point is

perpendicularly away from the line of acceleration of the electron; its

n
amount is -:- HX per unit area, where H is the resultant magnetic force

4<7r

equal to (#
2 + 7

2
)*.

On integration over a sphere of radius r we find for the rate of emission

of energy by radiation

9 />2/r2

1% (662).

It is now clear that if we had retained terms of order r~2 in formulae

(658) and (659), these would have contributed only terms of order r~* to the

Poynting flux, and so would have added nothing to the final radiation. Thus

the radiation of an electron arises solely from its acceleration
;

its velocity

contributes nothing.

649. If each of a cluster of electrons is so near to the point x, y, z

that differences of local time may be neglected throughout the cluster, the

field set up by the motion of the cluster in free ether will be (cf. equations

(658), (659))

f etc.,

in which terms of order r~2
, which contribute nothing to the radiation, are

omitted.

The radiation from the cluster is the same as from a single electron of

charge E moving with components of acceleration U, V, W, such that

EU=%eu, etc.

650. Thus, taking such a cluster to represent a molecule, we see that

the radiation from a molecule is the same as that from a single electron

moving in a certain way.

The condition that there shall be no radiation from a molecule is

If this condition is not satisfied, the rate of emission of radiation is

(cf. formula (662))

(663).
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651. Consider next the field produced by a particle of charge E
oscillating along the axis of x with simple harmonic motion, its coordinate

at any instant being % cospt. We have

.
Eu = - Ep2x cos pt ; [Eu] = - Ep*xQ cosp (t

- -}
,

from which the field can be written down by substituting in formulae (660)

and (661).

From formula (662) the average rate of emission of radiation is

found to be

3 G3 3X4

where X is the wave-length of the emitted light.

A particle moving in this way is spoken of as a simple Hertzian vibrator.

Its motion was taken by Hertz to represent the oscillating flow of current in

an oscillatory discharge of a condenser. Such an oscillation formed the

source of the Hertzian waves in the original experiments of Hertz (1888)*,

and forms the source of the aethereal waves used in modern wireless

telegraphy.

The radiation from any single free vibration of a molecule (cf. 608, 650)
will be the same as that radiated from the simple harmonic motion of a single

electron, so that the formulae we have obtained will give the field of force

and intensity of radiation of a molecule vibrating in any one of its free

periods.

652. A case of great interest is that in which the velocity of a moving
electron undergoes a very sudden change, such as would occur during
a collision with matter of any kind. Let us represent such a sudden change

by supposing that eu, ev, ew vanish except through a very small interval

surrounding the time t = 0, during which they are very great. At a point

at distance r, [eu], [ev] and [ew] will vanish except through a small interval

of time surrounding the instant t = r/a. During this short interval, the

electric and magnetic forces will be very great ;
before and after this interval

they will have the smaller values arising from the steady motion of the

electron. Thus the sudden check on the motion of the electron results in

the outward spread of a thin sheet of electric and magnetic force, the force

being very intense and of very short duration. Such a sheet of force is

commonly spoken of as a "pulse."

It was suggested by Sir G. Stokes, and is now universally believed, that

the Rontgen rays consist of thin pulses of force produced somewhat in the

manner above described. On this view the Rontgen rays may be compared

* Electric Waves, by H. Hertz (translated by D. E. Jones), London, 1893.



570 The General Equations of the Electromagnetic Field [on. xx

roughly to isolated waves or half-waves of light of very short wave-length.

They are known not to undergo refraction by solid matter, and it is worthy

of notice that formula (604) gives v 1 for very short wave-lengths.

MECHANICAL ACTION AND STRESSES IN MEDIUM.

General dynamical equations.

653. The total energy of a system of charges of any kind moving in free

ether is T+ TF, where

W = (X*+ Y* + Z*)dxdydz ............... (664),

(665).

Let us suppose that, on account of the electromagnetic forces at work,

each element of charge experiences a mechanical force of components H, H, Z

per unit charge. We can find the forces H, H, Z by the methods of 196

and the general principle of least action.

Let us imagine a small displaced motion in which the coordinates of any

point x, y, z are displaced to x + &z?, y + By, z + Bz, while the components of

electric polarisation are changed from /, g, h to /+ Bf, g + Bg, h + Bh, these

new components of polarisation as well as the old satisfying relation (63).

Thus if p is the density of electricity at any point in the original motion,

and p -f Bp the corresponding density in the displaced motion, we must have

dfdgdh
^~ + # + 5~ = P>
das dy dz

dBh ,
~0 I

--
?^
--

1

--
7^
- = GO.

ox dy dz

Let us denote the total work performed by the mechanical forces in this

small displacement by - {B U] (cf. 551), so that

(666).

Then the equations of motion are contained in (cf. equation (507))

(667).

We have BT=

-///!'-) *}***
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on applying Green's Theorem; and on further using equation (635), this

becomes

Let 8, -r refer to a point fixed in space, and let A, -^
refer to a point

moving with the moving material. Then we have the two formulae for At/,

at ox dy dz

so that on comparison

-

at dx dy dz

We now have

8 (pu +/) = uBp + pBu + 8/

On substituting for dp/dt and
8/3

their values (cf. 618),

and simplifying, we obtain

-
pw&x),

whence

=
^ JjJ

^~ (p& + 8/) ^rfy^ + terms in G, H

Transforming by Green's Theorem, the second line in ST becomes

ri I {p$v(cv-bw) + p$y(aw -cu) + pSz(bu-av)} dxdydz.
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On integrating with respect to the time, and transforming the first term

on integration by parts, we have

[

T

BTdt =
j

r

dt
|~- ^HI

~
(pBx + Bf) + p&p (cv

- bw) + . . .1

We have from variation of equation (664),

= (XSf + YSg + ZSh) dxdydz

Hence, freed from the integration with respect to the time, equation

(667) becomes

YSg +

(668).

We may not equate coefficients of the differentials, for Sf, By, &h are not

independent, being connected by

, 8 . . a , a
a o + o
3a? dy dz

We multiply this by an undetermined multiplier "SP, a function of x, y, z,

and integrate through all space. We obtain

or, after integration by parts,

M9^*^ 8^* ^ 8^^ , *
8^

, s^
W

^y+-8
-% +^^ + pS^+pS2/^

+ p

Adding this integral to. the left hand of equation (668), we may equate
coefficients, and obtain

IdF dV 1
,-- + CF -

(670).

The first equation is simply equation (639) of which we have now obtained
a proof direct from the principle of least action (cf. 575) ;

the second gives
us the mechanical forces acting on moving charges. It will be seen that the



653,654] Stresses in Medium 573

forces given by formula (670) are identical with those obtained in 630, but

they have now been obtained without any limitation as to the smallness of

the velocities.

Stresses in Medium.

654. We can next evaluate the stresses in the medium, following the

method of 193 and assuming the medium to be free ether.

Let X be the total ^--component of force acting on any finite region of the

medium, so that

X = IMS/? docdydz = II IpX dxdydz + ~ 1 1 1 (yp v - /3p w) dxdydz.

On substituting for pv, pw from equations (635), the last term becomes

->///(*-*)***

On substituting for p from equation (63), and for d/3/dt, dj/dt from

equations (636), and collecting terms, this becomes

Y i f[[[/dx dY dz\ v fdY dx\ /dx 9\i
X =

;r ^ ^5 K-sr I A *( ~5
--

~^~ 1
"*" * I "5 s~ / dxdydz

47T JJ V &e dzj \dx J \oz dxj

(671),

in which TIX as in 572 b denotes the ^-component of the Poynting flux.

The first line at once transforms to

dS,

and similarly the second, since +
^

-f
^-
= 0, to

but the last line will not transform into a surface integral at all. It therefore

appears that the mechanical action in a medium in which UX) fly, Uz are

different from zero i.e. in which the Poynting flux is not steady in value is

not such as can be transmitted by ether at rest.
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655. If a medium is in motion, having momentum /**, py , pz per unit

volume, and is acted on by stresses Pxx ,
Pxy ,

PX2) etc. (cf. 193) at its surface,

we have

X = - (((IPXX + mPxy + nPxz) dS+-j- (fLx dxdydz,
Jj dtjjj

and equation (671) becomes identical with this if we take

x~ . _ , . ^ (a
2 r 7

2
), etc.

O7T oTT

;

(em
etc.

r -*7r
'

^=-ln,,etc (673).

The quantity of which the components are
IJLX) py , /JLZ has been called the

'

electromagnetic momentum." We may say that the forces are such as

would be transmitted by stresses specified by equations (672) in an ether

moving with momentum
IJLX , }iy , ^z per unit volume, but whether this momen-

tum resides in the ether in a form at all similar to the momentum of ordinary
matter has to remain an open question.

MOTION WITH UNIFORM VELOCITY.

General Equations.

656. We return to the discussion of a system moving with a uniform

velocity (cf. 619, 620), in which there is now no limitation as to the small-

ness of the velocity. As in 619, we replace -r by - u~-
,
and the general

equation (648) becomes

('-^S+p+S 4

in which stands for u/a, or if we write of for x (1
-

/3*)~%,

We may conveniently speak of of, y, z as the "contracted" coordinates cor-

responding to the original coordinates x, y, z, since if two surfaces have the
same equation, one in of, y, z and the other in a?, y, z coordinates, the former

will be identical with the latter contracted in the ratio (1 -/S2
)^ parallel to

the axis of x.



655-657] Motion with uniform Velocity 575

Equation (675) is Poisson's equation in contracted coordinates. Its

solution is

where r denotes distance measured in the contracted space.

Hence (cf. equations (644), (645)) the values of and F, G, H are

given by

(676),

(677),

so that the potentials are the same in contracted coordinates as they would

be in ordinary coordinates if the system were at rest multiplied by the factor

Motion of a uniformly electrified sphere.

657. To illustrate the method just explained, we shall examine the

field produced by a uniformly electrified sphere of radius a, moving with

velocity u.

The surface in the contracted space is a sphere of radius a, so that that

in the uncontracted space is a prolate spheroid of semi-axes a (1 P)~z, a, a,

and therefore of eccentricity /3. To find the distribution of electricity, we

imagine the charge on the sphere to be uniformly spread between the spheres
r = a and r a 4- e. The charge on the spheroid is now seen to be uniformly

spread between the spheroid itself and another similar spheroid of semi-axes

(a + e)(l ff
2

)'^, a + e, a + e. Thus the distribution of electricity in the

spheroid in the uncontracted space is just what it would be if the spheroid

were a freely charged conductor, and is given by the analysis of 283, in

which e is to be taken equal to /3.

We find for the total electric energy

where e is the total charge, and for the total magnetic energy produced by
the motion of the sphere,
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which agrees with the result of 624 when /3 is small, and becomes infinite

when 13
= 1.

658. Abraham*, who first worked out the above formulae, suggested

that the electron might be so constituted as to remain spherical and uniformly

charged at all velocities. If so formula (679) would give the kinetic energy

of an electron moving with any velocity, whether small compared with the

velocity of light or not.

Other suggestions as to the constitution of the electron would of course

lead to other formula for the value of T. In 1908, Kauffmann performed an

important series of experimentsf to test which of the formulae for T agreed

most closely with observation on the motion of electrons. It was found that

none of the hypotheses agreed with Kauffmann's experiments completely,

but that Abraham's hypothesis agreed to within a small error. Later

experiments by Buchererj seem to shew that the hypothesis of Lorentz (see

below, 662) agrees completely with observation, and that Abraham's theory

must be discarded accordingly.

Motion of any system in equilibrium.

659. When a material system moves with any velocity u, the electric

field produced by its charges is different from the field when at rest. The

difference between these fields must shew itself in a system of forces which

must act on the moving system and in some way modify its configuration.

Let us consider first a simple system which we shall call S in which all

the forces are electrostatic, and all the charges are supposed concentrated in

points (e.g. electrons). Let us suppose that when the system is at rest there

is equilibrium when a charge ^ is at x = xly y = y\, z = z\\ e.2 at x = xz ,

y = 2/2 ,
z z2y and so on.

Let us compare this with a second system 8' consisting of the same

electrons but moving with a uniform velocity u, and having the charges el

at x' = #j, y = ylt z = zl ;
e.2 at x' - asy , y = y2 ,

z zz , etc., so that each electron

has the position in the contracted space which corresponds to its original

position in the original space. Then if F denotes the electrostatic potential
in the original system, the potentials in the moving system are (cf. equations

(676), (677)),

,
= 0, #=0,

* " Die Grundhypothesen der Elektronentheorie," Phys. Zeitschrift, 5 (1904), p. 576.

t Annalen der Physik, 19, p. 487.

J Phys. Zeitschrift, 9, p. 755.
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and the forces in the moving system are

_W_1^
dx Cdt

_a>p"
dx

Thus if, as we have assumed, the original system S was in equilibrium

under electrostatic forces only, then the system S' moving with uniform

velocity u will be in equilibrium also.

Lorentz, to whom the development of this set of ideas is mainly due,

and Einstein have shewn how the theorem may be extended to cover electro-

magnetic as well as electrostatic forces, and the theorem can also be extended

so as to apply not only to steady motion with uniform velocity, but to

systems performing small motions superposed into a uniform motion of

translation*.

The Lorentz-Fitzgerald contraction hypothesis.

660. It is now natural to make the conjecture, commonly spoken of as

the Lorentz-Fitzgerald hypothesis, that the system S when set in motion

with a velocity u assumes the configuration of the system S', this latter

being a configuration of equilibrium for the moving system. Indeed, if we

suppose all forces in the ether to be electrical in origin, this view is more

than a conjecture; it becomes inevitable. Put in the simplest form it

asserts that any system when set in motion with uniform velocity u is

/ C^X^
contracted, relatively to its dimensions when at rest, in the ratio ( 1 ^ J

in the direction of its motion.

For instance, every sphere becomes an oblate spheroid of eccentricity u/0.

The contraction is of course very small until the velocity becomes comparable

with that of light ;
the diameter of the earth will be contracted by only about

6 cms. on account of its motion in its orbit. Even if it were not for its

smallness, it would be impossible to measure this contraction by any material

means, since the measuring rod would always shrink in just the same ratio

as the length to be measured. But, as we shall now see, optical methods are

available where material means fail, and enable us to obtain proof of the

shrinkage.
* See Lorentz, The Theory of Electron, Chapter v.

j. 37



578 The General Equations ofthe Electromagnetic Field [OH. xx

661. Let a system (which for definiteness may be thought of as the

earth) be moving with a velocity u, then the apparent velocity of a ray of

light travelling in the direction of this motion will be G u if measured

relatively to the moving system. If the light travel in the reverse direction

its apparent velocity will be G + u. If a ray travel over a path I and is then

reflected back to its starting-point, the time ^ taken will be given by

Suppose next that a ray is made to travel a distance L across the direction

of motion and back to its starting-point, the system moving with velocity u

as before. Let the whole time be t2 ,
then the distance travelled by the

system is ut^. The actual path of the ray through the ether consists of two

equal parts, one before reflection and one after
;
each part is the hypotenuse

of a right-angled triangle of sides L and \ut^ and the time of describing

each part is j 2 . Hence

whence

From formulae (680) and (681) it appears that the times taken by a ray
of light to travel a distance I and be reflected back, while the system is in

motion, will be different according as the path of the rays is along or across

the direction of motion of the system.

According to the Lorentz-Fitzgerald hypothesis, however, the length I

described from one point of the material system must, on account of the

/ U 2 \~^
motion, have shrunk from an initial length 1 = l( 1 -^

-

)
measured in the

system at rest. In terms of the apparent length 1
,
formula (680) becomes

and is now in exact agreement with (681).

The famous experiment of Michelson and Morley, of which details can be
found in any treatise on physical optics, was in effect designed to test whether
formulae (681) and (682) ought to be the same or different. It was found
that the apparent velocity was exactly the same, whether the double path
was across or with the motion of the earth in its orbit. Thus the experiment,
although designed for another purpose, has as its result to afford what
amounts almost to positive proof of the Lorentz-Fitzgerald contraction

hypothesis.
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The Lorentz deformable electron.

662. Lorentz has suggested that the electron itself may suffer contraction

in the direction of its motion, just as a material body made up of electrons

must be supposed to do. Thus an electron which when at rest is a sphere

of radius a, becomes when in motion an oblate spheroid of semi-axes

a, a.

Lorentz calculates as the total apparent mass of the electron

when moving in the direction of the velocity u, and

when moving transverse to this direction.

The second of these formulae has been tested by Bucherer, in a series of

experiments of great delicacy*, and is found to agree exactly with experiment

provided m is taken to be zero. Thus Bucherer's experiments seem to lead

to the following conclusions :

I. They confirm Lorentz's theory of the deformable electron.

II. They provide further confirmation of the Lorentz-Fitzgerald hypo-

thesis, on which Lorentz's theory of the electron is based.

III. They indicate that the mass of the electron is purely electromagnetic

in its nature.
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-currents, 155, 508, 512

-theory of Maxwell, 153, 508

Doublet, electric, 50, 168, 193, 215, 232, 540

Dynamical theory of currents, 485

Dynamo, action of, 458, 465

Earnshaw's theorem, 167

Einstein, 577

Electric charges, force between, 11, 12, 13, 37

,, ,, equilibrium of, 23, 167

,, currents, see Currents

intensity, 24, 31, 117, 121, 564

,, potential, 26, 31, 121, 562

screening, 62, 97, 537

Electricity, measurement of quantity of, 8, 77,

109, 437

,, positive and negative, 8

theories of, 19, 20

Electrification, 5

,, at surfaces and boundaries, 18,

21, 45, 61, 194, 347

Electrification by friction, 1, 9

,, ,, induction, 16, 125, 186

,, line of zero, 88, 194

Electrokinetic momentum, 498

Electrolytic conduction, 307

Electromagnetic field, general equations of,

562

mass, 552, 579

,, momentum, 574

theory of light, 3, 521, 525

units, 427, 522

,, waves, 520

Electrometers, 105, 107

Electromotive force, 303, 453

Electron, charge and mass of, 20

,, motion of, in conduction, 306, 307,

320, 343, 496, 538

,, ,, ,, in free ether, 549, 567

size of, 553, 554

,, structure of, 576, 579

Electrophorus, 17

Electropositive, electronegative, 10

Electroscope, gold-leaf, 7, 17

Electrostriction, 181

Ellipsoidal analysis, 230, 244, 251

,, conductors, 246, 253

,, harmonics, 251

Elliptic cylinders, 270

disc, 248

Energy, conservation of, 28, 32

,, flow of, 510

localisation of, 151, 399, 415, 443,

494, 504, 510, 545

,, of conductors and condensers, 83, 106

,, ,, light-waves, 547

,, ,, magnetic field, 396, 399, 415, 504

,, ,, magnetised bodies, 377, 380, 381

,, ,, systems of currents, 443

Equilibrium, points of, 59, 167

Equipotential surfaces, 29, 47-62, 370

Equivalent stratum (Green's), 182, 361, 375

Expansions in harmonics, 211

,, ,, Legendre's coefficients, 223

,, ,, sines and cosines, 259

Farad (unit of capacity), 77, 523

Faraday, 3, 74, 115, 116, 126, 140, 155, 308

Finite current sheets, 481

Fitzgerald, 577

Flame, conducting power of, 6, 125

Flux of energy, 511

Force, lines of, 25, 29, 43, 47-58, 62, 370

,, magnetic, 381

,, mechanical, see Mechanical force
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Force, tubes of, 44, 47-58, 117, 371

Fourier's theorem, 259

Franklin, 19

Fresnel, 546

Galvanometer, 433

Gases, conduction in, 311

,, inductive capacity of, 132

,, velocity of light in, 526

Gauss' theorem, 33, 118, 161, 162, 370, 386

Generalised coordinates, 489

,, forces, 493

,, momenta, 493

Generation of electricity, 9

heat, 320, 348

Green, analytical theorem of, 156

equivalent stratum of, 182, 361, 375

,, reciprocation theorem of, 92, 163

Guard-ring, 78, 106

Hagen and Eubens, 537

Hall effect, 556

Hamilton's principle, 487

Harmonic potential, 224

Harmonics, biaxal, 241

ellipsoidal, 251

spherical, 206-223, 233-242, 243

,, tesseral, 237

,, zonal, 233

tables of

integral degrees, 258

Legendre's coefficients, 219

tesseral, 240

Heat, generation of, 320, 348

Helmholtz, stresses in dielectrics, 177

Hertzian vibrator, 567

Holtz influence machine, 18

Hyperbolic cylinders, 267, 270

Hysteresis, magnetic, 412

Images in electrostatics, 185-201, 258, 281

Impulsive forces, 493

Induction, coefficients of, 93, 96, 97

,, electrification by, 16, 125, 186

,, magnetic, 384

,, of currents, 452, 555

Inductive capacity of dielectric, 74, 115, 134,

525

,i . >, ,, crystals, 135

it t> i, gases, 132, 526

n * > liquids, 75, 360

ii ii in terms of molecular

structure, 130, 134, 542
Infinite conductors, resistance in, 350

Infinity, field at, 56

Insulators and conductors, 5, 534

Intensity (electric), 24, 32, 33, 547, 564, 577

,, of magnetisation, 368

Intersecting planes, 188, 206

,, spheres, 206

Inverse square, law of, 13, 31, 37, 168, 365

Inversion, 202, 258

Ion, 308

velocity of, 310

lonisation, 311

Joule effect in conductors, 320

Kauffmann, 576

Kelvin (Lord), 193, 199, 249, 250, 365, 469

Ketteler-Helmholtz formula, 542

KirchhoflTs laws, 311

,, solution of wave-equation, 518

Lagrange's equations, 489, 492, 493

Lame's functions, 252

Laplace's equation, 40, 42, 120, 243, 245

,, ,, solution in spherical har-

monics, 206

,, ,, solution in ellipsoidal har-

monics, 251

, , , ,
solution in spheroidal har-

monics, 206

Larmor, 3, 168, 542

Law of force, 13, 31, 37, 168, 365

,, ,, between current elements, 441

Least action, 488, 514, 570

Lebedew, 548

Legendre's coefficients, 217, 225, 231

Lenz's law of induction of currents, 453

Leyden jar, 77, 277

Light, electromagnetic theory of, 3, 521, 525

,, velocity of, 521, 525

,, dispersion of, 542

Lightning conductor, 61, 479

Lines of force (electrostatic), 25, 29, 43, 47,

62

,, ,, (magnetic), 370

flow, 341

,, ,, induction, 386

Liouville, solution of wave-equation, 516

Lorentz (H. A.), 542, 543, 557, 577, 578,

579

Lorenz (L.), 543

Magnetic field, 369

,, ,, produced by currents, 425

energy of, 396, 415, 494, 504
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Magnetic field of moving electrons, 550, 552,

567

,, matter, Poisson's imaginary, 375

,, particle, 366

,, ,, potential of, 372

,, ,, potential energy of, 377

,, ,, resolution of, 372

,, ,, vector-potential of, 393

shell, 376, 426

,, ,, potential of, 376

,, ,, potential energy of, 380

,, vector-potential of, 395

Magnetised body, 367

,, ,, potential of, 372

,, ,, potential energy of, 381

,, ,, measurement of force inside

a, 381

Magnetism, physical facts of, 364, 408, 425

,, terrestrial, 400

theories of, 3, 418, 504

Magnetostriction, 417

Mass, electromagnetic, 552, 579

Matter, structure of, 20, 130, 134; see also

Electron and Molecule

,, imaginary magnetic, 375

Maxwell, 2, 3 et passim

,, displacement theory, 153, 508

theory of induced magnetism, 421

theory of light, 521, 525

Measurements :

charge of electricity, 8, 77, 109, 437

current of electricity, 314, 433

inductive capacity, 74, 360

potential difference, 106, 107

resistance, 314

Mechanical action in the ether, 3, 140, 570

,, ,, ,, dielectrics, 172

,, ,, magnetic media, 415

force on a circuit, 439, 503

,, conductor, 102

dielectric, 124, 172

,, ,, moving electron, 554,

570

surface, 79, 178

Medium between conductors, 140, 151, 510

Metallic media, reflection and refraction of

light in, 535, 544

,, ,, absorption in, 534

Michelson and Morley, 578

Mirror galvanometer, 437

Molecular theory of dielectric action, 126, 361

,, magnetism, 3, 366, 409,

418, 421, 504

,, ,, ,, light propagation, 540

Molecule, structure of, 133, 168, 232, 539, 558,

560

,, radiation of light from, 558, 568

Moment of a magnet, 366

Momentum, electrokinetic, 498

,, electromagnetic, 574

,, generalised, 493

Mossotti's theory of dielectric action, 127, 168

Multiple-valued potentials, 279, 429

Network of conductors, steady currents in,

311, 316, 322

,, ,, ,, oscillations in, 499

Neumann's law of current induction, 453

Nichols and Hull, 548

Nicholson, 545

Oersted, 425

Ohm (unit of resistance), 305, 523, 524

Ohm's law, 301, 307, 309, 343

Oscillations in a network of conductors, 499

Oscillatory discharge of a condenser, 460

Parabolic cylinders, 267, 269

Parallel plate condenser, 77, 115, 272, 274

Paramagnetism, 410, 413

Particle, magnetic, 366, 372, 377, 393

Permeability, magnetic, 410

Physical dimensions of electric quantities, 14,524

Plane conductors and condensers, 69, 185, 194,

272

,, current sheets, 480, 482

,, semi-infinite (electrified), 266, 273, 282

,, waves of light, 526

Poisson's equation, 40, 121

,, imaginary magnetic matter, 375, 418

,, theory of induced magnetism, 127, 418

Polarisation (electrostatic), 117, 118, 126, 155,

232, 545

of light, 528, 533, 557

Polarising angle of light, 533

Polarity of molecules, 126

Potential (electrostatic), 26, 31, 121, 345

,, ,, maxima and minima,

43, 167

,, (electric), 562

(magnetic), 370, 413, 429

,, (vector), 393

,, coefficients of, 93, 96, 97

Poynting's theorem, 511

Practical units, 523

Pressure of radiation, 548

Principal coordinates, 539

Pulse of electric action, 569
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Quadrant electrometer, 107

Quadric, stress-, 147

Quantity of electricity, 7, 8, 77, 109, 437

Quincke, 181, 416, 417

Radiation, pressure of, 548

of light from electrons, 557, 568

Rapidly alternating currents, 477, 501

Rayleigh (Lord), 358

Recalescence, 412

Reciprocation theorem of Green, 92, 163

Reflection of light, 530, 531, 535

Refraction of light, 529

,, ,, lines of force, 123

flow, 346

Refractive index, 525, 542

Relaxation, time of (for a dielectric), 359

Residual discharge, 361

Resistance of a conductor, 301, 314, 355, 539

,, measurement of, 314

specific, 342

-box, 314

Resolution of a magnetic particle, 372

Retentiveness (magnetic), 412, 422

Riemann's surface, 280

Rontgen rays, 311, 569

Saturation (magnetic), 411

Schuster, 545

Schwarz's transformation, 271

Screening, electric, 62, 97, 537

Self-induction, 456

Sellmeyer's dispersion formula, 542

Shell, magnetic, see Magnetic shell

Signals, transmission of, 332

Sine-galvanometer, 435

Soap-bubble, electrification of, 81

Solenoid, magnetic, 432

Solenoidal vector, 158

Sommerfeld, 283

Specific Inductive capacity, see Inductive

capacity

Spherical conductors and condensers, 66, 71,

99, 100, 189, 192, 196, 226, 228,

231, 264

bowl, 250

harmonics (theory), 206, 233, 243

ti ,, (applications), 224, 401

Spheroidal conductor, 248

harmonics, 254, 257

Stokes, 569

Stokes' theorem, 388

Stresses, general theory of, 142

electrostatic, 146, 169

,, in dielectrics, 175

,, ,, electromagnetic field, 573

,, ,, magnetic media, 415

Submarine cable, 79, 319, 332, 351

Superposition of fields, 90, 191

Surface-electrification in conductors, 18, 21,

37, 45, 61, 121,

194

,, ,, ,, dielectrics, 125

,, harmonics, 208

Susceptibility, magnetic, 410

Tangent galvanometer, 434

Telegraph wire, capacity of, 195

,, ,, transmission of signals along,

317, 332

Terrestrial magnetism, 400

Tesseral harmonics, 237

Time of relaxation, 359

Torsion balance, 11, 365

Transformer, theory of, 465

Tubes of force (electrostatic), 44, 46, 47, 117

,, (magnetic), 371

flow, 341

,, ,, induction, 386

Unicursal curves, 269

Uniformly magnetised body, 373

Uniqueness of solution, 89, 163

Units, 14, 77, 305, 365, 427, 522

Vector-potential, 393, 438, 474

Velocity of electromagnetic waves, 520

light, 521, 525

Volt (unit of potential), 305, 523

Volta's law, 303

Voltaic ceU, 302

Voltmeter, 314

Wave-propagation, equation of, 516, 526, 565

,, ,, in dielectrics, 520

,, ,, metals, 533

,, ,, ,, crystalline media, 545

Weber's theory of magnetism, 3, 418, 505

Wheatstone's bridge, 315, 316

Zeemann effect, 557

Zonal harmonics, 233
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